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Abstract

Curriculum structure and prerequisite complexity significantly influence student progression and
graduation rates. Thus, efforts to find suitable measures to reduce curriculum complexity have re-
cently been employed to the utmost. Most of these efforts use the services of domain experts, such
as faculty and student affairs staff. However, it is tedious for a domain expert to study and analyze
a full curriculum in an attempt to reform its structure, given all the complexities associated with
its prerequisite dependencies and learning outcomes. Things can become even more complicated
when a set of curricula is examined. Therefore, efforts to automate the process of restructuring
curricula are beneficial to helping the university community find the best available practices to
reduce the complexity of their institutional curricula. This study introduces an innovative frame-
work for automating curriculum restructuring, employing a combination of graphical models
and machine learning techniques. In particular, we use latent tree graphical models and collab-
orative filtering to induce curriculum reforms without needing a domain expert. The approach
used in this paper is data-driven, where actual student data and actual university curricula are
utilized. Five thousand seventy-three student records from the University of New Mexico (UNM)
are used for this purpose. Results demonstrate the restructuring impact on an engineering cur-
riculum, particularly the computer engineering program at UNM. The effect is an improvement
in the graduation rates of the students attending the revised engineering programs. These results
are validated using a Markov Decision Processes (MDP) model. Furthermore, the findings of this
paper showcase the practical benefits of our approach and offer valuable insight for future ad-
vancements in curriculum restructuring methodologies.

keywords: curricular complexity, Markov decision processes, collaborative filtering, latent tree
graphical models, student success, graduation rates, educational data mining



1 Introduction

In our study, we explore analytics focusing on a crucial aspect of student success: the curriculum
pathways that lead students toward achieving their learning outcomes and ultimately earning
their degrees. In the realm of higher education, the role of analytics is increasingly recognized
as a tool for decision-making that enhances student success outcomes. For example, various ini-
tiatives have used student demographics and prior academic performance to guide interventions
such as counseling, mentoring, and tutoring to improve retention and graduation rates1,2,3. Our
perspective emphasizes that the core of student academic success lies in progression within a
curriculum. Obstacles in curricular pathways can delay graduation and increase the likelihood
of students discontinuing their education. Thus, examining these interventions in the context
of their direct effect on degree progression is crucial. Our approach to studying student success
takes a reductionist stance, similar to how natural sciences interpret complex biological phenom-
ena through underlying chemical and physical principles. However, this approach faces several
challenges. One significant difficulty is quantifying the impact of specific interventions or re-
forms on a student’s progress within their degree program. An example of this complexity is
the assessment of the effect of an internship program on student progression across various aca-
demic programs. This problem is often compounded by a need for coordination between those
implementing interventions and those responsible for curriculum design, leading to a disconnect
in understanding the curriculum and its intended learning outcomes. This scenario exemplifies
the challenges arising from operational “silos” within educational institutions. Furthermore, the
prevalent shared governance model in universities can further strengthen these silos. A com-
mon belief in academic circles is that “faculty own the curriculum,” which can be interpreted
as a directive to avoid interfering with faculty governance. Despite this, faculty are generally
more receptive to curricular changes that are supported by data demonstrating benefits to stu-
dent success, as opposed to changes imposed from the top down. These curricular or pedagog-
ical experiments, often inspired by successful implementations at other institutions, can some-
times resemble uninformed attempts, with results frequently based on anecdotal evidence rather
than concrete data. Identifying critical courses within curricula is another challenge, with some
courses perceived as more crucial than others for various reasons, such as being strong predictors
of overall academic success or acting as foundational prerequisites. The complexity of a curricu-
lum correlates with the number of these significant courses. This paper summarizes previous
work used to quantify the concept of essential courses and characterize the overall complexity
of a curriculum 4. We propose an analytical framework to measure the impact of curricular and
pedagogical interventions on student progression. This framework has been instrumental in fos-
tering data-driven discussions with faculty and curriculum committees, reducing the influence
of subjective opinions in reform debates, and encouraging consensus on proposed changes. By
establishing meaningful metrics related to curriculum structure, we enable effective comparisons
and informed decisions about curriculum reforms. Moreover, our framework provides amodel for
predicting the impacts of various curricular and pedagogical reformswithin a specific educational
environment, supporting a more structured approach to planning and evaluating student success
strategies. The potential of curricular analytics lies in directly linking interventions to student
success outcomes, acknowledging the importance of understanding the larger educational con-
text to maximize the effectiveness of interventions. We view the university as a complex system
comprising interacting subcomponents that collectively influence the success of improvement



efforts5,6. Each university’s system properties vary, necessitating tailored models to predict im-
provements from specific reforms. In this paper, we compile recent developments in curricular
analytics, organizing them to support practical applications and further theoretical advances in
this field4,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21. Our significant contribution, however, is a newmodel aimed
at automating the process of curricular interventions. We introduce a framework that stream-
lines curricula restructuring without needing domain expert intervention, addressing the biases
and challenges inherent in traditional expert-driven reform processes. This model, incorporating
a Latent Tree Model (LTM) enhanced with machine learning and graph theory techniques, offers
a more efficient and unbiased approach. We validate this framework using real student data and
various curricular metrics proposed in this study.

2 Theoretical Foundations of Curricular Analytics

Building on our earlier discussion, the examination of academic curricula is significantly en-
hanced by the widespread practice of publishing these curricula on public platforms. This trans-
parency allows academic programs to benchmark their curricula against those offered by compa-
rable institutions. For example, as depicted in Figure 1, we examine the undergraduate electrical
engineering curricula of two major public U.S. institutions, both accredited by ABET22. These
curricula are structured into four-year (eight-term) plans, guiding students through their degree
completion. We represent these curricula as graphical models, with vertices symbolizing courses
and directed edges indicating prerequisite requirements. Specifically, a directed edge from one
course (vertex) to another mandates that the former, as a prerequisite, must be completed before
the latter. In cases where a directed edge connects two courses within the same term, it signifies a
co-requisite relationship, allowing for concurrent or sequential enrollment. Courses obligatory to
be taken together within the same term are labeled as strict co-requisites, where the edge’s direc-
tion is inconsequential. An intriguing observation from Figure 1 is that despite sharing identical
ABET accreditation and fulfilling the same set of eleven ABET program learning outcomes, the
structural compositions of the two programs are notably different. This disparity raises several
pertinent analytical questions. For example, how does this structural difference affect the ex-
pected graduation rates of students with similar preparedness in each program? Additionally,
one might wonder about the most influential course in each curriculum and the potential impact
on student success rates if these key courses were slightly improved. A critical inquiry is whether
one program offers superior preparation for students in their chosen field compared to the other.
The following sections dive into a detailed framework and toolkit designed for curriculum de-
signers. This toolkit enables a thorough exploration and informed answers to these questions
under reasonable assumptions. It provides a means to quantify and analyze the disparities be-
tween curricula, such as those illustrated in Figure 1a and Figure 1b, thus offering a systematic
approach to improve curriculum design based on data-driven insights.

3 Analytical Framework for Curriculum Assessment

Expanding upon our previous discussions on curricular analytics, we examine the nuanced chal-
lenge of analyzing the impact of curricula on student progression. This analysis is particularly
complex due to the multifaceted nature of curriculum-related components influencing student
progress. Our methodology focuses on decomposing the overall complexity of a curriculum into
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Figure 1: Undergraduate Electrical Engineering program structures at two major public univer-
sities with the same ABET accreditation standards.



two primary elements: instructional complexity, which refers to the pedagogical methods and
support mechanisms employed in teaching courses, and structural complexity, which relates to
the organizational framework of the curriculum itself. We have previously explored structural
complexity by examining the prerequisite relationships between courses within a curriculum4.
Our graph-theoretic approach, primarily based on analyzing total path lengths, aimed to under-
stand how much one course can hinder or delay a student’s progression to subsequent courses.
This line of analysis led to the development of a ranking system for courses within a course net-
work, categorized by their criticality level.

3.1 A Framework for Analyzing Course Network Structures
The criticality of a course in a network hinges on two pivotal factors: its delay factor and its
blocking factor. These elements are further defined by two parameters: the longest path and
connectivity. The longest path, denoted as Li for a node i, is the length of the longest path that
passes through that node. The connectivity, Vi, of node i represents the total number of nodes
connected to i. The formula to determine the connectivity is:

Vi =
∑
j

nij

where nij is 1 if a path exists from i to j and 0 otherwise.

3.1.1 Delay Factor

Many STEM curricula have a sequence of courses that must be completed in a specific order. This
sequence often progresses through foundational mathematics courses, each building upon the
previous. The ability to complete these pathwayswithout delay is crucial to successful graduation.
A delay in any single course within this sequence can result in a domino effect, which delays the
entire pathway. We define the delay factor of a course i, Li, as the number of vertices in the
curriculum’s longest path that includes course i. Figures 2a and 2c demonstrate this concept
using simplified curricular models, where the delay factor for each course is indicated.

3.1.2 Blocking Factor

A course can also act as a structural bottleneck, serving as a prerequisite for several other courses.
The failure to pass this ’gateway’ course can prevent students from progressing through the cur-
riculum. The blocking factor of such a course is significant, as it holds a pivotal position within
the curriculum. Figures 2b and 2d depict the blocking factors for the courses in the illustrated
curricula.

Combining these analyses, we introduce a metric to define the cruciality of a course i, denoted
Ci, as the aggregate of its blocking and delay factors:

Ci = Vi + Li

The curriculum’s overall complexity, S, is then calculated as the sum of the cruciality values for
all courses:

S =
m∑
1

Ci (1)
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Figure 2: Divergent four-course academic structures: displayed in (a) and (b) is Curriculum 1,
while Curriculum 2 is illustrated in (c) and (d). The delay factor for each course is depicted in
parts (a) and (c), and the corresponding blocking factor is presented in parts (b) and (d) for these
respective curricula.

where m is the total number of courses in the curriculum.

This framework has been instrumental in guiding significant curricular reforms. For instance,
the College of Engineering and Computer Science at Wright State University (CECS) reported
noteworthy improvements in student performance, retention, and graduation rates following a
strategic curricular overhaul, as shown in Figure 4. Such reforms are particularly impactful when
they involve introducing or repositioning foundational courses, altering the prerequisite structure
and, consequently, the curriculum’s complexity. This approach has also been successfully adopted
by other institutions, such as the University of New Mexico (UNM), leading to marked improve-
ments in graduation rates and substantial financial benefits for students. In the broader context
of curriculum analysis, these findings align with the growing body of literature emphasizing the
significance of curriculum structure in student success. Research in this area has repeatedly un-
derscored the importance of strategic course sequencing and the reduction of bottleneck courses
to facilitate smoother student progression and higher retention rates. This analytical framework,
therefore, not only offers a practical tool for curriculum designers but also contributes to the
evolving academic discourse on optimizing curriculum design for enhanced student outcomes.

3.2 Markov Decision Processes in Curricular Analytics Modeling
Transitioning from the analytical framework discussed above, we now focus on applying Markov
Decision Processes (MDP) in curricular analytics. MDPs, as graphical models, are adept at rep-
resenting sequential decision-making in systems defined by states S, actions A, and rewards
R23. Expanding on the Markov chain model, MDPs equip decision-makers with various non-
deterministic actions at each state s, a feature critical in systems exhibiting stochastic behav-
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Figure 3: The two curricula featured in Figure 1 illustrate the longest paths (with highlighted
edges) and courses blocked (indicated by bold vertices) by Calculus I (depicted as the black vertex).
In curriculum (a), the delay factor associated with every course on the longest path is 11, and the
blocking factor associated with Calculus I is 23. In curriculum (b), the delay factor for each course
on the longest path is 5, and the blocking factor associated with Calculus I is 9. It is crucial to
note that multiple longest paths are present in each curriculum
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Figure 4: Illustrations of curriculum design frameworkswithin the scope of electrical engineering,
showcasing the achievement of learning outcomes for Circuits I. (a) Displays a four-semester
sequence for students prepared to start with Calculus I, characterized by a structural complexity
score of 41. (b) Presents a five-semester sequence for students who are not initially prepared for
Calculus I, featuring a structural complexity score of 60. (c) Describes an adapted four-semester
sequence for students beginning without Calculus I readiness, offering a decreased structural
complexity of 51.
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Figure 5: Example of a Markov Decision Process with three states and two actions.

iors24. Figure 5 demonstrates an MDP with three states.

In anMDP setting, the system at time t is in a state s, and an agent selects an action a transitioning
the system to a new state s′ with a corresponding expected reward Ra(s, s

′). The transition to
state s′ depends on the action at state s, represented by the transition function Pa(s, s

′). Hence,
an MDP is formalized as a 4-tuple (S,A, Pa, Ra), where:

• S denotes the set of system states.

• A is the set of agent actions.

• Pa(s, s
′) = P (st+1 = s′|st = s, at = a) quantifies the transition probability to state s′ at

time t+ 1, given the current state s and action a.

• Ra(s, s
′) is the reward received upon moving from state s to s′ using action a.

The agent’s objective in an MDP is to identify an optimal policy π that maximizes rewards. The
policy π determines the action selection probability in a given state s:

π(a|s) = P (at = a|st = s)

With policy π established, the MDP transforms into a discrete-time Markov chain (DTMC) with
a transition matrix Pπ:

Pπ[s, s
′] =

∑
a∈As

π(a|s)Pa(s, s
′) (2)

The probability of being in state s at time t is thus:

P(st = s) = (s0.P
t
π)(s) (3)

where s0 is the initial state distribution vector. This equation forms the foundation of our MDP
model in curricular analytics, allowing for predicting student graduation rates over time. Given
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Figure 6: Sample MDP network depicting various courses, prerequisites, transitions, and choices.

the stochastic nature of student course choices each semester, MDP is aptly suited for modeling
student progress in curricular analytics. For example, students might opt for different courses
or course combinations each semester, introducing variability in actions and progression states.
This variability underscores MDP’s suitability for capturing students’ dynamic progression. To
illustrate, Figure 6 represents student progression using an MDP model. The states S indicate the
courses completed and passed by a student. The actions A, shown as blue nodes, symbolize the
choices available after completing a course, such as enrolling in new courses or dropping out. For
instance, upon passing Calc I (the Calc I state), a student might choose to enroll in Calc II ,
Phyc II , both, or drop out. The transition function Pa(s, s

′) is determined by the course pass/fail
rates. Enrollment in a course leads to two potential outcomes: passing and transitioning to a new
state s′, or failing/dropping and remaining in the same state s. These transitions are represented
by directed edges P and F , where P +F = 1.0. Using Eq. 3, the probability of students being in
various states within the MDP network can be calculated, enabling the prediction of graduation
rates by assessing the proportion of students who have completed all required courses, signified
by the absorbing state in the MDP network. Subsequent sections will demonstrate the appli-
cation of this MDP model in real-world scenarios, showing how minor curricular changes can
significantly influence graduation rates. This approach aligns with current research emphasizing
strategic course sequencing and bottleneck reduction as key factors in enhancing student success
through curriculum structure.

4 A Case Study

The versatility of the Markov Decision Processes (MDP) model allows it to be applied across a
diverse range of scenarios, catering to the specific requirements of different users such as faculty,
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Figure 7: Engineering program curricular patterns, showing course structural complexities within
each vertex. (a) Standard design for calculus-ready students, with a complexity of 22. (b) Alter-
native design for non-calculus-ready students, with a complexity of 35. (c) Revised design for
non-calculus-ready students, reducing complexity to 25.

administrators, and students. This case study explores the impact of curricular modifications on
graduation rates. We utilize the original and revised curricular patterns depicted in Figure 7, mod-
eling them through MDP as demonstrated in Figure 8. The structural differences between these
two patterns are distinct, with the complexity of the original pattern calculated at 35 compared
to 25 for the revised pattern, as determined by Equation 1. This decrease in complexity correlates
with an improvement in graduation rates. Figures 8a and 8b provide MDP representations of the
engineering curricular patterns from Figures 7b and 7c, denoted asM1 andM2, respectively. The
policies πM1(a/s) and πM2(a/s), integral to these representations, are also included in Figure 8.
Generally, these policies are inherently shaped by the curricular structure itself. For instance, in
Figure 7b, a student completing the Precalc course is typically limited to enrolling inCalculus I ,
barring any dropout scenarios. Therefore, for thePrecalc state in Figure 8a, the only viable action
is enrolling in Calc I (i.e., π(CalcI/Precalc) = 1.0). The state transition functions PM1

a (s, s′)
and PM2

a (s, s′) for M1 and M2 are determined by the courses’ pass/fail rates, as depicted by the
P and F edges in Figure 8. Therefore, when a student registers for a course, there is a probabil-
ity P of advancing to a new state and a probability F of remaining in the current state. These
transition functions, alongside the initial state distributions sM1

0 and sM2
0 , are detailed in Table 2.

Utilizing Equation 2, the transition matrices for bothM1 andM2 are defined, thereby facilitating
the computation of the probability of a student being in a particular state s at any given semester
n, as specified in Equations 6 and 7.

PM1
π [s, s′] =

∑
a∈As

πM1(a/s)PM1
a (s, s′) (4)

PM2
π [s, s′] =

∑
a∈As

πM2(a/s)PM2
a (s, s′) (5)



State
state 1 state 2 state 3 state 4 state 5 state 6

semester 1 0.3 0.7 0.0 0.0 0.0 0.0
semester 2 0.09 0.42 0.49 0.0 0.0 0.0
semester 3 0.027 0.189 0.441 0.343 0.0 0.0
semester 4 0.0081 0.0756 0.2646 0.4116 0.2401 0.0
semester 5 0.0024 0.0284 0.1323 0.3087 0.3602 0.1681
semester 6 0.0007 0.0102 0.0595 0.1852 0.3241 0.4202
semester 7 0.0002 0.0036 0.0250 0.0972 0.2269 0.6471

(a) The distribution of students in the original pattern in different states at different semesters.

State
state 1 state 2 state 3 state 4 state 5 state 6 state 7 state 8 state 9

semester 1 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
semester 2 0.09 0.3465 0.196 0.196 0.1715 0.0 0.0 0.0 0.0
semester 3 0.027 0.1306 0.1352 0.1558 0.3284 0.0549 0.1681 0.0 0.0
semester 4 0.0081 0.0444 0.0629 0.0833 0.2775 0.0486 0.3288 0.0154 0.1311
semester 5 0.0024 0.0143 0.0247 0.0374 0.1700 0.0271 0.3219 0.0182 0.3839
semester 6 0.0007 0.0045 0.0088 0.0152 0.0876 0.0122 0.2292 0.0130 0.6286
semester 7 0.0002 0.0014 0.003 0.0058 0.0405 0.0048 0.1357 0.0073 0.8012

(b) The distribution of students in the revised pattern in different states at different semesters.

Table 1: A comparison in the distribution of students over the states of the original and the revised
patterns computed over seven semesters.

and the probability of being in state s (i.e., passing a course or a set of courses) at semester n can
be defined as:

PM1(sn = s) = (sM1
0 .[PM1

π ]n)(s) (6)
PM2(sn = s) = (sM2

0 .[PM2
π ]n)(s) (7)

Table 1 presents a comparative analysis of student progression in the original and revised pat-
terns over seven terms. The data indicates that, by the end of the second semester, 49% of students
enrolled in the original pattern successfully pass both the Precalc and Calc I courses, while 42%
pass only the Precalc course, and 9% fail to pass either. It is crucial to note that the final states
in Figures 8a and 8b, labeled as state 6 and state 9, represent the absorbing states, signifying
successful graduation. As observed in these states, graduation rates demonstrate a consistent
upward trend over the semesters. Figure 9 visually underscores this increasing pattern of grad-
uation rates, highlighting that students in the revised pattern are graduating faster than their
counterparts in the original pattern. By the seventh semester, there is a notable difference, with
80% of students completing the revised pattern, in contrast to only 65% in the original pattern.
This disparity exemplifies the beneficial impact of reducing curricular complexity on enhancing
graduation rates.

5 Implementing Curricular Analytics: Practical Approaches

Themethodologies developed in Section 3 present a range of potential applications for analyzing
curricula and guiding reform efforts to enhance student success outcomes. Traditionally, cur-
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Figure 8: The Markov Decision Process illustration of both the original and revised curricular
designs.



PM1
a (s′, s) s’

s a state 1 state 2 state 3 state 4 state 5 state 6
state 1 Precalc 0.3 0.7 0.0 0.0 0.0 0.0
state 2 Calc I 0.0 0.3 0.7 0.0 0.0 0.0
state 3 Calc II 0.0 0.0 0.3 0.7 0.0 0.0
state 4 Diff. Eqs 0.0 0.0 0.0 0.3 0.7 0.0
state 5 Central Course 0.0 0.0 0.0 0.0 0.3 0.7
state 6 Graduate 0.0 0.0 0.0 0.0 0.0 1.0

(a) The state transition probability function, denoted as PM1
a (s, s′), for the MDP network depicted in Fig-

ure 8a.
PM2
a (s′, s) s’

s a state 1 state 2 state 3 state 4 state 5 state 6 state 7 state 8 state 9
state 1 Eng. 101 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

state 2
Calc I 0.0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0
Central C. 0.0 0.0 0.3 0.0 0.7 0.0 0.0 0.0 0.0
Calc I, Central C. 0.0 0.09 0.21 0.21 0.49 0.0 0.0 0.0 0.0

state 3
Calc II 0.0 0.0 0.3 0.0 0.0 0.7 0.0 0.0 0.0
Central C. 0.0 0.0 0.3 0.0 0.7 0.0 0.0 0.0 0.0
Calc II, Central C. 0.0 0.0 0.09 0.0 0.21 0.21 0.49 0.0 0.0

state 4 Calc I 0.0 0.0 0.0 0.3 0.7 0.0 0.0 0.0 0.0
state 5 Calc II 0.0 0.0 0.0 0.0 0.3 0.0 0.7 0.0 0.0

state 6
Diff. Eqs 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.7 0.0
Central C. 0.0 0.0 0.0 0.0 0.0 0.3 0.7 0.0 0.0
Diff. Eqs, Central C. 0.0 0.0 0.0 0.0 0.0 0.09 0.21 0.21 0.49

state 7 Diff. Eqs 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.7
state 8 Central C. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7
state 9 Graduate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

(b) The state transition probability function, denoted as PM2
a (s, s′), for the MDP network depicted in

Figure 8b.

state 1 state 2 state 3 state 4 state 5 state 6
sM1
0s
M1
0s
M1
0 1.0 0.0 0.0 0.0 0.0 0.0

(c) The initial distribution of students within the MDP network as depicted in Figure 8a.

state 1 state 2 state 3 state 4 state 5 state 6 state 7 state 8 state 9
sM2
0s
M2
0s
M2
0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(d) The initial distribution of students within the MDP network as depicted in Figure 8b.

Table 2: The transition functions and initial state distributions for the MDP networks presented
in Figure 8.



Figure 9: A comparative analysis of graduation rates between students following the original
curriculum versus those in the revised program.

ricular reforms often relied on faculty insights and anecdotal evidence, which, while valuable,
highlighted the absence of formal frameworks for systematic curriculum study. Historically, cur-
riculum reform has been approached as a modification of a ‘black box’ system, where student
characteristics, including prior preparation, are inputs, and student success rates are outputs. In
this paradigm, the effectiveness of any reform was gauged by its long-term impact on student
outcomes. The significant contribution of this work lies in its ability to quantify the curricular
system within this ’black box’, thus reducing system opacity and enabling direct analysis of the
curriculum itself. This approach fosters predictive analytics as an essential component of curric-
ular redesign efforts. We now provide specific examples to illustrate the utility of this approach.

5.1 Evaluating and Comparing Different Curricular Designs
One direct application of curricular analytics is comparing the complexities of academic pro-
grams. Given a set of curricula C = {c1, . . . , cn}, there might be interest in comparing the struc-
tural complexities withinC or relating these complexities to actual student success outcomes. For
instance, consider a situation where C comprises all curricula in a specific field of study, catego-
rized by CIP code25. A key motivator for the research presented in this paper was understanding
the variations in perceived complexities of similar programs across different institutions and how
these differences affect student success. The comparison between the two curricula in Figure 1 ex-
emplifies the structural differences observed among similar programs at various schools. Notably,
more significant structural variances in curricula within C are evident in fields where sequential
knowledge development is crucial, particularly in STEM disciplines. The curricular complexity
metrics developed in this paper allow us to rank the elements of C by structural complexity, rais-
ing the question of how to utilize this information effectively. Curriculum reformers apply this



information in various ways. Firstly, they compare their program to other institutions’ programs
to explore potential curriculum reform options. Alternatively, C could represent the historical
curricula offered by a single program, providing valuable benchmarks for faculty considering
further modifications. These benchmarks can assess how specific changes might affect structural
complexity and expected student completion rates. If historical student success data is avail-
able, it can further refine the expectations of reform outcomes. For instance, faculty might use
a benchmark curriculum to estimate the effect of instructional improvements on the curriculum.
TheMDP model described earlier could evaluate how enhancing the pass rate of a specific course
influences overall completion rates, leading to a curriculum-wide sensitivity analysis for optimal
resource allocation toward course improvements. In cases where C encompasses the curricula of
all programs an institution offers, we have employed structural complexity rankings to correlate
with actual six-year graduation rates using linear regression. At UNM, for example, we observed
that every 17-point decrease in structural complexity corresponded to a 1% increase in the six-
year graduation rate, motivating many programs to reduce their structural complexities. This
result naturally leads to discussions about the relationship between structural complexity and
program quality. Contrary to the assumption that higher complexity equates to higher quality,
our initial investigations suggest an inverse correlation, particularly in engineering programs.
This observed trend, where lower structural complexity aligns with higher perceived program
quality (as per U.S. News & World Reports rankings), warrants further examination. We hy-
pothesize that a principle akin to Occam’s razor applies to curricula: the simplest curriculum, in
terms of structural complexity, that enables students to achieve the program’s learning outcomes
is likely to yield the most favorable student success outcomes and, consequently, the highest
quality program.

5.2 Patterns in Curriculum Design and Structure
The concept of curricular design patterns represents an intriguing facet of curricular analytics.
The genesis of design patterns lies in the domain of architecture, where Alexander et al. intro-
duced them as general solutions to recurring design challenges26. This idea was later adapted by
Beck and Cunningham for software development, recognizing that software design patterns offer
reusable solutions to common software design issues27. Design patterns form a lexicon for de-
signers to articulate and address specific design challenges within a problem domain. In curricu-
lum development, Heileman et al. applied the concept of design patterns to define a structured
collection of curricular and co-curricular activities that collectively enable students to achieve
specific learning outcomes within an educational context15. These activities, typically structured
as courses with prerequisite and co-requisite relationships, ensure sequential learningwhere each
course builds upon the knowledge acquired in its prerequisites. Klingbeil and Bourne’s work in
curriculum redesign illustrates the practical application of curricular design patterns, particularly
in addressing the challenges faced by non-calculus-ready students in engineering programs28. A
sophomore-level central discipline-specific course in many engineering curricula often requires
Differential Equations as a prerequisite. This prerequisite structure is depicted in Figure 7a,
which assumes students are calculus-ready. For non-calculus-ready students, the traditional ap-
proach involves appending a Precalculus course, as shown in Figure 7b. Klingbeil and Bourne
observed that only a subset of Differential Equations, specifically linear differential equa-
tions, is utilized in most central engineering courses. They proposed a curricular redesign that



integrates the teaching of linear differential equations into a high-impact first-year engineering
course, including precalculus topics. This innovative curriculum is presented in Figure 7c. No-
tably, students in this revised curriculum, starting with Engineering 101, can progress to the
sophomore-level course concurrently or earlier than their calculus-ready peers. Our methodolo-
gies allow for quantifying the benefits of Klingbeil and Bourne’s approach by demonstrating the
reduction in structural complexity it offers28. Specifically, their approach results in a ten-point
decrease in structural complexity compared to the traditional pattern for non-calculus-ready stu-
dents. It is only marginally more complex than the pattern for calculus-ready students. To gauge
the impact of these patterns on student success, consider a scenario where all courses in the pat-
terns shown in Figure 7 have a 75% pass rate. Utilizing theMDPmodel fromEqs 3, we find that 82%
of students can complete the calculus-ready pattern in Figure 7awithin six terms, but only 53% can
complete the traditional non-calculus-ready pattern in Figure 7b. However, students attempting
the redesigned pattern in Figure 7c achieve a success rate of 83%. This pattern’s flexibility, allow-
ing the discipline-specific course to be taken in any of the final three terms, effectively equates
its success rate to the calculus-ready students’ pattern. Enhancing student success through high-
impact courses likeEngineering 101 often involves additional support services. If these services
effectively raise the pass rate of Engineering 101 to 95%, the success rate for students following
the pattern in Figure 7c could increase to 88%. To further illustrate the application of this curricu-
lar design pattern, we examine the electrical engineering context as shown in Figure 1. A critical
course in electrical engineering curricula is Circuits I , with learning outcomes that include un-
derstanding basic electrical circuit elements, applying Ohm’s and Kirchhoff’s laws, appreciating
linearity principles such as superposition, and analyzing first and second-order linear circuits.
The innovative approach in curriculum design, as evidenced in Klingbeil and Bourne’s work,
paves the way for more effective and inclusive engineering education, particularly for students
entering with varying levels of preparedness. The application of curricular analytics extends to
analyzing and optimizing design patterns within curricula. Consider the seven-course curricular
pattern depicted in Figure 7a, crafted to facilitate students in achieving the Circuits I learning
outcomes, presuming they are prepared for calculus. This pattern’s structural complexity, cal-
culated using Equation 1, totals 41. Notably, the longest pathway within this pattern spans four
courses, setting a minimum completion time of four terms. In contrast, Figure 4b illustrates an
eight-course curricular design pattern, as per Figure 7b, tailored for students not initially pre-
pared for Calculus I . This design applies the conventional solution of inserting a Precalculus
course initially. Consequently, the structural complexity of this pattern increases to 60, marking
a 31% rise compared to the pattern in Figure 4a, and extending the minimum completion time
to five terms. Klingbeil and Bourne’s key insight was that only specific parts of the learning
content in a course like Differential Equations are necessary for subsequent courses, such as
Circuits I 28. In particular, understanding first and second-order linear differential equations is
crucial for the fourth learning outcome in Circuits I . This observation enables the application
of a more streamlined curricular pattern, as seen in Figure 7c, resulting in the curricular design
shown in Figure 4c. This revised pattern for non-calculus-ready students exhibits a structural
complexity of 51, only 20% higher than the calculus-ready pattern in Figure 4a. Yet, it can be
completed in four terms, unlike the five-term pattern in Figure 4b. The curricular design pattern
in Figure 4c not only accommodates students who are not initially calculus-ready but does so
with significantly reduced complexity. This reduction in complexity is expected to enhance stu-
dent success rates. Using the MDP model with a fixed course pass rate of 75%, we find that 72%



of students can complete the pattern in Figure 4a within six terms. In contrast, only 36% manage
to complete the more complex pattern in Figure 4b. Remarkably, students following the pattern
in Figure 4c achieve a completion rate of 72% within the same timeframe, equating their success
to that of their calculus-ready counterparts. This section underscores the potential of curricu-
lar analytics in developing alternative curricula, such as the one demonstrated in Figure 4c. The
ability to tailor curricular patterns to different student preparedness levels while maintaining or
enhancing the success rate exemplifies the transformative power of curricular analytics in aca-
demic planning and student success.

6 Building Degree Plans and Deconstructing Curricula

In examining the curricula depicted in Figure 1, we observe structured degree plans that enable
students to fulfill all requirements within eight terms. This observation raises the question: are
certain degree plans inherently more conducive to student success within a program? While
all valid degree plans for a curriculum maintain identical structural complexity, due to the im-
mutable pre- and co-requisite course relationships, the distribution of this complexity can vary
across different terms within these plans. Developing criteria for distributing complexity and
optimizing degree plans accordingly is a promising approach. Slim et al. emphasized the need
for students to complete crucial courses early in their academic journey and proposed an algo-
rithm to generate degree plans optimized with this strategy in mind11,7. Alternatively, spreading
complexity evenly, especially in the initial years, could benefit students at risk of dropping out
due to academic challenges. These methodologies hint at the potential of personalized degree
plans tailored to individual student capabilities and aimed at maximizing the probability of suc-
cessful completion. One innovative angle considers the conditional dependence of instructional
complexity on individual student characteristics and the combination of courses in a term. By
devising a metric for instructional complexity that reflects the expected performance of various
student categories in specific class combinations, we can forge degree plans optimized for the
success of these student groups. Further exploration in this area is merited. While assuming a
static curriculum graph, these strategies do not account for the potential benefits of altering the
curriculum structure itself. As discussed in Section 5.2, curricular redesign can be effectively ap-
proached through curriculum decomposition. This method involves breaking down a curriculum
into its constituent learning outcomes andmapping the dependencies among these outcomes. The
challenge lies in reassembling these outcomes into courses and creating new prerequisites. This
systematic approach to curriculum redesign can lead to variations in structural complexities, pro-
viding a framework for automated curricular improvement algorithms. However, decomposing
courses into learning outcomes and documenting dependencies is a complex and labor-intensive
process, especially given the breadth of courses available. Reassembling these outcomes into co-
herent courses is further complicated by the diversity of topics covered in learning outcomes,
which may not align neatly within a single course. To address these challenges, we introduce
a novel approach in this work, leveraging machine learning and latent graphical models. This
method utilizes actual student data, applying machine learning techniques to identify learning
outcomes with compatible topics. Subsequently, latent graphical model algorithms are employed
to restructure curricula to reduce their complexities. We demonstrate the effectiveness of our
model using real student datasets, modeling the dependency structures of actual curricular pat-
terns in universities. The subsequent results and discussions highlight the practicality and impact



Figure 10: Two Directed Acyclic Graphs (DAGs) representing relationships between symptoms
and causes, one with a hidden node and the other without. Symptoms like chest pain are leaf
nodes, while root nodes represent causes like smoking and diet. Hidden nodes, signifying medi-
ating factors like heart disease, show how including hidden elements can enhance understanding
and reduce network complexity.

of our proposed approach in streamlining curricular complexities and enhancing student success.

7 Latent Graphical Models and Curriculum Complexity

Using latent variables to model intricate systems is widely recognized as a pivotal method in
domains like bioinformatics, computer vision, and machine learning research29. In the context
of curriculum complexity, we focus on latent variable models structured as trees, termed “la-
tent trees”. These models effectively illustrate the interplay between observable variables and
their latent counterparts. The latent nodes encapsulate common characteristics of their observ-
able descendants. This methodology strikes an optimal balance between representational power
(e.g., the capability to model cliques) and the computational feasibility of learning and inference
processes (e.g., the exactitude of message passing in tree structures). Why opt for tree graphic
models with hidden variables? A primary reason is the potential for constructing networks of
reduced complexity. Moreover, these networks can often unveil underlying structures in data30.
Imagine a scenario with multiple observable evidence variables, E1 to En, ranging from a pa-
tient’s symptoms to individual movie preferences. A highly connected graph is typically needed
to represent the full joint distribution among these variables. However, introducing a “cause”
node can substantially simplify the model. This node might symbolize an underlying disease
causing various symptoms or a fundamental preference influencing movie choices, as depicted in
Figure 10. Translating this to an educational setting, a curricular pattern can be envisioned as a
tree graphical model where nodes represent courses and states corresponding to possible grades.
An edge connecting courses A and B may indicate a correlation in student performance in these
courses. Adding a hidden node in this context is analogous to integrating a new course into the
curricular pattern. This hidden node could symbolize an essential prerequisite, much like the un-
derlying disease in the medical example of Figure 10. Building on this concept, restructuring a
curriculum would involve steps like adding a new course (a hidden node), introducing a prereq-
uisite (a directed edge), or removing an existing prerequisite (eliminating an edge). While these
additions have been manual, the critical question is whether this process can be automated. The
answer to this lies in exploring machine learning techniques and latent graphical models, which



we delve into in subsequent sections. This approach promises to revolutionize curriculum design
by automating the identification of crucial but previously unobserved interconnections between
courses, thereby facilitating more effective and efficient learning pathways.

8 Learning Latent Tree Graphical Models

In pursuing understanding and modeling complex systems, especially in the context of curricular
analytics, the transition from traditional models to advanced graphical representations marks a
significant leap. This section delves into the realm of Latent Tree Graphical Models (LTGMs), a
sophisticated approach to unraveling the intricate web of dependencies and relationships inher-
ent in educational structures. LTGMs stand out for their ability to integrate unseen yet influential
variables—latent factors that underpin and shape the observable characteristics of a curriculum.
By exploring this advanced modeling technique, we aim to unlock more profound insights into
the dynamics of educational pathways, providing a more nuanced understanding of how var-
ious courses and learning outcomes interconnect and influence one another. This exploration
enhances our ability to map out complex curricular structures and opens new avenues for opti-
mizing educational strategies and outcomes.

8.1 Conceptual Foundations
In high-dimensional data analysis, intricate statistical dependencies often challenge conventional
modeling techniques. A solution lies in probabilistic graphical models that bridge observed fea-
tures with latent variables. By defining a joint probability distribution over both observed and
latent variables, these models facilitate the integration of latent variables to derive the observed
variables’ marginal distribution. This transformation allows the representation of complex distri-
butions over observed variables (like cliques) in more manageable joint models (like tree models)
within an expanded variable space. Such models have found diverse applications in areas like
document analysis, social networking, speech recognition, and bioinformatics31.

8.2 Latent Tree Models
The latent tree model is a graphical model Markov on trees, featuring a mix of observed and latent
variables. Its computational efficiency lies in its tree-structured nature, simplifying and scaling
inference processes. Despite the constrained nature of these models, their relevance in numerous
applications validates the exploration undertaken in this paper. Specifically, we align with the
acyclic prerequisite dependencies in curricular structures, where latent variables can represent
new or potential courses.

8.3 Approach to Learning Latent Variables
To infer latent variables within a curriculum, we adopt the methodology from29, which be-
gins with a distance matrix of observed variables (existing courses) and iteratively introduces
latent nodes. This approach guarantees structural recovery under certain conditions and sur-
passes heuristic methods previously employed in latent tree structure estimation. Examples of
such heuristics include Zhang et al.’s local search heuristic for hierarchical latent class models32,



Harmeling and Williams’ greedy algorithm for binary trees33, and Bayesian hierarchical cluster-
ing for merging clusters based on statistical tests34.

8.4 The Choi Model
Choi et al.’s development in general Latent Tree Model (LTM) learning represents a significant
advancement, especially in analyzing binary data with shared state space35,29. Theirmethod lever-
ages the additive tree metric property to recover child-parent and sibling relations, initiating with
a minimum spanning tree (MST) among observed variables. Subsequently, local latent trees are
integrated, replacing internal nodes and their neighbors with these structures, thereby stream-
lining the overall complexity of constructing the latent tree. Remarkably, the sample complexity
of these algorithms aligns with that of the Chow-Liu algorithm, requiring only logarithmic ob-
servations in the number of variables to recover the model with high probability36.

8.5 Information Distances
Central to Choi et al.’s algorithms are the ‘information distances’—functions of pairwise distribu-
tions among observed variables and additive for tree-structured graphical models29. For Gaussian
models, the information distance, dij , between variables Xi and Xj is defined as:

dij := − log | ρij | (8)

where ρ is the correlation coefficient:

ρij :=
Cov(Xi, Xj)√
Var(Xi)Var(Xj)

(9)

A large dij implies weak correlation betweenXi andXj , and conversely for a small dij . This sec-
tion has laid the groundwork for understanding latent tree models and their learning processes,
setting the stage for applying these concepts to curriculum complexity analysis. The ability to
uncover and integrate latent courses within a curriculum promises to revolutionize the way ed-
ucational pathways are structured, potentially leading to more efficient and effective learning
outcomes.

9 Restructuring Curricula

Building upon the Latent Tree Model (LTM) framework outlined by Choi et al., this section delves
into applying this model to strategically restructure academic curricula. The primary aim is to
simplify the curricular structure, aligning it with a tree-like graphical representation to facili-
tate a more straightforward progression for students through their academic requirements. The
restructuring process involves adding new courses (represented as hidden nodes in the LTM),
eliminating or modifying existing prerequisite connections, and incorporating new ones (repre-
sented as directed edges between nodes in the LTM).The fundamental input for this restructuring
process is the information distance matrix, denoted as D. This matrix is pivotal in gauging the



inter-course correlations within a curriculum, effectively measuring the “closeness” between var-
ious courses. The notion of “closeness” here is multifaceted, contingent upon the specific appli-
cation context. For our purposes, courses are deemed “close” if they share common foundational
requirements, thematic or topical similarities, or comparable levels of academic rigor and com-
petence requirements. In pursuit of a nuanced understanding of this “closeness,” our proposed
framework to compute the distance matrix D integrates two distinct methodologies: a machine
learning approach and a graph theory model. The machine learning component leverages stu-
dent performance data to deduce the foundational competencies required for each course. These
competencies might include critical writing, analytical reasoning, problem-solving aptitude, etc.
Concurrently, the graph theory employs the directed links within the curriculum’s graphical rep-
resentation to assess the relative distances or “closeness” between courses. This approach also
accounts for the sequential or prerequisite dependencies inherent in course progression (e.g., the
normative sequence of taking Calculus I prior to Calculus II ). Subsequent sections will explore
these methodologies in-depth, elucidating how they collectively contribute to the calculated re-
structuring of academic curricula within the LTM paradigm.

9.1 Leveraging Machine Learning in Curricular Analysis
In curricular analysis, machine learning, particularly collaborative filtering (CF), emerges as a
potent tool to unearth latent attributes that signify the foundational skills required by various
courses in an academic curriculum. Collaborative filtering, a technique ubiquitous in recom-
mender systems, thrives on collaborating among multiple agents or data sources to filter infor-
mation or discern patterns37. Its versatility is evident across numerous domains, including envi-
ronmental sensing, financial data integration, and user behavior analysis in electronic commerce.
In the educational sphere, particularly within a Grading Management System (GMS), collabora-
tive filtering echoes the dynamics of recommender systems, where it typically consists of three
elements: the user, the item, and the rating. The core task revolves around predicting the ratings
for unrated items and recommending those with the highest anticipated ratings. Analogously,
in a GMS, these elements translate to the student, the course, and the grade, respectively, with
the primary task being predicting grades for courses yet to be taken. However, applying collab-
orative filtering in this context transcends mere grade prediction. The principal objective is to
extract latent features corresponding to courses within a curriculum. For instance, in a movie
recommendation scenario, the discovered factors include dimensions like genre or thematic ele-
ments. Similarly, in an educational setting, the factors for courses could encompass dimensions
such as required problem-solving skills, critical reading and writing skills, or specific subject
knowledge like trigonometry. These extracted latent features are instrumental in measuring the
compatibility or ”closeness” between courses, which subsequently informs the construction of
the information distance matrix,D. A prominent class of collaborative filtering models employed
for latent feature extraction is matrix factorization37. This approach involves approximating a
matrix A ∈ R|S|x|C| as the product of two smaller matrices U ∈ R|S|x|K| and V ∈ R|K|x|C|. Here,
U represents a matrix where each row is a vector of k latent factors for each student s, while V
is a matrix where each column is a vector of k latent factors for each course c. In this context,
Non-negative Matrix Factorization (NMF) is particularly suitable38. Unlike other matrix factor-
ization techniques, NMF mandates that all entries in the matrices U and V be non-negative. This
constraint aligns well with the nature of curricular data, where the set of skills required by a



Course A Course B Course C
Student 1 A+ NA NA
Student 2 NA C A
Student 3 C NA D
Student 4 NA C A
Student 5 A+ B B-
Student 6 NA NA NA

Table 3: A student-course matrix A ∈ R6x3

course or the competence level of a student cannot be negative; the least value is zero, indicat-
ing no requirement or competence in a specific skill. Consider a matrix A with S students and
C courses, i.e., A ∈ R|S|x|C|, where each entry represents student i performance in a particular
course j. Table 3 exemplifies such a matrix. The subsequent steps to define the information dis-
tance matrix, DM , using NMF are:

1. Apply the NMF algorithm to decompose A into matrices U and V , ensuring convergence
to a stationary point.

2. Employ cross-validation to determine the optimal number of latent factors, K , that yield
the minimum root mean square error (RMSE).

3. Each row si in U corresponds to student i’s competence in K academic skills, and each
column cj in V represents the required skill level for course j in the same K skills.

4. The information distance between courses ci and cj is defined as:

dij := − log | ρij |

where ρij is the correlation coefficient:

ρij :=
Cov(ci, cj)√
Var(ci)Var(cj)

5. Construct DM , the information distance matrix, with elements dij for all course pairs.

Thismachine learning approach facilitates a nuanced understanding of course relationshipswithin
a curriculum, paving the way for strategic curricular restructuring that aligns with student needs
and academic objectives.

9.2 Expanding the GraphTheory Approach in Curriculum Analysis
Our exploration of curriculum restructuring extends into the realm of graph theory, where we
leverage the inherent structure of a curriculum to develop an alternative information distance
matrix, denoted as DG. This matrix utilizes the concept of prerequisite paths to measure the
closeness between courses. The path length between two courses in a curriculum graph reflects
the strength of their relationship in terms of learning outcomes. For instance, the connection



Precalc Calc I Calc II Diff Eqs. Circuits I
Precalculus 0 1 2 3 4
Calculus I ∞ 0 1 2 3
Calculus II ∞ ∞ 0 1 2
Diff Eqs. ∞ ∞ ∞ 0 1
Circuits I ∞ ∞ ∞ ∞ 0

Table 4: A sample information distance matrix DG

between Calculus I and Calculus II in Figure 4a is intuitively stronger than that between Calcu-
lus I and Circuits I, a fact easily captured by examining the lengths of their connecting paths. The
directionality of prerequisite edges is also instrumental in shaping our understanding of these
relationships. It dictates the sequential order in which courses must be taken, such as Calculus II
following Calculus I and not vice versa. This asymmetric relationship is reflected in the infor-
mation distance matrix DG, as showcased in Table 4 for a sample curriculum. In integrating the
machine learning and graph theory approaches, we synthesize the final information distance ma-
trix, D, through a weighted combination of DM and DG:

D = α1 ·DM + α2 ·DG (10)

where α1 + α2 = 1.0. These coefficients offer flexibility in emphasizing either the prerequisite
structure or the background skill requirements of courses. For instance, a higher α1 focuses
more on the background skills required by the courses, while α2 leans towards the prerequisite
paths. To ensure a unified scale for effective comparison, both matrices are normalized using the
min-max scaling technique, substituting ∞ with a significantly large number for computational
purposes. The choice of latent trees in ourmodel is guided by the need to balancemodel fitting and
complexity to avoid overfitting. This is where the Bayesian Information Criterion (BIC) becomes
crucial, providing a quantifiable metric to evaluate the performance of our latent tree models.
The BIC formula considers both the log-likelihood of the model and its complexity, with the
latter scaling linearly with the number of hidden variables in a tree structure:

BIC(T ) = log-Likelihood− k(T )

2
log(n) (11)

Here, T represents the latent tree structure, n is the dataset size, and k(T ) is the count of free
parameters. The optimal model balances accurately representing the empirical data distribution
and maintaining a manageable level of complexity. This approach underlines our commitment
to crafting a curriculum model that is both data-driven and practically feasible, ensuring that the
resulting structure aligns well with the academic needs and goals of students.

10 Analyzing Experimental Outcomes

This section delves into the practical application of our framework, utilizing actual student data
and curricular patterns to assess the efficacy of our model. Our primary focus is the application
of the latent tree algorithms from Choi et al. on real-world curricular structures29. We commence
with a smaller-scale curricular pattern and expand our analysis to encompass a comprehensive



computer engineering program. Both experiments leverage the performance data of computer en-
gineering students from the University of New Mexico (UNM), aiming to unearth latent features
that underpin the required skillsets for courses within these curricular patterns. Subsequently,
we apply a suite of latent tree learning algorithms, notably the neighbor-joining (NJ), recursive
grouping (RG), Chow-Liu Neighbor-Joining (CLNJ), Chow-Liu Recursive Grouping (CLRG), reg-
ularized Chow-Liu Neighbor-Joining (regCLNJ), and regularized Chow-Liu Recursive Grouping
(regCLRG) algorithms. Our evaluation criteria encompass:

• Log-Likelihood estimate to assess the data fit of a tree model.

• BIC estimate for evaluating data fit while considering model complexity.

• Complexity to gauge the structural complexity of a tree model, calculated via Equation 1.

• Graduation rates, estimated using the MDP model (Equation 3), to measure student success.

Our initial experiment involves restructuring a curricular pattern (Figure 11a) consisting of 8
courses and 10 prerequisite connections. This pattern’s structural complexity is 60. We calculate
DG using the graph structure and utilize 5,073 student records from UNM to construct matrix A
for latent feature extraction. These features inform DM , and we subsequently integrate DG and
DM as per Equation 10, setting α1 = 0.3 and α2 = 0.7. The flexibility in adjusting α1 and α2

allows domain experts to explore various restructuring scenarios, providing a valuable “what-if”
analysis tool. While optimal values for these coefficients are subject to future exploration, our
current focus is on their immediate impact on restructuring outcomes. Figure 11 vividly illustrates
the various tree structures derived using the seven latent tree algorithms. Table 5 provides an in-
depth performance comparison of these algorithms, with a particular emphasis on CLNJ, which
emerges as the most effective in terms of log-likelihood and BIC scores. However, it’s crucial to
note that CLNJ, alongside CL and regNJ, did not introduce any hidden nodes, limiting their capac-
ity to uncover significant structural insights. Conversely, NJ and CLRG introduced fewer hidden
nodes while not topping the BIC scores. This can be particularly advantageous when the goal is to
simplify the latent tree structure or to identify a minimal set of meaningful hidden variables that
elucidate the dependencies of observed variables. NJ and CLRG significantly lowered the struc-
tural complexity compared to the original pattern in Figure 11a, with complexity values of 40 and
46, respectively, against the original’s 60. Figures 11c and 11f showcase these two algorithms’
latent tree structures. A key observation is that while NJ yields a structure with low complexity,
CLRG presents a more coherent tree structure, maintaining crucial prerequisite dependencies,
particularly for the foundational Precalculus course. CLRG’s suggested hidden node (Figure 11f)
symbolizes a new course incorporating a subset of learning activities crucial as prerequisites for
courses like Physics I, Calculus II, and Circuits I. This addition encapsulates essential learning
outcomes and reduces unnecessary complexities, as evident from the 14-point reduction in com-
plexity. The resemblance between the domain expert-designed pattern (Section 5.2) and the latent
tree generated by CLRG is striking (Figure 12). When we consider combining the hidden node
from Figure 11f with Precalculus to form a new course (Engineering 101), the similarity becomes
even more pronounced. This unity validates the latent tree models’ reliability and underscores
the logical rationale underpinning their algorithms. An additional critical finding pertains to the
improvement in 5-term graduation rates. As Table 5 indicates, there’s a significant increase in
the probability of students graduating within five terms when following the CLRG-restructured



(a) Original pattern (b) CL

(c) NJ (d) RG

(e) CLNJ (f) CLRG

(g) regCLNJ (h) regCLRG

Figure 11: The seven revised curricular patterns generated using the seven latent tree learning
algorithms: CL, NJ, RG, CLNJ, CLRG, regCLNJ, and regCLRG.



Log-Likelihood BIC Complexity Gradation Hidden
CL -61038 -61068 40 4.62 0
NJ -62812 -62846 40 3.2 1
RG -55614 -55652 62 0.86 2
CLNJ -54768 -54798 40 4.62 0
CLRG -66574 -66608 46 2.23 1
regCLNJ -59621 -59651 40 4.62 0
regCLRG -63884 -63918 64 0.20 1
original - - 60 0.42 -

Table 5: The performance of the seven tree learning algorithms used to restructure the curricular
pattern of Figure 11a.

(a) Restructured by a domain expert (b) Restructured using the CLRG method

Figure 12: A prevalent curriculum structure shared by electrical, mechanical, and computer en-
gineering programs.

pattern compared to the original. The 5-term graduation probability increases by approximately
1.8% with a 14-point complexity reduction in the CLRG-generated pattern. This uplift is even
more pronounced in larger curricular patterns, underscoring the potential widespread impact of
such restructuring. However, it’s important to acknowledge that these experiments are predi-
cated on a fixed pass/fail rate assumption for all courses, set at 0.7 for simplicity. Variations in
these rates could yield different outcomes, highlighting the importance of considering diverse
academic performance scenarios in future analyses.

Building upon the initial exploratory study, our next venture involves applying the latent tree
learning algorithms to a larger curricular scope, specifically the computer engineering program
at UNM.This extensive curricular pattern omits social sciences and humanities courses, focusing
on more complex subjects with prerequisite dependencies. The original pattern for this study
(Figure 14a) comprises 26 courses, embodying 34 prerequisite links and a structural complexity
of 295, reflecting a dense and intricate curriculum layout. To derive the first information distance
matrix (DG), we utilized the graph structure of this pattern. A comprehensive dataset involving
5,409 UNM student records was employed to calculate the second information distance matrix
(DM ). Mirroring our previous approach, we set α1 = 0.3 and α2 = 0.7. The performance metrics



Figure 13: The RG algorithm’s restructured version of the UNM computer engineering program.

of the seven tree learning algorithms, as shown in Table 6, reveal diverse outcomes. Although
achieving the best BIC score, the CL algorithm did not introduce any new nodes and thus lacked
structural insights. While demonstrating better log-likelihood and BIC scores, both NJ and RG
models oversimplified the curricular structure, which is evident in their significantly lower com-
plexity values (175 and 138, respectively) compared to the original 295. Figure 13 illustrates an
RG-generated pattern, simplifying the structure to an impractical extent by introducing only one
new course prerequisite to nearly all courses. Conversely, the CLRG model, despite having the
lowest log-likelihood, suggests an oversimplified pattern, reflected in its low complexity value of
117. On the other hand, while showing better fitting scores, the regCLNJ model results in a more
complex pattern than the original, with a complexity value of 308. Balancing log-likelihood and
complexity, the CLNJ and regCLRG methods emerge as more desirable. They introduce multiple
meaningful hidden nodes, providing insights into potential pathways for curricular restructur-
ing. For example, the regCLRG model suggests a new course (h1) as a shared prerequisite for
courses with common themes, such as English and technical writing courses. In comparing the
reconstructed patterns of CLNJ and regCLRG with the original (Figure 14a), the regCLRG model
appears more practical and a superior alternative to the original. It maintains essential prereq-
uisite dependencies and introduces new courses like h2 and h3, consolidating prerequisite learn-
ing outcomes for key engineering and computer science courses. This restructuring fulfills the
program’s prerequisite requirements and decreases its structural complexity by 97 points. This
complexity reduction directly translates into improved graduation rates. As indicated in Table 6,
using Equation 3, the 8-term graduation probability increases by approximately 5.42% with a



Log-Likelihood BIC Complexity Graduation Hidden
CL -148237 -148345 227 0
NJ -154251 -154367 175 1
RG -154738 -154850 138 1
CLNJ -162063 -162183 212 2
CLRG -182395 -182511 117 1
regCLNJ -159950 -160061 308 1
regCLRG -177351 -177476 198 12.62 3
original - - 295 7.2 -

Table 6: The performance of the seven tree learning algorithms used to restructure the computer
engineering program of Figure 14a.

97-point complexity reduction in the regCLRG-generated pattern. Such findings underscore the
significant potential of applying these methodologies to large-scale curricular patterns, enhanc-
ing educational programs’ efficiency and effectiveness.

11 Discussion

The exploration of curricular reform using latent tree graphical models in this study offers a nu-
anced understanding of the complexities involved in educational program design and the poten-
tial for data-driven decision-making to enhance student outcomes. Our comprehensive analysis
encompassed two distinct experiments targeting different curricular scales, from a smaller 8-
course pattern to the extensive Computer Engineering program at the University of New Mexico
(UNM).Through the application of various latent tree algorithms, we observed the effectiveness of
these models in simplifying curricular complexity while maintaining, or even enhancing, the ed-
ucational integrity of the programs. Notably, the Chow-Liu Recursive Grouping (CLRG) method
in the first experiment and the regularized Chow-Liu Neighbor-Joining (regCLNJ) method in the
second experiment emerged as themost effective techniques. They offered a balanced approach to
curricular restructuring, reducing complexity scores significantly while introducing new courses
that encapsulate essential learning outcomes. This balance is particularly noteworthy, as it ad-
dresses the critical need to simplify curricular pathways for students without diluting academic
rigor or learning objectives. An intriguing outcome of our study was the close resemblance be-
tween the restructured patterns derived from the latent treemodels and those designed by domain
experts. This similarity not only attests to the reliability of these models but also highlights their
potential to uncover underlying logical structures within curricula. Such insights can be invalu-
able for academic institutions seeking to redesign their programs in ways that are both logically
sound and beneficial to student progression. Moreover, our findings underscore the potential
for significantly improving student graduation rates through curricular reform. We observed
marked improvements in projected graduation rates by reducing structural complexities, partic-
ularly in more extensive programs. This aspect of the research points to the profound impact that
data-driven curricular restructuring can have on student success, providing a compelling case for
educational institutions to adopt such approaches. The use of parameters (α1 and α2) in combin-



(a) The computer engineering program at UNM

(b) The revised computer engineering program using the regCLRG
learning algorithm

(c)The revised computer engineering program using the CLNJ learning
algorithm

Figure 14: The computer engineering program at UNM restructured using the regCLRG and the
CLNJ learning algorithms.



ing information distance matrices introduces an element of customization, allowing institutions
to tailor the restructuring process according to their specific contexts and objectives. Future
research focusing on optimizing these parameters could yield even more refined and effective
curricular structures. In summary, our study demonstrates the efficacy of latent tree graphical
models as a tool for curricular reform, providing a methodological framework that is both inno-
vative and practical. The implications for higher education are significant, offering a pathway to
more accessible, navigable, and effective educational programs aligned with the student body’s
evolving needs and diverse backgrounds. As educational institutions continue to seek ways to
improve student outcomes and adapt to changing educational landscapes, the insights from this
study could prove instrumental in guiding these efforts.

12 Conclusion

In our research, we introduce an innovative approach to streamline university curriculum re-
structuring, aiming to significantly lower degree programs’ structural complexities. This method
is designed to enhance student progression through their academic pathways, thereby poten-
tially boosting graduation rates. Our methodology is grounded in a data-centric approach that
leverages actual student records and real-world university curricular structures, eliminating the
need for direct intervention by academic experts. The core of our approach involves deploying
advanced machine learning techniques and latent tree graphical models, mainly focusing on col-
laborative filtering methods. We rigorously tested these methodologies on a typical curriculum
pattern across electrical, mechanical, and computer engineering departments. The performance
of these new curricular structures was critically assessed using various experimental metrics,
including Log-Likelihood estimates and the Bayesian Information Criterion (BIC) estimates. Ad-
ditionally, we employed Markov Decision Processes (MDP) models to gauge the graduation rates
of the newly proposed curricular patterns, comparing these with the rates from existing struc-
tures. Our findings reveal a marked efficiency in the revised curricular patterns over traditional
ones, characterized by reduced structural complexity and a higher potential for improved grad-
uation outcomes. The effectiveness of our model was corroborated using an extensive dataset
comprising over 5,000 student records from the University of New Mexico, underscoring our ap-
proach’s practical applicability and relevance in real-world academic settings. This study offers a
significant contribution to educational data analytics and presents a pragmatic solution for uni-
versities aiming to optimize their curricular designs in line with student success.
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