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Algorithmic Thinking: Why Learning Cannot Be Measured By Code-Correctness in a CS 
Classroom  

 
Introduction 

 
Educators and researchers investigating student learning in higher education often resort to 
strategies for assessing and evaluating student learning that are limited in their validity, scope, 
and utility for providing feedback to students, educators, and researchers alike (Lattuca, 2023; 
Rosen et al., 2017). For example, in computing education, student self-reports of their perceived 
learning, as well as reports generated by autograders, are two dominant approaches to providing 
insight to instructors and researchers on student learning (Haldeman et al., 2018). Recently, 
researchers have challenged such strategies as being limited in their validity, scope, and utility 
for understanding student learning. For example, existing research suggests self-reports are poor 
predictors of students’ learning gains due, in part, to students’ inability to accurately assess their 
learning as socio-cognitive elements such as a students’ self-efficacy beliefs may distort their 
perceptions of their own learning, causing some to overestimate their learning gains while others, 
with lower self-efficacy beliefs, underreport their learning gains (Lattuca, 2023).  
  
We contend that this issue is particularly important in computer science (CS) education, where 
autograded assignments are a growing approach to delivering students, instructors, and 
researchers feedback on written coding assignments (Haldeman et al., 2018). That is, autograders 
may falsely suggest that students who have developed and implemented working code have 
mastered the knowledge and skills of introductory CS coursework. This might inflate students’ 
sense of their self-reported learning despite failing to demonstrate the knowledge, skills, and 
competencies associated with introductory CS coursework (Hui, 2023; Cloude et al, 2024). 
Students may, for example, build working code that does not demonstrate algorithmic thinking 
skills by hard-coding solutions, using brute force programming techniques, or using other 
rudimentary programming approaches. Moreover, self-reports and autograders are unlikely to 
capture the more complex learning outcomes, such as computational thinking and algorithmic 
thinking, commonly associated with CS1 coursework (Hog & Jump, 2022; Cloud et al, 2024).  
  
The research at the center of this paper seeks to examine students’ learning of complex cognitive 
skills and competencies, especially algorithmic thinking, in an introductory CS course. While 
definitions of algorithmic thinking vary in the scholarly literature, we adopt the definition of 
algorithmic thinking provided by Lamagna (2015) as “the ability to understand, execute, 
evaluate, and create computational procedures” (p. 45). In this view, algorithmic thinking has 
multiple cognitive and behavioral manifestations, such as functional decomposition (i.e., 
breaking complex problems into sub-problems), abstraction, recognizing complex and special 
cases of a problem, and so on (Lehmann, 2023). This research begins from the premise that 
students may generate working code that passes autograders while failing to demonstrate the 
cognitive skills related to algorithmic thinking that are frequently a fundamental aspect of 
introductory CS courses. Thus, we begin by analyzing students’ code submissions for the 
manifestations of algorithmic thinking described above. 
  
Recognizing the limitations of both students’ self-reported learning and autograded coded 
assignments for understanding the process by which students learn in computing education, as is 



common in the existing literature, our research focuses on students’ demonstration of the skills 
associated with learning to think algorithmically as they solve computational problems. As such, 
this qualitative research study investigates students’ in situ problem-solving skills, focusing 
particularly on manifestations of algorithmic thinking. Our work was guided by the following 
research question:  
 
1. How are students’ algorithmic thinking skills manifested in their approaches to solving 

problems using programming? 
 

Methods 
Research Setting  
 
In this research, we focus on one section of an introductory computer science course for first-
year engineering students at a private, highly selective research university in the northeastern 
United States. Because the course is for engineering students, there is a heavy emphasis on 
modeling, data analysis, and statistics. The course is also a testbed for the inclusion of ethics and 
sociotechnical thinking within engineering classrooms. The section in this study consisted of 33 
students, 25 of whom consented to participate in the study. The course content was designed for 
students to learn Python with the Use-Modify-Create (UMC) approach (Lee, 2011). In most class 
sessions, students learned new Python concepts by running (using) instructor-developed code 
that implemented the specified concepts, modifying code using concepts learned in previous 
weeks, and creating new code using newly and previously learned Python concepts. 
 
Data Sources  
 
This research entails an ethnographic study of students’ learning and participation in the 
introductory CS course. The data in this study comes from three sources. First, members of the 
research team document ongoing observations of students’ participation in individual and team-
based coding assignments in handwritten fieldnotes. Second, we video and audio-record 
students’ participation in team-based assignments to capture students’ in situ thinking as they 
complete assignments. Third, we collect students’ written assignments, including the code they 
produce and their written explanations of their analyses and results. 
  
Finally, we video and audio-record students’ participation in “revise and resubmit” (R&R) 
sessions during the term. Prior to R&R sessions, members of the instructional team collect, 
grade, and provide handwritten feedback on students’ individual and team-based coding 
assignments. Students are each provided an opportunity to revise their assignments and discuss 
their revisions with the instructional team. We use these discussions as an avenue to examine 
students’ demonstration of algorithmic thinking, namely, as they respond to feedback on their 
coding techniques, analysis strategies, or explanations of their results and how functional 
decomposition, abstraction, parametrization, and repetition are used.   

 
Preliminary Findings 

 
Despite producing working code that passes autograders, students did not always demonstrate 
elements of algorithmic thinking. For example, Cooper and colleagues (2000) describe the 



strategic use of repetition as a core element of algorithmic thinking. In Assignment 1, where 
students were asked to assign letter grades to fictitious people in a grade book, Student 1 (Figure 
1, Appendix A) demonstrated the strategic use of repetition when assigning grades, using a for 
loop to iterate over the elements of a dataframe. Conversely, Student 2 (Figure 2, Appendix A) 
implemented the same functionality using NumPy’s “select” function instead of repetition. 
Interestingly, both students attempted to use repetition, as demonstrated by the code Student 2 
commented out. Although both students produced code that passed the autograder, Student 2 
appeared to fail in their attempt to utilize repetition. 
 
We also analyzed data from student assignments in which students did not receive autograder 
feedback. For example, in the final project, which is the key learning activity at the center of this 
paper, students in teams of 3-4 were asked to place a new entity, either a voting location, public 
library, or community college, in Houston, Texas using publicly accessible census data. Unlike 
other assignments, where instructors provided instructor-built templates and test benches for 
students to evaluate their solutions, the final project did not include test benches, autograders, or 
discernibly “correct” solutions. We contend that this type of assignment, where students develop 
the form, composition, and structure without instructor-built templates, might be better avenues 
to examine their demonstration of elements of algorithmic thinking (i.e., of functional 
decomposition, abstraction, parametrization, and repetition) than student self-assessment or the 
results of auto-graded student work.  
 
Despite having previously expressed the cognitive and behavioral skills related to algorithmic 
thinking in the course when using instructor-build templates, almost all student teams opted to 
hard code the solution rather than engage in functional decomposition. For example, Team 1 
began by manually typing the census identifiers of interest to their project in a NumPy array of 
“magic numbers,” citing the specific rows in the dataset at which they found each of the values 
(Figure 3, Appendix A) (Kernighan & Ritchie, 1988). However, after receiving feedback from 
the instructors, the group rewrote their code in preparation for the R&R session, clearly 
demonstrating their capacity for functional decomposition and strategic use of NumPy and 
Pandas functions (Figure 4, Appendix A). When asked why the team decided to add the 
individual values rather than the built-in sum function shown in Figure 5, Appendix A, Student 3 
responded:  
 

I think we took the manual approach because we didn’t have as much confidence in 
doing it like the simplified way and wanted to make sure we were putting in the correct 
values and we were getting out what we wanted, but obviously, this way is much easier.  

 
Team 2 was the only team in the study that demonstrated functional decomposition in their initial 
submission defining and utilizing multiple functions at the beginning of their program (Figures 6 
and 7, Appendix A). Moreover, Team 2 demonstrated the strategic use of parameterization 
through the use of variables that could be altered based on the conceptual underpinnings of the 
analysis. For example, during the R&R interview, Student 4 described the purpose of the 
parameters they included in the broader census analysis:  
 

OK, so to change the requirements that we had, it would mostly be here in line 21 where 
we would say if the percent Hispanic is greater than or equal to 50% and if the percent, of 



the population age 18 to 24 was greater than equal to 20%, then we would keep those so 
these two numbers are real important to look at.  
 
Team 5’s data organization followed a structured format. The team imported necessary packages, 
defined variables, and defined the function (Figures 8 and 9, Appendix A). Following this order, 
the format was repeated throughout the program, with packages being imported as necessary. 
The commentary throughout the file provides brief explanations of code chunks or revisions 
made to the project based on the R&R feedback. When asked about the team’s approach to 
creating variables, one of the team members and the instructor said the following: 
  
Instructor: “There was this thing at the very beginning we started to do, things like we’ve 
created a variable called state of interest… Why don’t we do this, why did we create this 
variable at the beginning?”  
 
Student 5: “I mean change [the variable], yeah. I noticed that we didn’t. There’s a lot of 
this code that could be improved in for loops and you could change it like so many times”  
 

Instructor: “For loops?”  
 
Student 5: You know, loops in general like depending on where it is. Like if you wanted 
to restructure the code and just wanted to run a bunch of different, like all the locations of 
the Community College, we could do that just by changing the track and just sign in and 
different things and making a list with all of the different locations, but we didn’t do that. 
So it was easy to just to change the number like four times.  
 
Taken collectively, while all teams were able to produce working code that answered their 
prompts about the census data, few teams clearly demonstrated elements of algorithmic thinking 
at the levels we were expecting, particularly prior to instructor intervention during the R&R 
sessions.  
 

Discussion 
 

This research aims to examine students’ in situ demonstration of the cognitive and behavioral 
skills associated with algorithmic thinking in an introductory computing course in engineering. 
Our findings indicate that while students are frequently able to produce working code that solves 
a wide array of computing problems, their submissions do not always reflect the cognitive skills, 
such as algorithmic thinking, that are central learning goals in introductory CS education. These 
findings lead us to question the utility and appropriateness of autograders for assessing and 
evaluating student learning, particularly as it relates to complex cognitive skills in CS education.  

  
Existing research suggests instructor feedback supports students’ learning beyond autograders in 
introductory-level programming courses because, for example, such feedback encourages student 
reflection (Haldman et al., 2018). Consistent with other research studies on the role of reflection 
and revision in introductory programming courses, our preliminary findings suggest 
opportunities for revision, such as those presented during our R&R sessions, further students’ 



understanding of their code by prompting students to demonstrate specific elements of 
algorithmic thinking (Abu Deeb & Hickey, 2023).  

  
Algorithmic thinking is crucial to the development of novice programmers as they grow in 
technology fields (Futschek, 2006). However, our research suggests that active instructor 
engagement and regular feedback, even when students have working code, might foster students’ 
algorithmic thinking skills. While autograders are a growing part of computer science education 
that supports delivering CS coursework at scale (Haldeman et al., 2018), personalized feedback 
may be critical in nurturing student learning and confidence, particularly as it relates to the 
cognitive skills that autograders do not assess, such as students’ algorithmic thinking.  
 

Conclusion 
 
Based on projects throughout the course, our findings suggest that when working in instructor-
provided templates, student programming work alone is not enough to demonstrate a thorough 
understanding of all components of algorithmic thinking. Concurrently, instructor feedback 
might be an effective resource for fostering students’ growth in algorithmic thinking. Although 
students were able to articulate the purpose of processes such as repetition, students initially 
lacked the confidence to implement these processes. Our results are consistent with Haldman and 
colleagues (2018), who found that it was only after instructor feedback, which encourages 
student reflection (Abu Deeb & Hickey, 2023), that students felt more comfortable tackling 
problems using a higher-level approach, indicating that instructor feedback is an important factor 
in introductory-level programming.  
 
Algorithmic thinking, especially regarding its subcomponents, is crucial to the development of 
novice programmers as they grow in technology fields (Futschek, 2006). While instructors can 
rely on autograding for some purposes, personalized feedback and human code analysis may be 
critical in nurturing and understanding student learning. To understand students’ ability to use all 
elements of algorithmic thinking, instructors and researchers should assign work where students 
can create their own code without an instructor-written template. In this manner, autograders 
could continue checking for working code, but instructors can be assured that students are 
practicing coding skills, whether that is problem-solving, using functions and variables, or 
reading documentation.  
 
Future work will be focused on activity traces, defined by Shi and colleagues as data traces 
generated in learning management systems that capture students’ participation (2023). In this 
research, the coding integrated development environment (IDE) utilized in the course captures 
students’ participation as they complete coding assignments. Activity traces from the project 
environments will be analyzed in tandem with video and audio recordings of students’ 
participation in classroom activities, including individual and team-based assignments, to better 
understand coding processes rather than outcomes.  
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Appendix A  

Student Code Figures  

Figure 1 
Example from Student 1- PANDAS Code  

 
 
Figure 2 
Example from Student 2 - PANDAS Code   

 
 
Figure 3  
Team 1 Final Project Array  

 
 
 



Figure 4  
Team 1 Final Project: Example Arrays  

 
 
Figure 5  
Team 1 Final Project: Example of Sum Function 

 
 
Figure 6 
Team 2 Final Project: Example of Functional Decomposition 

 
 
  



Figure 7 
Team 2 Final Project: Repetition in Function  

 
 
Figure 8 
Team 5 Final Project: Data Organization   

 
 
Figure 9 
Team 5 Final Project: Example of Program Structure  

 
 


