
Paper ID #42748

Algorithmic Thinking: Why Learning Cannot Be Measured By Code-Correctness
in a CS Classroom

Ms. Alejandra Noemi Vasquez, Tufts University
Trevion S Henderson, Tufts University

Trevion Henderson is Assistant Professor of Mechanical Engineering and STEM Education at Tufts
University. He earned his Ph.D. in Higher Education at the University of Michigan.

Mr. David Zabner, Tufts University

©American Society for Engineering Education, 2024

Algorithmic Thinking: Why Learning Cannot Be Measured By Code-Correctness in a CS
Classroom

Introduction

Educators and researchers investigating student learning in higher education often resort to
strategies for assessing and evaluating student learning that are limited in their validity, scope,
and utility for providing feedback to students, educators, and researchers alike (Lattuca, 2023;
Rosen et al., 2017). For example, in computing education, student self-reports of their perceived
learning, as well as reports generated by autograders, are two dominant approaches to providing
insight to instructors and researchers on student learning (Haldeman et al., 2018). Recently,
researchers have challenged such strategies as being limited in their validity, scope, and utility
for understanding student learning. For example, existing research suggests self-reports are poor
predictors of students’ learning gains due, in part, to students’ inability to accurately assess their
learning as socio-cognitive elements such as a students’ self-efficacy beliefs may distort their
perceptions of their own learning, causing some to overestimate their learning gains while others,
with lower self-efficacy beliefs, underreport their learning gains (Lattuca, 2023).

We contend that this issue is particularly important in computer science (CS) education, where
autograded assignments are a growing approach to delivering students, instructors, and
researchers feedback on written coding assignments (Haldeman et al., 2018). That is, autograders
may falsely suggest that students who have developed and implemented working code have
mastered the knowledge and skills of introductory CS coursework. This might inflate students’
sense of their self-reported learning despite failing to demonstrate the knowledge, skills, and
competencies associated with introductory CS coursework (Hui, 2023; Cloude et al, 2024).
Students may, for example, build working code that does not demonstrate algorithmic thinking
skills by hard-coding solutions, using brute force programming techniques, or using other
rudimentary programming approaches. Moreover, self-reports and autograders are unlikely to
capture the more complex learning outcomes, such as computational thinking and algorithmic
thinking, commonly associated with CS1 coursework (Hog & Jump, 2022; Cloud et al, 2024).

The research at the center of this paper seeks to examine students’ learning of complex cognitive
skills and competencies, especially algorithmic thinking, in an introductory CS course. While
definitions of algorithmic thinking vary in the scholarly literature, we adopt the definition of
algorithmic thinking provided by Lamagna (2015) as “the ability to understand, execute,
evaluate, and create computational procedures” (p. 45). In this view, algorithmic thinking has
multiple cognitive and behavioral manifestations, such as functional decomposition (i.e.,
breaking complex problems into sub-problems), abstraction, recognizing complex and special
cases of a problem, and so on (Lehmann, 2023). This research begins from the premise that
students may generate working code that passes autograders while failing to demonstrate the
cognitive skills related to algorithmic thinking that are frequently a fundamental aspect of
introductory CS courses. Thus, we begin by analyzing students’ code submissions for the
manifestations of algorithmic thinking described above.

Recognizing the limitations of both students’ self-reported learning and autograded coded
assignments for understanding the process by which students learn in computing education, as is

common in the existing literature, our research focuses on students’ demonstration of the skills
associated with learning to think algorithmically as they solve computational problems. As such,
this qualitative research study investigates students’ in situ problem-solving skills, focusing
particularly on manifestations of algorithmic thinking. Our work was guided by the following
research question:

1. How are students’ algorithmic thinking skills manifested in their approaches to solving

problems using programming?

Methods
Research Setting

In this research, we focus on one section of an introductory computer science course for first-
year engineering students at a private, highly selective research university in the northeastern
United States. Because the course is for engineering students, there is a heavy emphasis on
modeling, data analysis, and statistics. The course is also a testbed for the inclusion of ethics and
sociotechnical thinking within engineering classrooms. The section in this study consisted of 33
students, 25 of whom consented to participate in the study. The course content was designed for
students to learn Python with the Use-Modify-Create (UMC) approach (Lee, 2011). In most class
sessions, students learned new Python concepts by running (using) instructor-developed code
that implemented the specified concepts, modifying code using concepts learned in previous
weeks, and creating new code using newly and previously learned Python concepts.

Data Sources

This research entails an ethnographic study of students’ learning and participation in the
introductory CS course. The data in this study comes from three sources. First, members of the
research team document ongoing observations of students’ participation in individual and team-
based coding assignments in handwritten fieldnotes. Second, we video and audio-record
students’ participation in team-based assignments to capture students’ in situ thinking as they
complete assignments. Third, we collect students’ written assignments, including the code they
produce and their written explanations of their analyses and results.

Finally, we video and audio-record students’ participation in “revise and resubmit” (R&R)
sessions during the term. Prior to R&R sessions, members of the instructional team collect,
grade, and provide handwritten feedback on students’ individual and team-based coding
assignments. Students are each provided an opportunity to revise their assignments and discuss
their revisions with the instructional team. We use these discussions as an avenue to examine
students’ demonstration of algorithmic thinking, namely, as they respond to feedback on their
coding techniques, analysis strategies, or explanations of their results and how functional
decomposition, abstraction, parametrization, and repetition are used.

Preliminary Findings

Despite producing working code that passes autograders, students did not always demonstrate
elements of algorithmic thinking. For example, Cooper and colleagues (2000) describe the

strategic use of repetition as a core element of algorithmic thinking. In Assignment 1, where
students were asked to assign letter grades to fictitious people in a grade book, Student 1 (Figure
1, Appendix A) demonstrated the strategic use of repetition when assigning grades, using a for
loop to iterate over the elements of a dataframe. Conversely, Student 2 (Figure 2, Appendix A)
implemented the same functionality using NumPy’s “select” function instead of repetition.
Interestingly, both students attempted to use repetition, as demonstrated by the code Student 2
commented out. Although both students produced code that passed the autograder, Student 2
appeared to fail in their attempt to utilize repetition.

We also analyzed data from student assignments in which students did not receive autograder
feedback. For example, in the final project, which is the key learning activity at the center of this
paper, students in teams of 3-4 were asked to place a new entity, either a voting location, public
library, or community college, in Houston, Texas using publicly accessible census data. Unlike
other assignments, where instructors provided instructor-built templates and test benches for
students to evaluate their solutions, the final project did not include test benches, autograders, or
discernibly “correct” solutions. We contend that this type of assignment, where students develop
the form, composition, and structure without instructor-built templates, might be better avenues
to examine their demonstration of elements of algorithmic thinking (i.e., of functional
decomposition, abstraction, parametrization, and repetition) than student self-assessment or the
results of auto-graded student work.

Despite having previously expressed the cognitive and behavioral skills related to algorithmic
thinking in the course when using instructor-build templates, almost all student teams opted to
hard code the solution rather than engage in functional decomposition. For example, Team 1
began by manually typing the census identifiers of interest to their project in a NumPy array of
“magic numbers,” citing the specific rows in the dataset at which they found each of the values
(Figure 3, Appendix A) (Kernighan & Ritchie, 1988). However, after receiving feedback from
the instructors, the group rewrote their code in preparation for the R&R session, clearly
demonstrating their capacity for functional decomposition and strategic use of NumPy and
Pandas functions (Figure 4, Appendix A). When asked why the team decided to add the
individual values rather than the built-in sum function shown in Figure 5, Appendix A, Student 3
responded:

I think we took the manual approach because we didn’t have as much confidence in
doing it like the simplified way and wanted to make sure we were putting in the correct
values and we were getting out what we wanted, but obviously, this way is much easier.

Team 2 was the only team in the study that demonstrated functional decomposition in their initial
submission defining and utilizing multiple functions at the beginning of their program (Figures 6
and 7, Appendix A). Moreover, Team 2 demonstrated the strategic use of parameterization
through the use of variables that could be altered based on the conceptual underpinnings of the
analysis. For example, during the R&R interview, Student 4 described the purpose of the
parameters they included in the broader census analysis:

OK, so to change the requirements that we had, it would mostly be here in line 21 where
we would say if the percent Hispanic is greater than or equal to 50% and if the percent, of

the population age 18 to 24 was greater than equal to 20%, then we would keep those so
these two numbers are real important to look at.

Team 5’s data organization followed a structured format. The team imported necessary packages,
defined variables, and defined the function (Figures 8 and 9, Appendix A). Following this order,
the format was repeated throughout the program, with packages being imported as necessary.
The commentary throughout the file provides brief explanations of code chunks or revisions
made to the project based on the R&R feedback. When asked about the team’s approach to
creating variables, one of the team members and the instructor said the following:

Instructor: “There was this thing at the very beginning we started to do, things like we’ve
created a variable called state of interest… Why don’t we do this, why did we create this
variable at the beginning?”

Student 5: “I mean change [the variable], yeah. I noticed that we didn’t. There’s a lot of
this code that could be improved in for loops and you could change it like so many times”

Instructor: “For loops?”

Student 5: You know, loops in general like depending on where it is. Like if you wanted
to restructure the code and just wanted to run a bunch of different, like all the locations of
the Community College, we could do that just by changing the track and just sign in and
different things and making a list with all of the different locations, but we didn’t do that.
So it was easy to just to change the number like four times.

Taken collectively, while all teams were able to produce working code that answered their
prompts about the census data, few teams clearly demonstrated elements of algorithmic thinking
at the levels we were expecting, particularly prior to instructor intervention during the R&R
sessions.

Discussion

This research aims to examine students’ in situ demonstration of the cognitive and behavioral
skills associated with algorithmic thinking in an introductory computing course in engineering.
Our findings indicate that while students are frequently able to produce working code that solves
a wide array of computing problems, their submissions do not always reflect the cognitive skills,
such as algorithmic thinking, that are central learning goals in introductory CS education. These
findings lead us to question the utility and appropriateness of autograders for assessing and
evaluating student learning, particularly as it relates to complex cognitive skills in CS education.

Existing research suggests instructor feedback supports students’ learning beyond autograders in
introductory-level programming courses because, for example, such feedback encourages student
reflection (Haldman et al., 2018). Consistent with other research studies on the role of reflection
and revision in introductory programming courses, our preliminary findings suggest
opportunities for revision, such as those presented during our R&R sessions, further students’

understanding of their code by prompting students to demonstrate specific elements of
algorithmic thinking (Abu Deeb & Hickey, 2023).

Algorithmic thinking is crucial to the development of novice programmers as they grow in
technology fields (Futschek, 2006). However, our research suggests that active instructor
engagement and regular feedback, even when students have working code, might foster students’
algorithmic thinking skills. While autograders are a growing part of computer science education
that supports delivering CS coursework at scale (Haldeman et al., 2018), personalized feedback
may be critical in nurturing student learning and confidence, particularly as it relates to the
cognitive skills that autograders do not assess, such as students’ algorithmic thinking.

Conclusion

Based on projects throughout the course, our findings suggest that when working in instructor-
provided templates, student programming work alone is not enough to demonstrate a thorough
understanding of all components of algorithmic thinking. Concurrently, instructor feedback
might be an effective resource for fostering students’ growth in algorithmic thinking. Although
students were able to articulate the purpose of processes such as repetition, students initially
lacked the confidence to implement these processes. Our results are consistent with Haldman and
colleagues (2018), who found that it was only after instructor feedback, which encourages
student reflection (Abu Deeb & Hickey, 2023), that students felt more comfortable tackling
problems using a higher-level approach, indicating that instructor feedback is an important factor
in introductory-level programming.

Algorithmic thinking, especially regarding its subcomponents, is crucial to the development of
novice programmers as they grow in technology fields (Futschek, 2006). While instructors can
rely on autograding for some purposes, personalized feedback and human code analysis may be
critical in nurturing and understanding student learning. To understand students’ ability to use all
elements of algorithmic thinking, instructors and researchers should assign work where students
can create their own code without an instructor-written template. In this manner, autograders
could continue checking for working code, but instructors can be assured that students are
practicing coding skills, whether that is problem-solving, using functions and variables, or
reading documentation.

Future work will be focused on activity traces, defined by Shi and colleagues as data traces
generated in learning management systems that capture students’ participation (2023). In this
research, the coding integrated development environment (IDE) utilized in the course captures
students’ participation as they complete coding assignments. Activity traces from the project
environments will be analyzed in tandem with video and audio recordings of students’
participation in classroom activities, including individual and team-based assignments, to better
understand coding processes rather than outcomes.

References

BBC. (n.d.). Repetition and iteration - Computational constructs - National 4 Computing Science
Revision - BBC bitesize. BBC News. https://www.bbc.co.uk/bitesize/guides/zcg9kqt/revision/7#

Booth, J. W., Bhasin, A. K., Reid, T. N., & Ramani, K. (2015, August 11). Empirical studies of
functional decomposition in early design. Convergence Design Lab, Purdue University.
https://doi.org/10.1115/DETC2015-47865

Cloude, E., Kumar, P., Baker, R., & Fouh, E. (2024, March). Novice programmers inaccurately
monitor the quality of their work and their peer’s work in an introductory computer science
course. In Proceedings of the 14th Learning Analytics and Knowledge Conference (LAK ‘24).
Association for Computing Machinery, New York, NY, USA, 35-45.
https://doi.org/10.1145/3636555.3636848

Cooper, S., Dann, W., & Pausch, R. (2000, November) Developing algorithmic thinking with
Alice. ISECON

Hogg, C., Jump, M. (2022, March) Designing autograders for novice programmers. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education V. 2
(SIGCSE 2022). Association for Computing Machinery, New York, NY, USA, 1200.
https://doi.org/10.1145/3478432.3499147

Hui, B. (2023, March). Are they learning or guessing? Investigating trial-and-error behavior with
limited test attempts. In LAK23: 13th International Learning Analytics and Knowledge
Conference (LAK2023). Association for Computing Machinery, New York, NY, USA, 133–144.
https://doi.org/10.1145/3576050.3576068

Deeb, F. A., & Hickey, T. (2023, September 27). Impact of reflection in auto-graders: An
empirical study of novice coders. Computer Science Education.
https://doi.org/10.1080/08993408.2023.2262877

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., & Basnet, R. B. (2017). Algorithmic thinking,
cooperativity, creativity, critical thinking, and problem solving: Exploring the relationship
between computational thinking skills and academic performance. Journal of Computers in
Education, 4(4), 355–369. https://doi.org/10.1007/s40692-017-0090-9

Futschek, G. (2006). Algorithmic thinking: The key for understanding computer science. In:
Mittermeir, R.T. (eds) Informatics Education – The Bridge between Using and Understanding
Computers. ISSEP 2006. Lecture Notes in Computer Science, vol 4226. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/11915355_15

GeeksforGeeks. (2023, September 12). What is a computer program?. GeeksforGeeks.
https://www.geeksforgeeks.org/what-is-a-computer-program/

Geiger, A., Carstensen, A., Frank, M. C., & Potts, C. (2023). Relational reasoning and
generalization using nonsymbolic neural networks. Psychological Review, 130(2), 308-333.
https://doi.org/10.1037/rev0000371

Haldeman, G., Tjang, A., Babes-Vroman, M., Bartos , S., Shah, J., Yucht, D., & Nguyen, T. D.
(2018, February). Providing meaningful feedback for autograding of programming assignments.
SIGCSE ‘18: Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, 289-283. https://doi.org/10.1145/3159450.3159502

Hartson, R., & Pyla, P. S. (2018). The UX book: Process and Guidelines for Ensuring a Quality
User Experience (2nd ed.). Morgan Kaufmann.

Katai, Z. (2014, June 1). The challenge of promoting algorithmic thinking of both sciences- and
humanities-oriented learners. Journal of Computer Assisted Learning, 31(4), 287–299.
https://doi.org/10.1111/jcal.12070.

Kernighan, B. W., & Ritchie, D.M. (1988). C Programming Language, 2nd Edition (2nd ed.).
Pearson

Lamagna, E. A. (2015, June 6). Algorithmic thinking unplugged. Journal of Circuits, Systems
and Computers. https://dl.acm.org/doi/pdf/10.5555/2753024.2753036

Lattuca, L. R. (2021, March 12) Patterns in the study of academic learning in US higher
education journals, 2005-2020. Higher Education: Handbook of Theory and Research, 323-382.
https://doi.org/10.1007/978-3-030-44007-7_7

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner,
L. 2011. Computational Thinking for Youth in Practice. ACM Inroads 2, 1 (March 2011), 32–37.
https://doi.org/10.1145/1929887.1929902

Lehmann, T. H. (2023, June 13). Using algorithmic thinking to design algorithms: The case of
critical path analysis. The Journal of Mathematical Behavior, Volume 71.
https://doi.org/10.1016/j.jmathb.2023.101079

Olsson, M. (2015). C Quick Syntax Reference (1st ed.). Apress.

Rich, K. M., Spaepen, E., Strickland, C., & Moran, C. (2020). Synergies and differences in
mathematical and computational thinking: Implications for integrated instruction, Interactive
Learning Environments, 28(3), 272-283. https://doi.org/10.1080/10494820.2019.1612445

Shi, W. W., Krishna Kumaran, S. R., Sundaram, H., & Bailey, B. P. (2023). The value of activity
traces in peer evaluations: An experimental study. Proceedings of the ACM on Human-Computer
Interaction, 7(CSCW1), 1-39.

van Eck, D., McAdams, D. A., & Vermaas, P. E. (2009, May 20). Functional decomposition in
engineering: A survey. Proceedings of the ASME 2007 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference. Volume 3:
19th International Conference on Design Theory and Methodology; 1st International Conference
on Micro- and Nanosystems; and 9th International Conference on Advanced Vehicle Tire
Technologies, Parts A and B, 227-236. https://doi.org/10.1115/DETC2007-34232

Appendix A

Student Code Figures

Figure 1
Example from Student 1- PANDAS Code

Figure 2
Example from Student 2 - PANDAS Code

Figure 3
Team 1 Final Project Array

Figure 4
Team 1 Final Project: Example Arrays

Figure 5
Team 1 Final Project: Example of Sum Function

Figure 6
Team 2 Final Project: Example of Functional Decomposition

Figure 7
Team 2 Final Project: Repetition in Function

Figure 8
Team 5 Final Project: Data Organization

Figure 9
Team 5 Final Project: Example of Program Structure

