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Complementary affordances of virtual and physical laboratories 
for developing engineering epistemic practices 

 

Overview 

Professional engineering demands more than the ability to proficiently carry out engineering 
calculations.  Engineers utilize other practices; for example, they need to approach problems 
with a holistic view, make decisions based on evidence, collaborate effectively in teams, and 
learn from setbacks. Laboratory work plays a crucial role in shaping the professional 
development of university engineering students as it enables them to cultivate these essential 
practices [1, 2]. A successful laboratory task design should provide students opportunities to 
develop these practices but also needs to adhere to the constraints of the educational 
environment.  

In this project, we explore how both virtual (simulation-based) and physical (hands-on) 
laboratories, based on the same real-world engineering process, develop the practices students 
will need in their future careers. In an engineering virtual laboratory, students work within 
computer simulations of an experiment where they provide values to process variables and the 
computer provides them realistic data which they can then analyze [3-5]. Specifically, we seek to 
determine whether the virtual and physical laboratory modes foster different yet complementary 
epistemic practices. Epistemic practices refer to the ways in which group members propose, 
communicate, justify, assess, and validate knowledge claims in a socially organized and 
interactionally accomplished manner [6, 7]. This project builds upon our prior work in 
developing virtual laboratories in chemical engineering and biological engineering [8], and on 
our learning research on professional discourse [9], gendered interactions [10], modeling [11], 
creativity [12], and disciplinary engagement [13, 14]. 

The goals of this NSF Research Initiation in Engineering Formation (PFE: RIEF) project are to: 

1. Build on preliminary work to develop the Virtual Jar Test Laboratory for Water Treatment 
and develop a corresponding Physical Jar Test Laboratory for Water Treatment. 

2. Compare student engagement and demonstration of epistemic practices in the virtual 
laboratory and physical laboratory modes to develop transferable knowledge about the 
development of epistemic practices in the laboratory. 

3. Develop capacity in PI Nason as an engineering education researcher through a deliberate 
mentoring plan and research activities. 

To accomplish these objectives, we are conducting a microgenetic analysis of student teams 
engaging in both the virtual and physical versions of the same laboratory exercise, the Jar Test 
for Drinking Water Treatment. The central hypothesis guiding this research is that physical 
laboratories emphasize social and material epistemic practices, while virtual laboratories 
highlight social and conceptual epistemic practices. The goal is to gain transferable knowledge 



about how the laboratory format and instructional design influence students' engagement in 
epistemic practices.  

Laboratory Development 

Jar testing is a standard laboratory procedure used by design engineers and water treatment plant 
operators to optimize the physical and chemical conditions for the effective removal of 
particulate contaminants from water through coagulation, flocculation, and settling. We have 
developed instructional laboratories in both virtual and physical modes. Often, virtual 
laboratories are designed to directly replicate a corresponding physical laboratory, imposing the 
constraints of the physical laboratory on the virtual laboratory [15, 16]. Here, rather than having 
the virtual laboratory design mirror the physical laboratory, we developed designs independently 
to take advantage of the affordances of each mode. Affordances refer to the perceived or actual 
properties of a thing [17]. Industrially situated problem statements and associated activities were 
developed for each mode. 

Virtual Laboratory: A new html-based user interface has been developed that interfaced with a 
mathematical model and adds realistic process error. The mathematical model is based on the 
work of Weber-Shirk and co-workers [18-21] with added functionality to simulate changes in 
aqueous inorganic chemistry and to account for the removal of natural organic matter [22]. In 
addition, random noise was added to the output. An instructor interface where problem 
parameters can be entered for each student group has also been developed. Finally, work towards 
incorporating the virtual lab into the Concept Warehouse platform [23] has been initiated. This 
allows controlled student access as well as storage of student inputs and results for further 
analysis. 

Physical Laboratory: A physical lab procedure was developed and tested, and an industrially-
situated assignment was developed based on the laboratory. Results of the physical lab were 
compared to simulation results indicating broad agreement. Data collection from the physical lab 
informed the process error and noise included in the virtual laboratory. 

Learning Research 

Data collection 

After developing laboratories and industrially-situated assignments for each mode, we completed 
two rounds of data collection as follows: 

Round 1: We delivered the laboratories to four groups (3 students each) in a 3rd-year chemical 
engineering laboratory course. Two teams completed the virtual laboratory first and the physical 
laboratory second. The other two teams completed the physical laboratory first and the virtual 
laboratory second. All lab sessions were video and audio recorded. Video recordings of the 
teams’ working sessions out of class were collected for some teams and eight recorded 
interviews with individual students were conducted after they completed both laboratories. 
Laboratory reports for all teams have been collected in each mode. 



Round 2: We delivered the labs to three groups (3 students each) in a 4th-year environmental 
engineering laboratory course. All teams completed the virtual laboratory first and the physical 
laboratory second. The physical laboratory activity was modified to include an incomplete data 
set which groups used to devise an experimental plan. All lab sessions were video and audio 
recorded. Nine (9) recorded interviews with individual students were conducted after both labs 
were completed. Laboratory reports for all teams have been collected in each mode. 

Data Analysis 

Video data and interviews were transcribed verbatim. The video recordings of laboratory activity 
were divided into episodes bounded by a change in strategy or change in topic. Then, discourse 
analysis was used to identify the types of epistemic practices the teams engaged in and the ways 
those practices moved the work forward. Coding was performed using the software Atlas.TI 9 
and lending from past work [24]. As the analysis progressed, coding was done over several 
iterations, with existing codes being refined and emergent codes being added as new phenomena 
were identified. The codes were grouped into larger categories of conceptual, material, and social 
epistemic practices. 

Findings 

We have several initial findings, as follows: 

• Physical and virtual laboratories have different affordances and constraints. Instructional 
designs that leverage each mode’s particular affordances allow them to scaffold the 
development of different engineering epistemic practices. 

o Through Round 1 analysis [25], we identified an average of 76 instances of 
material practices, 7 conceptual practices, and 139 social practices in teams 
completing the physical laboratory; we identified an average of instances of 36 
material practices, 69 conceptual practices, and 161 social practices in teams 
completing the virtual laboratory. Thus, more material epistemic practices were 
elicited in the physical mode, while more conceptual practices were elicited in the 
virtual mode, and approximately the same amount of social practices were elicited 
in each mode. 

• Physical and virtual laboratories can be complementary, each targeting a specific set of 
epistemic practices, creating a learning outcome more reflective of real engineering 
practice. 

• The instructional design, instructor framing, and student activity need to align with the 
affordances of the laboratory modes to produce a complementary outcome. This means 
implementing the laboratories in a way that positions the affordances of each to be 
maximally leveraged by students. 

Broader Impacts 

We have the following broader impacts: 



• This research project has supported the professional development of a MS student in 
chemical engineering (2nd Author) who defended his MS thesis in August 2023. He 
attended the 2023 ASEE annual conference in Baltimore. Through his experience on this 
project, he has decided to pursue a doctoral degree focused on engineering education. He 
will continue work on this project as a PhD student at Tufts University.  

• PI Nason has gained knowledge and experience in qualitative research methods through 
collaboration with and mentoring from the third author. He has expanded his professional 
network through engagement with the project advisory board and also achieved sustained 
exposure to engineering education research and methods through regular meetings with 
the other two authors.   
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