
Paper ID #42746

Scaffolding Strategies for Teaching ROS 2: An Approach Using JupyterLab
and iRobot™ Education’s Create® 3 Robot

Miss Kathryn Lara Wujciak, Tufts University

Kathryn Wujciak recently graduated from Tufts University with a bachelor’s degree in mechanical engineering
and is pursuing a master’s in the same field this year. She has been a teaching assistant for multiple robotics
courses throughout her time at Tufts. Kathryn is passionate about educational robotics and hopes to lower
the barrier of entry for new engineers.

Dr. Briana M Bouchard, Tufts University

Briana Bouchard is an Assistant Teaching Professor in the Department of Mechanical Engineering at Tufts
University. She earned her Ph.D. in Mechanical Engineering, M.S. in Engineering Management, and
B.S. in Mechanical engineering from Tufts University. Her research focuses on educational robotics and
increasing the accessibility of ROS 2 using the Create 3 robot. She primarily teaches engineering design
and introductory robotics courses at Tufts and has previously taught courses in electronics, electronic
portfolios, and the Internet of Things.

Prof. Chris Buergin Rogers, Tufts University

Chris is a professor of Mechanical Engineering at Tufts University with research in engineering education,
robotics, musical instrument design, IoT, and anything else that sounds cool..

©American Society for Engineering Education, 2024

Scaffolding Strategies for Teaching ROS 2: An Approach Using
JupyterLab and iRobot™ Education’s Create® 3 Robot

I. Introduction

ROS 2 is an open source software development kit for various robotics applications. ROS 2
stretches across industries to provide assistance in research, prototyping, and development. It is
an advanced computer science concept often discussed at the graduate level and above. Because
it requires some background in either Python or C++, Linux, and understanding of
publisher/subscriber messaging structure, it is not commonly taught in undergraduate
classrooms. However, it is often used in the robotics industry at the professional level. We aim to
lower the barrier of entry of using ROS 2 using scaffolding tools and strategies with JupyterLab
and iRobot™ Education’s Create® 3 robot. The Create® 3 robot is ROS 2 compatible, a rarity
among educational robots. We used this platform to teach ROS 2 to first-year students across
multiple engineering disciplines. The JupyterLab and Create® 3 robot setup made it possible to
implement scaffolding techniques to optimize learning for students at an individual level, with
class exercises starting simple and growing in complexity. Outside of class, collaboration during
project-based learning further expanded the students’ understanding of the in-class topics. Using
previous pedagogical theory and data from this class, a new and improved JupyterLab is under
development to efficiently teach ROS 2 to undergraduates with little to no prior experience. This
paper provides an overview of the theoretical underpinnings of our work and outlines our initial
implementation for adaptation by others.

II. Literature Review

A. Individual
Scaffolding refers to a structured framework that supports and guides learners while gaining new
skills or knowledge, and fades as students become more proficient [1]. Scaffolding is an
educational strategy that instructors have used to bridge the gap between the student’s current
understanding and the more complex learning goal [2]. Domain-general scaffolding is support
that stretches across all learning environments [1], [3]. This could include improving problem-
solving skills, critical thinking, monitoring one’s own progress, or goal-setting [1], [3]. For
example, an instructor might provide a worksheet where the student writes weekly goals to help
develop their goal-setting skills. The student may learn how to effectively set goals which could
help in many areas of learning. Domain-specific scaffolding is instructional guidance that is
specific to one domain [1], [3]. It aims to make understanding complex concepts in that domain
more attainable. For example, in a computer science environment, it could look like “fill-in-the-
blank” code or black-boxing code. There are many techniques within scaffolding, and below we
will detail those relevant to our course.

On an individual level, scaffolding can improve the comprehension of computer science topics
[1], [3], [4], [5], [6]. Scaffolding provides the structure and tools to help learners develop
independence as learners. It is one out of many principles in self-regulated learning [1], [3]. Self-
regulated learning (SRL) is a method of teaching that puts the student at the center of their own
learning [1], [3], [6], [7]. Students monitor their own progress, set personal goals, and use
specific strategies. It is accepted that the use of scaffolds can support SRL processes [1], [6], [7].
Zheng [1] did a meta-analysis on 29 articles that looked at the effects of SRL scaffolds on
academic performance in computer-based learning environments (CBLEs), concluding that
scaffolds within SRL improve academic performance. This study suggests that a CBLE is
optimal for scaffolding due to the interactive nature, flexibility, and collaboration abilities. This
meta-analysis found that SRL scaffolds had the most positive impact in a CBLE in comparison
to other learning environments such as a traditional lecture setting [1]. This is because in CBLEs
that practice open-ended learning, students are pushed to have stronger engagement with the
material and higher intrinsic motivation in comparison to traditional learning environments [8].
Research indicates that successful learners often exhibit high engagement and intrinsic
motivation during a self-regulated learning activity [9]. The interaction between students'
intrinsic motivation and their performance within SRL in a CBLE significantly impacts their
learning according to a study conducted in an introductory engineering class [9]. CBLEs are
optimal environments for SRL scaffolds. Scaffolds can range from conceptual to procedural, and
strategic to metacognitive. Domain-general scaffolds are more effective in terms of academic
performance than domain-specific scaffolds [10], but both used together was the most effective
as presented in [1, Tab. 7], [11]. SRL fits well within domain-general scaffolding, as it is a skill
that can be applied to many learning environments. SRL puts the student in the driver’s seat and
lets them take control of their learning, with the help of domain-specific scaffolding techniques
[1].

Effective scaffolding comes in four phases: planning, monitoring, control, and reaction and
reflection [3], [8]. The planning phase involves planning for the problem such as guiding
questions, making a concept map, or planning ahead as seen in [1, Tab. 1], [3]. The monitoring
phase could have diagrams, prompts for self-explanation or reasoning, or cognitive feedback
done by the student [3], [12]. In the control phase, there could be worked out examples,
processing and reflective prompts, or guiding questions [3], [10]. Lastly, in the reflection phase,
students reflect on the learning they’ve done [3], [13]. As previously mentioned, effective
scaffolds can be both domain-general and domain-specific in each phase. In the context of
computer-based learning environments, or CBLEs, prompts (both domain-general and domain-
specific) are often used to help learners navigate complex tasks or problems, monitor their
progress, and regulate their learning strategies [1], [3], [5], [10]. Research on CBLEs found that
prompts were the most effective scaffolds for supporting SRL processes in CBLEs, especially for
processes during the control phase [1], [3].

One specific scaffolding technique is well-timed support. The concept of scaffolding is based on
the idea that learners can achieve learning objectives that they could not reach on their own with
the help of well-timed support. Well-timed support proved to be a very effective domain-specific
scaffolding tool. An example of well-timed support is the Test My Code (TMC) software
developed by the Department of Computer Science at University of Helsinki to benefit both the
instructor and student [4]. TMC (1) enables building of scaffolding into programming exercises;
(2) retrieves and updates tasks into the students’ programming environment as students work on
them, and (3) causes no additional overhead to students’ programming process [4]. Small
exercises build into bigger programs. The incremental tasks replicate the problem-solving
process, helping the student not only acquire coding knowledge but also problem-solving skills.
TMC was used with students as young as 11 years old. It has been used in several programming
courses at the University of Helsinki, and studies indicate that students found TMC helped them
learn programming more effectively and efficiently. Hellas et al. emphasize the importance of
well-defined and achievable tasks for students, especially in the early phases of a course, to build
self-confidence and encourage them to tackle new challenges [4].

When discussing well-timed support, it is natural to consider feedback. There are two types of
feedback: external and internal [5]. External feedback could be feedback from an instructor or
generated from a computer. Internal feedback could be self-reflection or self-assessment. The
relationship between internal and external feedback in SRL is crucial [5]. Internal feedback
(learner’s self-assessment) can be enhanced by external feedback (from environment and peers
or instructors) [5]. The combination of both internal and external feedback improves student
performance in SRL [5]. It allows the student to have a more concrete idea of their understanding
of the material. Feedback is important when designing a curriculum that involves scaffolding in
self-regulated learning environments [1], [3], [5], [10].

Having explored multiple scaffolding strategies, it’s important to discuss the practical application
of them within various learning activities. In other words, now that we have the techniques, how
will we implement them? Scaffolding can be presented in many different types of class activities.
Doukakis et al. [2] suggest pedagogical strategies that are most effective for teaching that
content, and the technological tools and resources that can be used to support learning. The main
learning categories include Think (reading, discussing, listening), Practice (algorithm
development, algorithmic puzzles), Interpret (case studies, analyzing algorithms), Apply (open-
ended problems, project-based learning), Evaluate (solution testing, peer evaluation), and Create
(presentation, documenting, product development) [2]. For example, well-timed support could be
incorporated in a “practice” activity such as algorithm development. Additionally, feedback
could be applied to an “evaluate” activity such as solution testing. The researchers in [2] suggest
multiple technology-integrated learning activities that could include a number of different
scaffolding techniques within them. Although it is not necessary to apply activities in each

category for every class, it is important to diversify the activities in and out of class so students
are exposed to multiple ways of learning and problem-solving.

B. Collaboration
Scaffolding in a CBLE is very effective especially for individual learners as discussed above.
However, another important component of CBLE is collaboration [3], [14]. Collaborative
learning encourages students to engage in discussions and evaluate different perspectives, which
helps develop their critical thinking skills [14]. Collaborative learning is necessary to prepare
engineering students for the professional world, where it is a daily occurrence [14], [15], [16].

E. Dringenberg et al. [15] identified and described the categories of collaborative, ill-structured
problem-solving experiences from the interview data of 27 first-year engineering students. The
study's findings suggest that students' experiences of collaborative, ill-structured problem-
solving (open-ended, loosely structured) can improve and educators should design learning
environments that encourage students to experience collaboration in various ways. However, the
common thread in all collaborative interactions is gathering more than one perspective. Seeking
multiple perspectives benefits each student in the group and is particularly helpful in a CBLE
[14], [15], [16]. It is important to give space such that all perspectives are welcome and
encouraged.

Collaboration invites multiple perspectives to solve a problem. If all perspectives are welcome,
students are given space to explore originality. Haungs et al. [16] discuss how to create a
collaborative environment where students are given open-ended assignments to promote
creativity. This allows students to work together in teams, communicate with each other, and
solve problems collectively. A perfect environment for collaboration is project-based learning
[14], [16]. Project-based learning (PBL) is a teaching method that follows constructivist learning
[16]. A traditional method of learning would involve learning facts, while constructivism is a
combination of existing knowledge, social context, and the problem at hand [16]. Working
individually as a professional engineer is uncommon, so it is necessary to expose students to
project-based learning to gain experience [14], [16].

Although collaboration is key to project work, it is important to provide opportunities for
students to actively participate in individual learning which can enhance collaboration in the
future. They learn essential skills in independent work that they can later apply in collaboration
with their peers. The students are more likely to collaborate after they have a chance to learn the
content at their own pace [16]. Thus, the combination of individual learning (with scaffolding
techniques) and collaborative learning is optimal when teaching advanced engineering topics.

III. Teaching ROS 2 with JupyterLab: Class Approach

Our class, Introduction to Engineering: Remote Exploration with Roomba, was composed of 31
first year engineering students. The class had one professor and 2 undergraduate teaching
assistants (TAs). Both TAs studied ROS 2 in the summer prior to the class, so they had a basic
working knowledge of the material. The main goal of the class was to give first-year students a
sense of different engineering disciplines and engineering problem solving. It was only open to
first year students who generally had limited coding experience. In-class activities were mostly
individual, while weekly projects were done with a partner. In-class activities included
significant domain-specific scaffolding, while the weekly projects were ill-structured and
collaborative.

Class was composed of short lectures (10-15 minutes) and class activities (60-65 minutes). The
short lectures, although included limited interaction, were examples of computational thinking
activities as described by [2]. The class used JupyterLab for all class activities and homework.
JupyterLab is a web-based interactive computing platform. Although it is compatible with many
languages, this class used it with Python only. The JupyterLab was set up such that students
could navigate to a server that housed all of the class material. Students would log in to their
personal workspace, which contained their individual activities and assignments. The server was
set up by the professor on a campus computer such that all students could access it. This software
allowed for multiple mediums of interaction such as full code scripts, code blocks, and plain text
(for explanations). There were also files that provided support such as troubleshooting pages and
extra practice on various concepts. The robot used in this class was iRobot™ Education’s
Create® 3 robot. It will be referred to as “the robot” in this paper. It is one of the only ROS 2
compatible robots available for student use. In JupyterLab, code can be run one section at a time
or line by line. For example, some files included portions of a full file that could be run one code
block at a time initially, then it could be run all together. Additionally, JupyterLab allowed for
text explanations to be written anywhere in the file.

The creative flexibility of JupyterLab + Create® 3 robot allowed us to implement different
projects that spanned both physical fabrication and coding. For example, students were able to
pull data from cloud services such as Airtable and send that data to the Create® 3 robot, while
fabricating it to look like a racecar. Microprocessors could be connected to the robot and send
data via serial communication. We used a Maker Pi RP2040, which is a microcontroller designed
by Raspberry Pi®1. It is an inexpensive microcontroller with many options for external sensors
and actuators. A single script in JupyterLab could control the robot and Maker Pi RP2040
together. For example, if the light sensor was triggered, the robot might drive forward. Each
project in the class took advantage of the various capabilities of this setup.

All projects except for the midterm were done with partners. Projects aimed to replicate real life
applications, encourage critical thinking, and draw multiple perspectives from the class. In one

1 Raspberry Pi® is a trademark of Raspberry Pi Trading.

project, the robot was a baseball player. The “baseball player” was built on top and the robot had
to run the bases, blinking and beeping at each base. Additionally, the students turned the robot
into a proportional controller that acted as an autonomous car. All the robots were in a line and
had to stay a specific distance apart while moving forward. The class project schedule is noted
below in Table 1. In addition to learning engineering concepts, students learned to document and
present in this class. After each project, students were required to “market” their project on a
website called “Notion.” This process is an example of the “Create” activity type [2]. Students
were able to synthesize their work and transform it into something able to be presented to others.

Table 1. “Introduction to Engineering” class project schedule.

Week 1 Baseball - The robot will drive to each of the bases, then beep and blink at each
one.
Concepts: Python basics
Instructor preparation: Write a wrapper library (as noted in Fig. 2 and Fig. 3) that
allows students to use minimal lines of Python code that are simple to comprehend.

Week 2 Jousting - Students will control the robot with their keyboard and joust another
robot. Students will build “knights” on top of the robots using laser-cut materials.
Concepts: Teleoperation, laser-cutting
Instructor preparation: Use teleop code from iRobot™ Education to allow students
to control the robot with their keyboard.

Week 3 TeleRobot Races - Students will remotely race the robots to a finish line. They will
do this by attaching their phone to the robot by building a phone holder on top. One
partner will control the robot from another room via Zoom and teleop.
Concepts: Teleoperation, laser-cutting, 3D printing
Instructor preparation: Use previous teleop code.

Week 4 Soccer Shootout #1 - Students will build a “leg” to allow the robot to score a goal
by using a microprocessor and servo motor.
Concepts: Maker Pi RP2040, servo motor, laser-cutting
Instructor preparation: Use previously written wrapper library and provide starter
code to use the servo with the microprocessor during class activities.

Week 5 Relay Race - The class robots will be placed in a line and must pass a ping pong
ball by turning 180º, driving to the next robot, and delivering the ball.
Concepts: Maker Pi RP2040, light sensor, ROS 2 (publisher), laser-cutting
Instructor preparation: Use wrapper library to introduce and use publishers in ROS
2 during class. Provide light starter code to use a light sensor with a
microprocessor.

Week 6 Soccer Shootout #2 - The robot will score a goal by using a microprocessor and
controlling it through the serial port. It will be autonomous such that once the light
sensor is triggered, it will send that information to the microprocessor, then

subsequently to the robot in order to perform an action (kicking a ball in the goal
past a goalie robot).
Concepts: Maker Pi RP2040, light sensor, serial communication, ROS 2 (publisher)
Instructor preparation: Introduce the serial port on the robot and serial starter
code. Use previous light sensor code to send information to the robot over serial
such that it moves.

Week 7 Obstacle Avoidance - Students will control the robot through an obstacle course
using a smartphone connected to Thunkables and Airtable. Thunkables is treated as
the app interface, with Airtable handling the values being published to the robot in
order to control its movement.
Concepts: Thunkables, Airtable, ROS 2 (publisher)
Instructor preparation: Introduce Thunkables and Airtable then show how to
publish values to a topic on the robot using both tools.

Week 8 Autonomous Cars - Students will use ROS 2 to write a proportional controller that
makes the robot drive “autonomously” behind another robot such that it doesn’t
crash into the “car” ahead, yet stays closely behind.
Concepts: Proportional controller, ROS 2 (publisher)
Instructor preparation: Introduce proportional control concepts. Provide publisher
code with less scaffolding for students to work through.

Week 9 Prepare for midterm

Week
10

Midterm (individual) - Students will make a robotic animal of their choosing using
sensors and actuators with ROS 2.
Concepts: sensors, actuators, ROS 2 (publishers, subscribers), laser-cutting, 3D
printing
Instructor preparation: Introduce subscribers and external sensors/actuators. Dive
deeper into ROS 2 using class activities to remove wrapper library scaffolding.

Week
11

Prepare for final

Week
12

Final Project (group) - The robot will joust another robot and try to throw it off its
“horse” using primarily ROS 2 actions. The winner is the robot whose “horse” stays
intact.
Concepts: ROS 2 (actions, publishers, subscribers), laser-cutting, 3D printing
Instructor preparation: Introduce actions and continue to explain overall ROS 2
concepts without wrapper library.

Week
13

Work on final portfolio

Week
14

Work on final portfolio

Week
15

Final Portfolio (individual) - Students submit a “Notion” portfolio which includes
pages for each project done throughout the semester.

As noted above, each project was done in Python using JupyterLab. JupyterLab allowed students
to learn in a SRL environment. JupyterLab made it possible to apply scaffolding and ease the
integration of ROS 2 into projects. Gradual learning experiences through black-boxing code
were applied to the provided scripts. Similar to TMC, JupyterLab made it possible to break down
complex programming tasks into smaller, more manageable steps. This provided students with
immediate external feedback on their code, and gradually increased the complexity of
programming tasks as students progressed through the course. The interface took advantage of
well-timed support. Students were able to see immediate feedback which either helped lead them
to the correct solution, or gave them confidence to continue with the activity.

In order to incrementally increase complexity, it was important to start simple. Syntax was made
easier by utilizing wrapper libraries that had more complex functionalities and were referenced
in simpler scripts. For example, instead of writing a script to make the robot drive forward,
students could use a prewritten wrapper library that would condense the code into one line
instead of a full script. See Fig. 1 for the simplified script, and see the wrapper library in Fig. 2
and Fig. 3.

Fig. 1. Simplified script utilizing prewritten wrapper library (written by Chris Rogers).

Fig. 2. “CreateLib” wrapper library (written
by Dr. Chris Rogers) referenced in a
simplified script.

Fig. 3. “ROSLib” library (written by Dr. Chris
Rogers) that is referenced in “CreateLib.”

The ability to run one line at a time (or blocks of code at a time) helps the student understand the
significance of each line in the script. Additionally, if the code blocks were sections of a larger
script, this would aid in debugging. The student could run that block to determine if it returns
any errors. At the end of the file, the student could run the script in its entirety. Additionally,
students may have an opportunity to “fill in the blank” for certain code cells or have to fix
broken code in order to run the script without errors. This allows students to understand each file
line by line. This type of “algorithm development” [2] takes advantage of immediate feedback in
SRL which is an effective method of scaffolding [5].

The JupyterLab software allows for many files to be at the student’s disposal. Some files provide
a bit more help with more scaffolding (see Fig. 1.), while others allow the student to have more
autonomy (see Fig. 4. below).

Fig. 4. Snippet of file with minimal scaffolding.

The JupyterLab supports SRL at an individual level. It is important to start with individual work
to acquire technical skills which can then be brought to group work. The basis of knowledge
allows students to be more confident when interacting with peers. Collaboration was also an
important aspect in this class. As previously mentioned, all projects (except for the midterm)
were collaborative. Project-based learning (PBL) was an important component of the class.
Projects in class were intentionally ill-structured and open-ended [15]. This allowed for critical
thinking. If there’s never one right answer, students have the flexibility to think outside-the-box
and explore the material they’ve learned. PBL is another activity suggested by Doukakis et al.
[2] defined as an “Apply” activity type. PBL allows space to create collaborative environments
and encourage creativity. The JupyterLab and robot setup made it possible to implement both
domain-general and domain-specific scaffolding techniques to optimize learning for students.
Although this curriculum hasn't been externally replicated, it may be of significant interest to
other instructors who want to teach ROS 2.

IV. Methods

We collected data through three methods. As previously noted, the students would document
their weekly projects on the web-based note taking platform Notion, which was used as an
electronic portfolio platform in this course. These pages showcased each student’s process and
thinking throughout the project. We would also record field notes of classmate to classmate,
classmate to TA, and classmate to instructor interactions during class. Lastly, we observed and
interacted with students during office hours to experience their thinking and problem-solving.
Pseudonyms have been used for all students quoted in the findings section.

V. Findings and student outcomes from Fall 2022 class

A. Individual
Multiple conclusions were drawn from the acquired data. There was an impact of scaffolding on
student engagement and performance. Smaller, more manageable steps with immediate feedback

on code was beneficial. The immediate feedback served as external feedback. This allowed for
class to be run such that not every student needed instructor attention. They could work in a SRL
environment that was appropriate for them. Prompts in the JupyterLab provided direction when
students were met with confusion, ultimately leading them to ask the right questions. They were
able to ask specific questions on specific parts of the script since it was broken up in a way that
was digestible. As they were able to understand and learn to ask questions, comprehension
increased. Below is an example of this pattern in a conversation between a student and the TA
near the end of the semester.

Rachel: “How do I make the robot use the drive action and wall follow action
simultaneously?”
TA: “Wall follow includes the drive forward action. You don't need both.”
Rachel: “Ok I see. So, if I use the wall follow action, it will follow the wall while also
driving forward?”
TA: “Exactly!”

Since the student had a working knowledge of the project, they were able to eloquently articulate
their confusion. This was positively proportional to comprehension. As students understood
more, they were able to articulate their questions more efficiently.

Another route they were able to take was exploring the troubleshooting pages. There were
troubleshooting pages available allowing students to find the problem if one was presented
without instructor assistance. The page was written by the professor. This allowed students to
debug even if they didn’t have debugging experience. Connection issues were prevalent in the
class, and this troubleshooting page allowed students to fix the problem even with no experience
with wireless connection topics. They could simply run the script, and identify the issue. As
students learned that these pages were available and helpful, they increasingly relied on them
throughout the semester. Thus, less questions were directed towards the instructors as students
had the resource where they could find the answer. This further indicates that they were able to
improve their problem-solving skills through SRL. JupyterLab allowed for individuals to work at
their own pace, whether it was working through an activity or solving a problem. Although there
was adequate external feedback, it seemed that internal feedback triggers were lacking. In the
future, it would be important to include more internal feedback such as self-reflection questions.
Overall, JupyterLab provided an environment where students were able to learn individually.

B. Collaboration
Another key finding was that more collaboration yielded more apparent comprehension within
multiple students. Since each student had access to all the same files, they were able to go to
each other for help. The nature of the class activities and projects increased collaboration in the
classroom. As collaboration increased, students seemed to have a stronger understanding of

material in the class and topics in the projects. Additionally, the instructors observed increased
critical thinking and creativity due to open-endedness of questions. Students could bring multiple
perspectives to the projects and generate an inventive idea [14], [15], [16]. As a result, projects
were very different between groups. The solutions produced were very diverse even though each
team was given the same resources to solve the problem [17]. The software was consistent
between teams, and everyone was given access to the same hardware components. Teams
changed each week, so students were able to get to know one another. When they got more
comfortable with each other, they collaborated more both within groups and as a class. It is
important to design projects that foster collaboration and invite all perspectives. That said, there
is value in individual work during class time so students can learn at their own pace at the
beginning. Once the students have a basis of understanding, they are much more confident
working in a group. It was important to have the JupyterLab activities so students could learn the
concepts at an individual pace, while having the weekly projects to encourage collaboration and
practice their newly acquired skills. Below is dialogue between two students displaying an
interaction which yielded learning for both participants.

Sally: “Do you see anything in my code that doesn't look right? I'm not able to pull any
data from Airtable.
Julia: “Everything seems good at first glance. Your code looks like it has the same
structure as mine.”
Sally: “Hm. Maybe my syntax is slightly off in the json parsing string. I heard some other
students having issues with that.”
Julia: “Oh yeah, it looks like you're missing a slash in the URL string.”

This interaction shows how each student brought a unique perspective which ultimately led them
both to the solution. Julia initially looked at the code structure as a whole (from a conceptual
standpoint) to see if Sally was on the right track. Julia confirmed the code looked right which led
Sally to take a closer look and deduce that the lack of connection could be due to invalid syntax.
After Sally offered that idea, Julia was able to compare the syntax in her json string with that of
Sally’s. The student with the issue was able to resolve the problem, and the student helping was
able to reflect upon her work more closely. Both mutually benefited from the collaborative
interaction.

C. Overall
Students were able to successfully write ROS 2 programs by utilizing both individual and
collaborative learning strategies. As previously noted in Table 1, by the end of the semester,
students were able to write multiple ROS 2 scripts that ranged from a proportional controller to a
robotic joust. Each team successfully fulfilled the project requirements, thereby demonstrating
the ability to program using ROS 2. Some teams even went beyond the requirements,
showcasing their passion and enthusiasm for the content. However, there were a few factors that

could provide more support in the JupyterLab. First, more structure could improve ease of
increasing difficulty. For example, it may be helpful to have folders based on difficulty so
students can easily increase or decrease in complexity. Additionally, the structure suggested by
Devolder et al. [3] (planning, monitoring, control, and reaction and reflection) could make
scaffolding more efficient. Second, more feedback, both internal and external, could improve
student performance in a SRL environment [5]. Adding more internal feedback questions would
urge students to self-reflect on what they’re learning. Overall, students responded positively to
the JupyterLab. Even advanced students enjoyed using JupyterLab because they were able to be
more independent if desired. Students with little prior knowledge were able to gradually
understand how Python and ROS 2 worked and how it interacted with the robot.

There are many practical implications and class recommendations. In CBLEs, it is beneficial to
apply scaffolding methods. Well-timed support, external and internal feedback, and black-boxing
code are examples of efficient domain-specific scaffolding strategies. There are many lessons
learned from applying scaffolding in teaching ROS 2. It eases students into understanding,
avoids teaching complex concepts up front, and allows for students to learn by doing instead of
by reading. Finally, it gives students autonomy in their learning.

There are effective ways to implement scaffolding. It is important to not overwhelm the student,
give options for students to go further, and provide opportunities for students to learn more if
they’re confused. Using both a robot and learning software that has the ability to build from
simple to complex gives flexibility for both the student and instructor.

VI. Future Work

A new proposed JupyterLab is in development. It has an independent section and a project
section. The independent section includes scaffolding techniques that help the individual learner
gain a basis of technical skills. Some domain-specific techniques include black-boxing code,
well-timed support, and a combination of external and internal feedback [1], [3], [5]. It also
includes domain-general scaffolding such as self-reflection and concept-mapping. There are four
pages in the individual section: planning, monitoring, control, and reflection [3], [8]. Each page
implements specific scaffolding techniques related to the title. The project section aims to foster
collaboration during projects. Each project has descriptions, tasks, and hints for completion.
Additionally, the projects have multiple aspects so it can easily be split up between group
members. It is not intended to replicate a full semester’s curriculum, but give insight into how an
instructor could implement the scaffolding techniques previously discussed.

VII. Conclusion

A combination of domain-general and domain-specific scaffolding in a SRL environment proved
to be a successful way to teach advanced computer science topics such as ROS 2. JupyterLab
allowed students to learn basic skills at an individual pace which could then be applied to
collaborative tasks. Black-boxing of code, immediate feedback, breaking down complex
programming tasks into smaller, more manageable steps, and gradually increasing the
complexity of programming tasks all helped in improving students’ understanding of coding.
Collaboration during project-based learning further developed the students’ understanding of
complex topics. Open-ended problems left room for students to exhibit creativity and passion for
the material. Further study may provide insight into how increased comprehension influences
effective collaboration on more advanced open-ended problems in the classroom.

VII. References:

[1] L. Zheng, “The effectiveness of self-regulated learning scaffolds on academic performance in
computer-based learning environments: a meta-analysis,” Asia Pacific Education Review, vol.
17, no. 2, pp. 187–202, Apr. 2016, doi: https://doi.org/10.1007/s12564-016-9426-9.

[2] S. Doukakis and M.A. Papalaskari, “Scaffolding Technological Pedagogical Content
Knowledge (TPACK) in Computer Science Education through Learning Activity Creation,” in
2019 4th SouthEast Europe Design Automation, Computer Engineering, Computer Networks and
Social Media Conference (SEEDACECNSM), pp. 1–5. doi:
https://doi.org/10.1109/SEEDACECNSM.2019.8908467.

[3] A. Devolder, J. van Braak, and J. Tondeur, “Supporting self-regulated learning in computer-
based learning environments: systematic review of effects of scaffolding in the domain of
science education,” Journal of Computer Assisted Learning, vol. 28, no. 6, pp. 557–573, Feb.
2012, doi: https://doi.org/10.1111/j.1365-2729.2011.00476.x.

[4] A. Hellas, T. Vikberg, M. Luukkainen, and M. Pärtel, Scaffolding students’ learning using
test my code. New York, NY: Association for Computing Machinery, 2013, pp. 117–122. doi:
https://doi.org/10.1145/2462476.2462501.

[5] C.-Y. Chou and N.-B. Zou, “An analysis of internal and external feedback in self-regulated
learning activities mediated by self-regulated learning tools and open learner models,”
International Journal of Educational Technology in Higher Education, vol. 17, no. 1, Dec. 2020,
doi: https://doi.org/10.1186/s41239-020-00233-y.

[6] N. Dabbagh and A. Kitsantas, “Using Web-based Pedagogical Tools as Scaffolds for Self-
regulated Learning,” Instructional Science, vol. 33, no. 5–6, pp. 513–540, Nov. 2005, doi:
https://doi.org/10.1007/s11251-005-1278-3.

[7] A. M. Shapiro, “Hypermedia design as learner scaffolding,” Educational Technology
Research and Development, vol. 56, no. 1, pp. 29–44, Nov. 2007, doi:
https://doi.org/10.1007/s11423-007-9063-4.

[8] F. I. Winters, J. A. Greene, and C. M. Costich, “Self-Regulation of Learning within
Computer-based Learning Environments: A Critical Analysis,” Educational Psychology Review,
vol. 20, no. 4, pp. 429–444, Jul. 2008, doi: https://doi.org/10.1007/s10648-008-9080-9.

https://doi.org/10.1007/s12564-016-9426-9
https://doi.org/10.1109/SEEDACECNSM.2019.8908467
https://doi.org/10.1111/j.1365-2729.2011.00476.x
https://doi.org/10.1186/s41239-020-00233-y
https://doi.org/10.1007/s11251-005-1278-3
https://doi.org/10.1007/s11423-007-9063-4
https://doi.org/10.1007/s10648-008-9080-9
https://doi.org/10.1007/s12564-016-9426-9
https://doi.org/10.1109/SEEDACECNSM.2019.8908467
https://doi.org/10.1111/j.1365-2729.2011.00476.x
https://doi.org/10.1186/s41239-020-00233-y
https://doi.org/10.1007/s11251-005-1278-3
https://doi.org/10.1007/s11423-007-9063-4
https://doi.org/10.1007/s10648-008-9080-9

[9] S. Youn, Y. Chyung, A. Moll, and S. Berg, “The Journal of Effective Teaching an online
journal devoted to teaching excellence,” The Journal of Effective Teaching, vol. 10, no. 1, pp.
22–37, 2010.

[10] H. W. Lee, K. Y. Lim, and B. L. Grabowski, “Improving self-regulation, learning strategy
use, and achievement with metacognitive feedback,” Educational Technology Research and
Development, vol. 58, no. 6, pp. 629–648, Feb. 2010, doi: https://doi.org/10.1007/s11423-010-
9153-6.

[11] K. J. Crippen and B. L. Earl, “The impact of web-based worked examples and self-
explanation on performance, problem solving, and self-efficacy,” Computers & Education, vol.
49, no. 3, pp. 809–821, Nov. 2007, doi: https://doi.org/10.1016/j.compedu.2005.11.018.

[12] R. Isaacson and F. Fujita, “Metacognitive Knowledge Monitoring and Self-Regulated
Learning,” Journal of the Scholarship of Teaching and Learning, vol. 6, no. 1, pp. 39–55, 2006,
Accessed: Aug. 19, 2023. [Online]. Available:
https://scholarworks.iu.edu/journals/index.php/josotl/article/view/1624

[13] T. Lehmann, I. Hähnlein, and D. Ifenthaler, “Cognitive, metacognitive and motivational
perspectives on preflection in self-regulated online learning,” Computers in Human Behavior,
vol. 32, no. 32, pp. 313–323, Mar. 2014, doi: https://doi.org/10.1016/j.chb.2013.07.051.

[14] Özdemir Göl and A. Nafalski, “Collaborative Learning in Engineering Education *,” in
Global J. of Engineering Education, Australia, 2007. Available:
https://api.semanticscholar.org/CorpusID:201913032

[15] E. Dringenberg and Ş. Purzer, “Experiences of First‐Year Engineering Students Working on
Ill‐Structured Problems in Teams,” Journal of Engineering Education, vol. 107, no. 3, pp. 442–
467, Jul. 2018, doi: https://doi.org/10.1002/jee.20220.

[16] Haungs, M., & Clements, J., & Janzen, D. (2008, June), Improving Engineering Education
Through Creativity, Collaboration, And Context In A First Year Course Paper presented at 2008
Annual Conference & Exposition, Pittsburgh, Pennsylvania. 10.18260/1-2--3316

[17] S. Willner-Giwerc, K. B. Wendell, C. B. Rogers, E. E. Danahy, and I. Stuopis, “Solution
Diversity in Engineering Computing Final Projects,” peer.asee.org, Jun. 22, 2020.
https://peer.asee.org/solution-diversity-in-engineering-computing-final-projects (accessed Aug.
19, 2023).

https://doi.org/10.1007/s11423-010-9153-6
https://doi.org/10.1007/s11423-010-9153-6
https://doi.org/10.1016/j.compedu.2005.11.018
https://scholarworks.iu.edu/journals/index.php/josotl/article/view/1624
https://doi.org/10.1016/j.chb.2013.07.051
https://api.semanticscholar.org/CorpusID:201913032
https://doi.org/10.1002/jee.20220
https://doi.org/10.1007/s11423-010-9153-6
https://doi.org/10.1007/s11423-010-9153-6
https://doi.org/10.1016/j.compedu.2005.11.018
https://scholarworks.iu.edu/journals/index.php/josotl/article/view/1624
https://doi.org/10.1016/j.chb.2013.07.051
https://api.semanticscholar.org/CorpusID:201913032
https://doi.org/10.1002/jee.20220

