
Paper ID #42592

Work in Progress: Identifying Software Engineering Practices and Tools Among
Students and Practitioners in Non-Computing Engineering Disciplines

Stephanos Matsumoto, Olin College of Engineering

Stephanos (Steve) Matsumoto is an Assistant Professor of Computer Science and Engineering at the
Olin College of Engineering. His research interests are in computing education, particularly in how
to incorporate better software engineering practices when teaching computing in undergraduate STEM
courses.

Dr. Michelle E Jarvie-Eggart P.E., Michigan Technological University

Dr. Jarvie-Eggart is a registered professional engineer with over a decade of experience as an environmental
engineer. She is an Assistant Professor of Engineering Fundamentals at Michigan Technological University.
Her research interests include technology adoption, problem based and service learning, and sustainability.

©American Society for Engineering Education, 2024



Work-in-Progress: Identifying Software Engineering Practices
and Tools Among Students and Practitioners in Non-Computing

Engineering Disciplines

Abstract
Despite the increasing importance of working with and developing software in numerous
engineering fields, engineering education today largely focuses on programming, rather than
software engineering practices and tools (SEPTs), that is, the tools and techniques for designing,
implementing, and maintaining software over time. As a result, the productivity or reliability of
engineering work involving software can be hampered by problems that could have been avoided
with the use of modern best practices in software engineering. Despite a history of research on
SEPTs in computing fields (e.g., computer science and software engineering) and computational
science fields (e.g., computational physics and bioinformatics), the use of SEPTs in engineering
fields is not well understood.

To address this problem, in this paper, we present ongoing work investigating how practitioners
and undergraduate students in non-computing engineering disciplines understand and use SEPTs.
Specifically, we present the preliminary design of a qualitative study, including a survey
instrument to assess familiarity with software engineering terminology and use of SEPTs. Our
survey is based on the Software Engineering Body of Knowledge (SWEBOK) Guide, which
outlines a generally accepted, standard body of knowledge expected of practicing early-career
software engineers. We design the survey to be accessible even to those unfamiliar with the
specific software engineering terminology used in the SWEBOK Guide. In addition to the survey
itself, we describe our planned approach to conduct a thematic analysis of participants’ responses,
using the taxonomy of the SWEBOK Guide as an analytical framework.

We hope that our study will help illuminate the landscape of how different engineering disciplines
understand and develop software. While we intend for our survey to be used in studying
engineers in non-computing fields, we anticipate that the results of our study will inform the
development of further research to investigate SEPT use in engineering in a discipline-specific or
discipline-agnostic manner. In the broader context, we expect that these insights will help us more
identify and teach key SEPTs in undergraduate engineering education, and thereby help future
engineers write and maintain software more effectively, whatever their discipline.

Introduction
Understanding and writing software is becoming increasingly important knowledge and practice
in modern engineering (and for that matter, in all STEM fields), a trend noted both by students [1]
and practitioners [2]. The processes by which scientists and engineers develop software has
become more complex, involving many collaborators [3] and close coupling with other parts of
the engineering design process [4]. Despite this increasing importance, the treatment of software
in undergraduate STEM education largely consists of programming, that is, implementing
software for achieving a specific task, rather than software engineering practices and tools



(SEPTs), that is, tools and techniques used in the overall process of designing, implementing, and
maintaining software. This gap between teaching programming and SEPTs seems to exist both in
computing-centric STEM disciplines such as software engineering [5] and computing-adjacent
disciplines such as computational physics or bioinformatics [6].

While previous research has proposed interventions that are promising for improving some
SEPTs in STEM fields, these interventions often assume a disciplinary context that is far too
broad or too narrow to understand their effect within a specific engineering discipline. For
example, the Carpentries program (formerly Software Carpentry) aims to teach basic SEPTs to
scientists and engineers [7]. However, the impact of programs like these on engineers are not
well-understood: studies usually measure self-reported confidence in workshop topics rather than
actual SEPT usage, and reported results lump all participants together rather than considering
discipline-specific outcomes [8, 9]. Other proposed interventions measure outcomes only for
students studying computing-centric disciplines such as computer science or software
engineering [10]. Rather than developing interventions in a broad STEM context or in a narrow
computing context, it is important that we more deeply understand SEPT use in their disciplinary
contexts. This understanding will help us identify important SEPTs to teach, potential barriers to
their adoption, and ways to embed these SEPTs in authentic practice, maximizing the impact of
these disciplinary-specific interventions.

There are existing survey instruments to measure SEPT use, but these are also tailored to a
specific disciplinary context, often computing [11] or scientific computing [12]. Adapting these
instruments to a disciplinary-specific context is difficult, largely for two reasons: (1) each
discipline develops software within its own epistemological paradigm [13], and (2) the
terminology used in one discipline may not match what is used within another [14]. Thus, to
deeply understand SEPT use within a discipline, we must understand the ways in which
practitioners of that discipline engage with and articulate the process of software
development.

To address the above problem, we present in this paper a preliminary design for a qualitative
study designed to answer the following research questions:

1. How do students and practitioners in non-computing-centric engineering disciplines
understand generally accepted terminology in software engineering?

2. What generally accepted SEPTs do students and practitioners in non-computing-centric
engineering disciplines use in their work?

For the purpose of our study, we define generally accepted as in the 2014 Software Engineering
Body of Knowledge (SWEBOK) Guide, which describes knowledge that a software engineer is
expected to have after several years of professional practice. To address our research questions,
we design a qualitative survey instrument, with the SWEBOK Guide providing a guiding
framework both for the design of the survey and for the analysis of the resulting data. Ultimately,
we intend for the insights from our study to guide the creation of a quantitative survey instrument
to answer on overarching research question: What software engineering practices and tools do
undergraduate engineering students and practitioners currently use in their work?

In the remainder of this paper, we first present background on SEPTs and the SWEBOK Guide.
We then describe our study design in detail. We conclude the paper with a discussion on potential



threats to validity and the anticipated impacts of our study.

Background and Related Work
In this section, we begin by describing relevant background and prior work. Specifically, we
describe SEPTs in more detail, including how they differ from programming, their importance in
engineering work, and previous efforts to teach or assess them. We then provide background on
the SWEBOK Guide, including its purpose and high-level organization.

Software Engineering Practices and Tools
As we mention earlier in this paper, SEPTs and the field of software engineering are distinct from
programming. Brian Randell reportedly described software engineering as “the multi-person
development of multi-version programs” [15], and more recently, software engineering has been
described as “programming integrated over time”, that is, the process of evolving code as its
requirements, users, or underlying technologies change [16].

Thus, while SEPTs are practices and tools that may be used while writing programs, their primary
goal is to support the process of designing, implementing, or maintaining software. As an
example, a SEPT may be the practice of interviewing key stakeholders to elicit software
requirements, which involves no programming whatsoever. Or, a SEPT may be a tool to
automatically generate test cases for a given software implementation, helping to catch bugs
during the development process.

The term SEPT is not in common use; it is a term that we chose to distinguish our object of study
from software engineering knowledge. As an example, the concept of a class in object-oriented
programming would not be a SEPT, whereas a specific class design pattern would be, as it can be
applied and implemented in order to solve some problem. One way to distinguish a SEPT from
software engineering knowledge would be to apply Bloom’s taxonomy (specifically, in the
cognitive domain), with the Application, Analysis, Synthesis, and Evaluation levels referring to
SEPTs as opposed to knowledge [17].

Importance of SEPTs
As computing becomes increasingly intertwined with the practice of other fields of engineering,
the benefits of good SEPTs in software development becomes clearer, leading to demonstrable
impacts on productivity. For example, software engineering research shows that good use of
SEPTs can result in more accurate estimations of effort required [18], shorter development
time [19], and more trustworthy and reproducible analysis [20, 21].

By contrast, scientific computing research shows that poor use of SEPTs can hinder
productivity [22] or even invalidate previously published research results [23]. These examples
highlight the importance of understanding SEPTs, as they have the potential to impact both the
velocity and reliability of engineering work involving software.

Proposed Improvements in Teaching SEPTs
Proposed improvements to how we teach SEPTs to undergraduate engineering students are
presented in a range of conferences and journals in education, including both computing and
engineering education venues. Interventions from prior work apply practices such as code review
and refactoring [24], pedagogical frameworks such as cognitive apprenticeship [25], and



partnerships such as those between full-time instructors and industry practitioners [26]. These
largely target students, faculty, and practitioners in computing-centric fields, such as computer
science and software engineering.

That being said, there are also numerous efforts to improve the teaching of SEPTs in scientific
computing. Greg Wilson, who created the initial Software Carpentry project [7], has made
numerous recommendations to adopt of key SEPTs in the scientific computing
community [20, 27–29]. Interventions in engineering fields (outside of computing) are rare.

The SWEBOK Guide
From the earliest uses of the term “software engineering”, there have been calls to establish the
field as an engineering profession [30], particularly by the two leading professional societies in
computing, the Association for Computing Machinery (ACM) and the Computer Society of the
Institute of Electrical and Electronics Engineers (IEEE). Efforts to establish software engineering
as a profession have included a call to compile a standard set of knowledge that all practicing
software engineers are expected to have [31]. The SWEBOK Guide is one work towards this
goal, describing and organizing a generally accepted body of knowledge in professional software
engineering [32], which refers to the knowledge that a practitioner would typically be expected to
have after several years of work experience.

The SWEBOK Guide is maintained by the Professional and Educational Activities Board of the
IEEE Computer Society. Its latest version (from 2014) identifies 15 key knowledge areas within
the field of software engineering:

1. Software Requirements
2. Software Design
3. Software Construction
4. Software Testing
5. Software Maintenance
6. Software Configuration Management
7. Software Engineering Management
8. Software Engineering Process
9. Software Engineering Models and Methods

10. Software Quality
11. Software Engineering Professional Practice
12. Software Engineering Economics
13. Computing Foundations
14. Mathematical Foundations
15. Engineering Foundations

Assessing SEPT Use
As with teaching SEPTs, efforts to assess SEPTs among students and practitioners have focused
mainly on computing-centric fields [5, 33], with some prior work focusing on specific software
engineering practices such as handling technical debt in code [34] or tools such as those used for
international collaboration [35]. There is also numerous work to assess various SEPTs in the
scientific computing community [12, 22, 36–38].



Table 1: Section 1 of the survey developed by Garousi et al. Note 1: possible answers are 0 (Com-
pletely useless), 1 (Occasionally useful), 2 (Moderately useful), 3 (Very useful), and 4 (Critical
to my work). Note 2: possible answers are 0 (Learned nothing at all), 1 (Learned the basics), 2
(Moderate working knowledge), 3 (Learned a lot), and 4 (Learned in depth; became expert).

Importance/usage in your job How much you learned in your
whole university education

1. Software requirements Note 1 Note 2
1.1. Software requirements fun-
damentals

Note 1 Note 2

1.2. Requirements process Note 1 Note 2
1.3. Requirements elicitation Note 1 Note 2
1.4. Requirements analysis Note 1 Note 2
1.5. Requirements specification Note 1 Note 2
1.6. Requirements validation Note 1 Note 2
1.7. Practical considerations
such as requirements traceability

Note 1 Note 2

1.8. Software requirements tools Note 1 Note 2

The work of Garousi et al. specifically assesses SEPT use among recent graduates (i.e., relatively
new software engineers) based on the the SWEBOK Guide [5]. The authors operationalize
knowledge gaps between software engineering education and practice by assessing practitioners’
self-reported measure of using a software tool and how much they covered that tool in their
university education [11]. Examples of such questions are shown in Table 1.

The results of the above survey seem to indicate that among software engineers, the most
commonly used areas were Software Design and Software Construction. Some areas with higher
importance/usage are well-covered in undergraduate education (e.g., the above two areas and
Software Requirements), while some have “knowledge gaps” and thus are not well covered in
undergraduate programs (e.g., Software Maintenance, Software Configuration Management and
Software Testing). These results largely line up with those of the previously mentioned surveys of
the scientific computing community.

Study Design
In this section, we describe the design of our study. We begin by describing specific knowledge
areas within the SWEBOK Guide in which we assess SEPTs. We then present our preliminary
survey design and our plans for distributing the survey and analyzing the results.

Knowledge Areas
Among the 15 knowledge areas of the SWEBOK Guide, the three areas not directly related to
software engineering (Computing Foundations, Mathematical Foundations, and Engineering
Foundations) are not assessed in the Garousi et al. survey [5]. These areas represent disciplinary
expertise necessary to conduct some parts of the software engineering process, but do not cover
practices and tools within the field of software engineering. We thus decided to leave these areas
out of our survey instrument.



We further identified three additional knowledge areas that cover practices and tools that are
general to engineering as a whole: Software Engineering Management, Software Engineering
Professional Practice, and Software Engineering Economics. Though these knowledge areas are
named in a way that seems specific to software engineering, their content includes topics such as
project planning, risk management, legal issues, teamwork, and cash flow. Since these are not
specific to the software development process, we also decided to leave these areas out of our
survey instrument.

Thus, in the end, we were left with nine selected knowledge areas, numbered as 1–6 and 8–10 in
the 2014 SWEBOK Guide: (1) Software Requirements, (2) Software Design, (3) Software
Construction, (4) Software Testing, (5) Software Maintenance, (6) Software Configuration
Management, (7) Software Engineering Process, (8) Software Engineering Models and Methods,
and (9) Software Quality. Our survey is intended to assess participants’ understanding of
SEPT-related terminology and their SEPT usage in each of these nine selected areas.

Survey Design
Recall that our study intends to shed light on (1) how students and practitioners in non-computing
engineering disciplines understand software engineering terminology as defined in the SWEBOK
Guide, and (2) what SEPTs students and practitioners in non-computing engineering disciplines
use in their work. While we considered fine-grained survey items that aimed to elicit different
potential terms and SEPTs within each knowledge area, we found that the organization of the
SWEBOK Guide made this difficult. As an example, consider the Software Requirement
knowledge area shown in Table 1. Without referencing the SWEBOK Guide, it is difficult to know
what SEPTs belong in subcategories such as Software Requirements Fundamentals or in Practical
Considerations. We thus chose to provide open-ended survey questions at the knowledge area
level, assessing both participants’ understanding of terminology and their use of SEPTs.

In designing our survey questions, we followed guidelines by Kitchenham and Pfleeger for
designing survey questions [39], as well as guidelines by Lenzner for wording survey questions in
an accessible manner [40]. Our survey instrument consists of three parts, which we explain in
greater detail below.

Terminology. Our survey begins with an assessment of participants’ understanding of software
engineering terminology. This section of the survey begins with the following prompt:

This section of the survey asks about how you understand terms from the field of
software engineering. To ensure that your response reflects your understanding,
please do not look up the meaning of these terms until you have completed the survey.

Consider each of the following topics within the context of developing software.
What words, phrases, or concepts come to mind?

The survey then presents each of the nine selected knowledge areas. For each knowledge area,
participants can provide a short, open-ended response.

SEPT Usage. The second section of our survey focuses on the generally accept SEPTs that
participants use in their work. This section presents the following questions:



This section of the survey asks about the approaches and tools you have used when
developing software in your work, and over the past 12 months. In each question, the
term “your software” refers to any software that meets these criteria.

• What approaches or tools did you use to determine the goals and/or constraints
on your software?

• What approaches or tools did you use to organize your software into smaller
components?

• What approaches or tools did you use to actually implement your software?
• What approaches or tools did you use to check that your software behaved

correctly?
• What approaches or tools did you use to adapt your software to new

goals/constraints, technologies, or bugs?
• What approaches or tools did you use to determine the hardware or other

software required to use your software?
• What approaches or tools did you use to determine the process for developing

your software?
• What approaches or tools did you use to communicate key aspects of your

software or development process to stakeholders?
• What approaches or tools did you use to check that your software actually met

its goals/constraints?

These questions represent each of the nine knowledge areas above. Rather than simply listing the
name of the knowledge area when asking about participants’ SEPT use, we briefly describe the
content of each knowledge area. This approach frees participants from needing to map their own
practices to software engineering terminology, which they may or may not understand well, and
enables them to describe their software development process in their own language.

Demographics and Experience. In order to understand differences across engineering
disciplines, we conclude our survey with questions on participants’ discipline, status (as student
or practitioner), and experience in developing software. This section contains the following
questions (choices shown in parentheses):

This section of the survey asks for basic information about your engineering
discipline and level of experience, both in your chosen discipline and with software.

• Are you a student or a practitioner (working in the field)? (Student, Practitioner)
• What is your primary engineering discipline? (Mechanical, Electrical, Civil)
• (Students only) What is your class status? (Freshman, Sophomore, Junior,

Senior, Fifth-Year or later)
• (Practitioners only) How many years of experience do you have in your field

since completing your bachelor’s degree?
• In the past 12 months, how often have you designed, implemented, or

maintained software/code for your work? (Never, A few times, Once a month,
Once or twice a week, more than once a week)

• In the past 12 months, how often have you designed, implemented, or
maintained software/code outside of work? (Never, A few times, Once a month,



Once or twice a week, more than once a week)

For our initial survey, we limited our target participant population to students and practitioners in
three engineering disciplines: mechanical, electrical and civil. According to the most recent
ASEE Profiles of Engineering and Engineering Technology report, these are the three engineering
disciplines outside of computer science in which the greatest number of bachelor’s degrees were
awarded, at a total of 58,900 out of 141,826, or about 41.5% [41]. In order to interpret
participants’ SEPT use in the context of their experience, we asked three additional questions:
(1) class year (for students) or years of experience (for practitioners), (2) frequency of recent
work with software., and (3) frequency of software development outside of work. While not
directly tied to our research questions, these additional survey questions may help us in future
work. For example, they may shed light on how differences in disciplinary or software experience
correlate with those in SEPT use.

Institutional Context
Much of our study will take place at our respective institutions. Olin College is a small
engineering college located in Needham, Massachusetts in the US. Under the Carnegie
Classification, it is considered a very small (fewer than 1000 undergraduate students), exclusively
undergraduate, special focus undergraduate program (on engineering and other technologies). It
only offers undergraduate degrees in three programs: Engineering (with a specialized
concentration, such as Design), Mechanical Engineering, and Electrical and Computer
Engineering (ECE).

Michigan Technological University is a medium-sized public research university located in
Houghton, Michigan in the US. Under the Carnegie Classification, it is considered to have a
medium (3000–10000 undergraduate students), highly undergraduate (10–25% graduate students
overall), professions-focused undergraduate program. It offers undergraduate degrees in a wide
range of engineering disciplines, including Mechanical, Electrical, and Civil Engineering (which
comprise our target participant population).

Survey Pilot and Distribution
We are in the process of conducting a pilot study of our survey among undergraduate students at
our respective institutions. We are leveraging our institutions’ alumni networks to recruit
practitioners to pilot our survey as well. Our pilot studies will consist of small focus groups of
around 2–3 participants from each participant group (students and practitioners, each from the
three engineering disciplines, for a total of 12–18 pilot participants). We will collect and analyze
pilot data to determine if the wording of the survey questions, particularly in the second section
(assessing SEPT use), should be refined. To do this, we will ask each group two questions
following the survey:

1. On what questions, if any, were you unsure about how to answer, and why?
2. What aspects of your software development practices or tools, if any, did you not get a

chance to discuss in this survey?

We recognize that some practices and tools may not be in the SWEBOK Guide due to not being
generally accepted within the field, or more recent than 2014 (when the SWEBOK Guide was last
published). While our study will continue to use the nine knowledge areas above, we will use



these pilot responses to plan follow-up research investigating SEPTs not appearing in the
SWEBOK Guide. Based on the pilot responses, we will make necessary refinements to the
wording of our survey instrument’s prompts and questions. We will then seek IRB approval of the
refined survey, making additional changes to our study design as required by the IRB.

For distribution of the survey to students, we will use convenience sampling [42], distributing the
survey among our respective institutions (Olin College and Michigan Technological University).
For distribution of the survey to practitioners, we will leverage not only our institutions’ alumni
networks, but also contacts in our professional networks, including institutional colleagues and
our respective professional societies, to identify feasible distribution channels. We will then
distribute the survey through those channels, using snowball sampling [43] if necessary to find
and recruit additional participants. We hope to collect data from at least 15 participants in each
group (at least 90 participants overall). To incentivize participation, we will offer the chance of
winning one of a set number of gift cards to those who complete the survey.

Analysis Plan
We will conduct thematic analysis on our survey responses. Specifically, we will use a deductive
coding approach, mapping responses in each section of the survey to terms, concepts, practices,
and tools in the SWEBOK Guide. We will code responses independently, holding regular coding
meetings to discuss our analyses and resolve differences to ensure intercoder agreement. We
expect this process to result in a taxonomy of SEPTs and relevant terminology, mapped to
knowledge areas in the SWEBOK Guide. We will also present the use of the terms and SEPTs in
our taxonomy by student/practitioner status and by engineering discipline.

Discussion
Below, we discuss our work in a broader context, including its expected impacts, how it may
inform engineering education, and its limitations.

Limitations and Potential Threats to Validity
Because participants will voluntarily complete our survey, our analysis will reflect the SEPTs and
understanding of terminology among a self-selected population. Additionally, our distribution
channels for our survey instrument will rely heavily on potential participants at our respective
institutions. While there are significant differences between our institutions, there are some
common factors, including a mostly full-time, highly residential undergraduate student body,
higher selectivity, a lower population of transfer students, and a large fraction of degrees awarded
in professional fields. These factors may affect the degree to which our analysis is indeed
representative of SEPT use and understanding in each of our participant populations.

As we note in the design of our survey pilot, we also anticipate that some SEPTs may not neatly
map to the knowledge areas of the SWEBOK Guide. We acknowledge that the SWEBOK Guide
represents a general consensus on software development knowledge among software engineers,
but this is by no means the full extent of SEPTs. Indeed, we know from previous work that the
software workflows of those who are not software engineering can look very different [3]. We
emphasize that despite the results of our analysis, any differences in SEPT use that we identified
may be completely warranted, and is not indicative of bad practices that need to be “corrected” in
other engineering disciplines.



Expected Impacts
As far as we know, our work is the first to assess SEPTs specifically in engineering fields outside
of computing. We hope that this work will shed light on the ways in which students and
practitioners in these disciplines engage with software and the software development process.
This understanding will in turn serve as a springboard for future work to develop more detailed
insights on SEPTs in different engineering disciplines. Specifically, we hope to use the results of
this study to develop a more comprehensive survey instrument on SEPTs and gain further insight
into SEPT use in engineering disciplines beyond those studied here. We also hope to identify
potential participants for follow-up interviews, in which we can gain richer data on the factors
that may explain why certain SEPTs are or are not used in a field.

Applications to Engineering Education
With a deeper understanding of SEPT use in engineering, provided both by this survey and by
follow-up work described above, we can identify opportunities to improve the way we teach
SEPTs within different engineering disciplines. Previous work demonstrates that the effective use
of SEPTs benefits productivity and the reliability of software, and as computing becomes an
increasingly important part of engineering work, we believe that teaching these best practices will
be critical to teaching engineering. Our insight on SEPT use will help set the stage for those
innovations in engineering education.

Conclusions
In this paper, we described the preliminary design of a survey to assess SEPTs in students and
practitioners of mechanical, electrical, and civil engineering. Our design focused on being
accessible to those unfamiliar with software engineering technology, as well as on building atop
professional standards in software engineering used in previous work. While this work in still in
progress, we are optimistic about the potential of this work to shed much-needed insight on how
engineering disciplines engage with software. We hope that this understanding allows us to make
important improvements to how we teach software development in engineering education.

References
[1] J. Parham-Mocello, J. Garcia, and M. Sadler, “Engineering student perspectives of a new required programming

course,” in IEEE Frontiers in Education Conference (FIE). IEEE, Oct. 2023.

[2] H. Jang, “Identifying 21st century STEM competencies using workplace data,” Journal of Science Education
and Technology, vol. 25, no. 2, pp. 284–301, Dec. 2015.

[3] D. Paine and C. P. Lee, ““Who has plots?”: Contextualizing scientific software, practice, and visualizations,”
Proceedings of the ACM on Human-Computer Interaction (PACMHCI), vol. 1, no. CSCW, pp. 1–21, Nov. 2017.

[4] H. Sporer, G. Macher, E. Armengaud, and C. Kreiner, “Incorporation of model-based system and software
development environments,” in Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, Aug. 2015, pp. 177–180.

[5] V. Garousi, G. Giray, and E. Tüzün, “Understanding the knowledge gaps of software engineers: An empirical
analysis based on SWEBOK,” ACM Transactions on Computing Education (TOCE), vol. 20, no. 1, pp. 1–33,
Feb. 2020.

[6] J. Carver, D. Heaton, L. Hochstein, and R. Bartlett, “Self-perceptions about software engineering: A survey of
scientists and engineers,” Computing in Science and Engineering (CiSE), vol. 15, no. 1, pp. 7–11, Jan. 2013.



[7] G. Wilson, “Software Carpentry: Getting scientists to write better code by making them more productive,”
Computing in Science & Engineering (CiSE), vol. 8, no. 6, pp. 66–69, Nov. 2006.

[8] A. Simperler and G. Wilson, “Software Carpentry – get more done in less time,” arXiv:1506.02575, Jun. 2015.

[9] B. K. Weaver, “The efficacy and usefulness of Software Carpentry training: A follow-up cohort study,” Master’s
thesis, The University of Queensland, 2019.

[10] A. Berg, S. Osnes, and R. Glassey, “If in doubt, try three: Developing better version control commit behavior
with first year students,” in ACM Technical Symposium on Computer Science Education (SIGCSE), Feb. 2022,
pp. 362–368.

[11] V. Garousi, G. Giray, and E. Tüzün, “Survey of the skills important to software professionals based on
SWEBOK,” https://zenodo.org/records/546594 (last accessed April 27, 2024), Apr. 2017.

[12] J. C. Carver, N. Weber, K. Ram, S. Gesing, and D. S. Katz, “A survey of the state of the practice for research
software in the United States,” PeerJ Computer Science, vol. 8, no. e963, May 2022.

[13] T. Storer, “Bridging the chasm: A survey of software engineering practice in scientific programming,” ACM
Computing Surveys, vol. 50, no. 4, pp. 1–32, Nov. 2017.

[14] S. Faulk, E. Loh, M. L. V. D. Vanter, S. Squires, and L. G. Votta, “Scientific computing’s productivity gridlock:
How software engineering can help,” Computing in Science and Engineering (CiSE), vol. 11, no. 6, pp. 30–39,
Nov. 2009.

[15] D. L. Parnas, Dependable and Historic Computing, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, Oct. 2011, vol. 6875, ch. Software Engineering: Multi-person Development of Multi-version
Programs, pp. 413–427.

[16] T. Winters, T. Manshreck, and H. Wright, Software Engineering at Google: Lessons Learned from
Programming Over Time. O’Reilly Media, Mar. 2020.

[17] M. D. Engelhart, W. H. Hill, E. J. Furst, and D. R. Krathwohl, Taxonomy of educational objectives: The
classification of educational goals, B. S. Bloom, Ed. New York and London: Longman, 1956.

[18] T. K. Abdel-Hamid, K. Sengupta, and D. Ronan, “Software project control: an experimental investigation of
judgment with fallible information,” IEEE Transactions on Software Engineering, vol. 19, no. 6, pp. 603–612,
Jun. 1993.

[19] N. Forsgren, J. Humble, and G. Kim, Accelerate: Building and Scaling High Performing Technology
Organizations. IT Revolution Press, Mar. 2018.

[20] G. Wilson, J. Bryan, K. Cranston, J. Kitzes, L. Nederbragt, and T. K. Teal, “Good enough practices in scientific
computing,” PLOS Computational Biology, vol. 13, no. 6, Jun. 2017.

[21] G. Lee, S. Bacon, I. Bush, L. Fortunato, D. Gavaghan, T. Lestang, C. Morton, M. Robinson, P. Rocca-Serra,
S.-A. Sansone, and H. Webb, “Barely sufficient practices in scientific computing,” Patterns, vol. 2, no. 2, p.
100206, Feb. 2021.

[22] P. Prabhu, Y. Zhang, S. Ghosh, D. I. August, J. Huang, S. Beard, H. Kim, T. Oh, T. B. Jablin, N. P. Johnson,
M. Zoufaly, A. Raman, F. Liu, and D. Walker, “A survey of the practice of computational science,” in The
International Conference for High Performance Computing, Networking, Storage, and Analysis (SC). ACM
Press, Nov. 2011, pp. 1–12.

[23] G. Miller, “A scientist’s nightmare: Software problem leads to five retractions,” Science, vol. 314, no. 5807, pp.
1856–1857, Dec. 2006.

[24] S. K. Sripada and Y. R. Reddy, “Code comprehension activities in undergraduate software engineering course -
a case study,” in Australasian Software Engineering Conference (ASWEC). IEEE, Sep. 2015, pp. 68–77.

https://zenodo.org/records/546594


[25] A. Shah, J. Yu, T. Tong, and A. G. Soosai Raj, “Working with large code bases: A cognitive apprenticeship
approach to teaching software engineering,” in ACM Technical Symposium on Computer Science Education
(SIGCSE TS), Mar. 2024.

[26] G. Kulczycki and S. Atkinson, “Why educators need to team with industry professionals in software
development education,” in ASEE Annual Conference and Exposition. ASEE Conferences, 2018. [Online].
Available: https://peer.asee.org/31243

[27] G. V. Wilson, “What should computer scientists teach to physical scientists and engineers?” IEEE
Computational Science and Engineering, vol. 3, no. 2, pp. 46–65, 1996.

[28] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. C. Hong, M. Davis, R. T. Guy, S. H. D. Haddock, K. D. Huff,
I. M. Mitchell, M. D. Plumbley, B. Waugh, E. P. White, and P. Wilson, “Best practices for scientific computing,”
PLoS Biology, vol. 12, no. 1, Jan. 2014.

[29] M. Taschuk and G. Wilson, “Ten simple rules for making research software more robust,” PLOS Computational
Biology, vol. 13, no. 4, Apr. 2017.

[30] A. G. Oettinger, “President’s letter to the ACM membership,” Communications of the ACM, vol. 9, no. 8, pp.
545–546, Aug. 1966.

[31] S. McConnell, After the Gold Rush: Creating a True Profession of Software Engineering. Microsoft Press,
1999.

[32] P. Bourque and R. E. Fairley, Eds., Guide to the Software Engineering Body of Knowledge, Version 3.0. IEEE,
2014.

[33] A. Radermacher and G. Walia, “Gaps between industry expectations and the abilities of graduates,” in ACM
Technical Symposium on Computer Science Education (SIGCSE). ACM, Mar. 2013, pp. 525–530.

[34] F. Gilson, M. Morales-Trujillo, and M. Mathews, “How junior developers deal with their technical debt?” in
International Conference on Technical Debt (TechDebt). ACM, Jun. 2020, pp. 51–61.

[35] J. Portillo-Rodrı́guez, A. Vizcaı́no, M. Piattini, and S. Beecham, “Tools used in global software engineering: A
systematic mapping review,” Information and Software Technology, vol. 54, no. 7, pp. 663–685, Jul. 2012.

[36] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and G. Wilson, “How do scientists develop
and use scientific software?” in ICSE Workshop on Software Engineering for Computational Science and
Engineering, May 2009.

[37] L. Nguyen-Hoan, S. Flint, and R. Sankaranarayana, “A survey of scientific software development,” in
ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), Sep.
2010.

[38] G. Pinto, I. Wiese, and L. F. Dias, “How do scientists develop scientific software? an external replication,” in
IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, Mar.
2018, pp. 582–591.

[39] B. A. Kitchenham and S. L. Pfleeger, “Principles of survey research: part 3: constructing a survey instrument,”
ACM SIGSOFT Software Engineering Notes, vol. 27, no. 2, pp. 20–24, Mar. 2002.

[40] T. Lenzner, “Effects of survey question comprehensibility on response quality,” Field Methods, vol. 24, no. 4,
pp. 409–428, Sep. 2012.

[41] American Society for Engineering Education, Profiles of Engineering and Engineering Technology, 2022.
Washington, DC: American Society for Engineering Education, 2023.

[42] R. Ferber, “Research by convenience,” Journal of Consumer Research, vol. 4, no. 1, pp. 57–58, Jun. 1977.

[43] L. A. Goodman, “Snowball sampling,” The Annals of Mathematical Statistics, vol. 32, no. 1, pp. 148–170, Mar.
1961.

https://peer.asee.org/31243

