
Paper ID #42581

A Collaborative Effort to Convert MATLAB-based Curriculum to Python in
Undergraduate Biomedical Engineering Education

Dr. Elizabeth Kathleen Bucholz, Duke University

Dr. Bucholz is an Associate Professor of the Practice for the Department of Biomedical Engineering at
Duke University and serves as the Director of Undergraduate Studies for the Department of Biomedical
Engineering in the Pratt School of Eng

David Ward, Duke University

©American Society for Engineering Education, 2024

Title: Bridging the Gap: A Collaborative Effort to Convert MATLAB-based Curriculum to Python
in Undergraduate Biomedical Engineering Education

Abstract:
In response to the evolving landscape of programming languages in the field of biomedical
engineering education, this abstract presents the outcomes of an innovative initiative aimed at
transforming MATLAB-based classroom exercises, labs, and homework assignments into Python
exercises. Spearheaded by a team of enthusiastic undergraduates and coordinated by a
dedicated faculty member over the summer, this conversion project was undertaken to ensure
alignment with contemporary industry demands, curricular uniformity that will allow for
knowledge to build semester-to-semester, and enhance the educational experience for
biomedical engineering students and provides a framework for others looking to perform
similar conversions.

The scope of this endeavor encompassed all 11 required undergraduate biomedical engineering
classes, across 24 different faculty members assisted by 12 undergraduate students. Courses
that were part of the conversion effort included Signals and System, Modeling Cellular Systems,
Instrumentation, Biomaterials, and more. Additionally, the initiative extended to cover a
spectrum of junior-level track courses, such as Imaging, Biomaterials and Biomechanics, Cellular
Engineering, Molecular Engineering, and Fluid Transport. By employing Python, a versatile and
widely used programming language, the curriculum was not only modernized but also made
accessible to a broader range of students, as our department worked to make the programming
content more uniform across the curriculum.

This paper delves into the extensive collaborative process used, working across faculty and
classes, highlighting the integral role played by undergraduates in the conversion efforts.
Through the combined expertise of the faculty member and the students, a systematic
approach was employed to meticulously transform MATLAB assignments into Python, ensuring
the retention of educational integrity and pedagogical objectives. The challenges faced during
this transition, ranging from technical intricacies to pedagogical considerations, are discussed,
along with the innovative solutions devised to overcome these hurdles.

The successful conversion of these diverse engineering courses signifies a significant milestone
in the evolution of Duke's BME engineering education, empowering students with a
foundational understanding of Python programming while engaging them in real-world
applications within their respective fields. This abstract serves as a testament to the
collaborative spirit driving educational innovation, illustrating how the synergy between
dedicated faculty and enthusiastic students can bridge the gap between traditional classroom
practices and contemporary industry demands.

Introduction:

Biomedical Engineering stands at the nexus of innovation, where cutting-edge technology
intersects with human biology to advance healthcare and improve quality of life. As this

interdisciplinary field evolves, so too must the educational approaches that prepare students to
tackle its challenges. A fundamental aspect of this preparation lies in programming proficiency,
which serves as a vital tool for analyzing data, simulating systems, and developing solutions
across various biomedical engineering domains [1]. Much discussion has been had around
which programming language best prepares students for success in the biomedical engineering
workforce.

In recent years, the programming landscape within BME education has witnessed a shift,
mirroring broader trends in the medical technology and biotechnology industry [2].. MATLAB,
long regarded as a staple in biomedical engineering classrooms for its robust numerical
computation capabilities and user-friendly interface, has begun to share the spotlight with
Python, a versatile and increasingly ubiquitous programming language particularly with the
recent interest and investment in data science and machine learning. Python's popularity stems
from its readability, extensive integrated libraries, low cost, and widespread adoption in
industry, making it an attractive choice for educators seeking to align curricula with
contemporary demands [3]. While in the past languages such as C, Java, and MATLAB were
considered foundational, in the past 10 years Python has shown significant growth across many
engineering disciplines, being labeled the top programming language in 2018 [4] as well as the
most popular language of the year [5]. This year, Python is ranked #1 by the TIOBE index and
has shown remarkable growth starting at 4.31% in 2010 to 9.35% in 2020, up to 14.82% in 2023
as compared to MATLAB’s rank of 15 with an index score of 0.92% [2]. While there are many
who argue that all programs should be language agnostic or varied and that computational
fundamentals are universal and therefore adoption of a particular language is unimportant, we
see a benefit in consistency of language throughout the program as this reduces the time
students spend at the beginning of a semester re-learning the fundamentals of a new tool and
gives them more time to actually program. The author has observed students with experience
in the same language used in a course save 3-4 weeks ramping up on the language, tools, and
libraries as compared with a student who has previously used the course language in a
preceding course (this has held consistent for courses taught in Python and MATLAB).
Additionally, our students have complained they are disadvantaged because their instruction
used different languages and was missing deep study in a single language relevant to industry.
Our introductory programming course switched to Python five years ago, and thus our students
have even less preparation and familiarity with MATLAB than they had previously, this being a
major impetus towards migrating the BME curriculum to Python. We recently reached out to a
MedTech industry executive who hires biomedical engineering graduates who estimated that it
takes 6 months for students to become proficient in a new language and having students
already trained in Python would give them a boost in comparison to students with only
MATLAB skills.

Recognizing the importance of staying abreast of these changes, our institution embarked on
an ambitious endeavor to convert significant programming exercises and projects across all
required undergraduate biomedical engineering courses from MATLAB to Python. This effort
required both retraining of faculty, as well as effort in making the conversions as seamless as

possible. This paper presents the outcomes of this collaborative effort, which involved a
network of students, faculty, and staff.

Methods:
The Python conversion efforts of the BME curriculum began the summer of 2022, as a team of
dedicated instructors met in cohorts to experiment with Python adoption and try different
platforms as possible contenders to integrate into our curriculum. As part of this effort, the
freshmen programming instructor who taught Python was brought in to consult on the best
ways to scaffold Python instruction throughout our curriculum. As a test case, a signals and
systems class was selected to be entirely converted in the summer of 2022 from MATLAB-based
exercises to Python exercises. Through discussions with faculty, Jupyter Notebooks with
embedded markdown text cells and code cells were selected as a uniform way to incorporate
Python instruction across the department. Jupyter Notebooks have been selected in a wide
variety of engineering classrooms as they combine the ability to give explanations like
textbooks with the interactivity of a software applications [6] [7]. This allows laboratories to
contain embedded text, with images, and tables to be integrated with coding boxes allowing
students to step through programming assignments. An example of such a notebook is included
in the Appendix of this paper. This first conversion exercise was performed entirely by the
instructor of record with no Python background to judge the difficulty involved in making the
planned departmental wide conversion the subsequent year. This course was selected to be a
good test case as the course included 10 significant programming exercises and one
comprehensive programming project and is largely seen as the foundational computational
class for BME students following their initial introduction to programming class taken by all
freshmen regardless of major. For this course, three of the four learning objectives contained a
significant computational component that is satisfied by computational exercises. While the
students would perform the math by hand, often the computer programming tool was brought
in to demonstrate the applications that were possible. Specifically, the three learning objectives
targeting computational exercises are reported below:

I. Formulate and solve linear differential equations representing
engineering and biological systems.
II. Master time domain and frequency domain analysis of analog and
discrete-time linear systems (convolution, Fourier transform, FFT,
Laplace transform).
III. Demonstrate ability to design signal processing systems using principles
of linear system theory.

The first version of the converted course was taught in a pilot to a smaller cohort of 9 students
in the summer of 2022 to iron out any issues that might result from the conversion efforts.
After some revision, including importing important libraries a week before they were needed in
the laboratory exercises, the modules were then rolled out to a much larger cohort of around
50 students in the fall of 2022.

Following the first major class conversion, in the fall of 2022 two undergraduate students were
hired to convert exercises from MATLAB to Python for the downstream course to be taught in
spring 2023. This allowed us to test hiring students to make the conversions for faculty, the goal
of which was to reduce overall faculty effort involved in the conversion and therefore increase
faculty buy in and willingness to accept the language change, which had been the most
significant hurdle in the past. Unlike the previous implementation, after the students
performed the conversion to Python, the course was rolled out to students at scale without
having the luxury of the smaller cohort class.

During the spring of 2023, discussions with the curriculum committee in our department
resulted in naming Python as the language adopted by our department and the policy was set
to require all required undergraduate biomedical engineering courses to use Python by the
summer of 2024. To ease the conversion efforts, a strategic plan was created for the summer of
2023 to create a comprehensive picture of how much MATLAB was embedded in the
curriculum and to connect faculty with students who would work over the summer to make the
conversions happen. A Python consultant was brought in for the summer and a team of 8
undergraduate students were hired to span the diverse classes that required conversions.
While adoption of Python was required for undergraduate courses, elective undergraduate and
graduate level courses are still free to use the language of their choice but all faculty were given
the option of support to make the Python conversion if they so chose.

During end of year course meetings conducted in May of 2023, the MATLAB content was
acquired from all BME required courses and uploaded to a box site so the scope of the work
could be determined. Students who had previously taken the required classes successfully, and
with recommendations from the faculty members teaching the course, were then hired for the
express purpose of converting all the collated MATLAB assignments, exercises, and labs into
Python assignments for each faculty member. This study was approved as IRB exempt by Duke
University Campus Institutional Review Board at a private university in the southeastern United
States.

Results:

The investment by the original faculty member to convert course material over summer 2022
by themselves was substantive and based on that experience the recommendation was made
to provide more support to faculty making the change to make it more palatable as such a
conversion would require some faculty retraining. It was the opinion of that faculty member
that had the department recommended all faculty convert their own materials it would be
unlikely to yield a successful adoption of a new programming language across the curriculum.
Since faculty buy in was the biggest obstacle to adoption, it was decided that support be
provided to ease the transition in the form of these student hires to make the conversion
efforts possible. The faculty member indicated that the conversion effort was not
insurmountable, but at the same time significant, requiring iteration and practice for mastery.

Monthly Python club meetings during this time with other faculty members adopting Python
were helpful during the conversion process.

The first iteration of the course to a small cohort was also successful at allowing one iteration to
occur before the changes affected a large group of students. The most common issues were
students not following instructions on Python installations and having package import errors.
This was addressed in subsequent classes by completing Python library installations and
importing important packages the week before the libraries were needed, allowing students
additional time to fix the issue and allow them more hands on coding during class time. In
addition, the smaller cohort helped the faculty member become more comfortable with
debugging Python code and interpreting errors, which again, requires skill and practice.

For the subsequent work over the summer of 2023, the department hired a team of
undergraduate seniors who were enthusiastic in assisting the transition to Python. The selected
students were all students who had previously taken the courses they were planning on
converting. Table 1 includes the course subject, the number of students hired, along with the
number of assignments that were converted for each class. Since the required courses are
taught by more than one faculty and assignments vary by instructor, this required conversion
for every instructor who planned to teach the required course over the following two years as
computational exercises vary by faculty.

Required Course
Topic

Number of
faculty teaching
course

Number of
students hired

Total Number
of hours
worked over
the summer

Number of
Exercises
converted

Physiology 2 1 62 4 homework
assignments

Neural
Engineering

1 2 150 8 lab assignments

Biomechanics 1 3 31.5 3 labs including
data files, 1
homework
assignment

Imaging 2 2 31.5 5 homework
assignments, 5
simulations

Signals and
Systems

2 2 148 16 simulations

In addition to the students, the python consultant was available to meet as needed with the
students and had regular check ins with the students to oversee the conversion process.
Students met with faculty to demo the work they put together.

As detailed in table 1, students were responsible for converting every aspect of the course
materials from MATLAB to Python that involved different exercises depending on the class.
Conversions included laboratory exercises where data had to be imported and therefore stored
in a Python compatible format, to homework assignments, to faculty simulations that are
performed in front of students, often with students providing inputs or various parameters. As
part of the conversion efforts, students created the document, homework, or exercise that
would be circulated to students as well as the key for faculty and TAs to use throughout the
semester. The effort needed to convert classes was variable and depended mostly on the
number and types of exercises that needed to be converted as well as the student skill level
with Python. Faculty involvement largely depended on the individual faculty member teaching
the course. Some had weekly meetings with the students and frequent discussions, and other
faculty had their TAs for the fall and spring interact with the hired students instead.

The students who participated in the conversion effort felt proud of their efforts. They
bemoaned the low hourly wage they received for their skilled labor, but also appreciated being
part of what they perceived as a change of “outdated” computational exercises. Students who
participated in this effort used this opportunity to leapfrog to others such as TAing and getting
more involved in teaching and pedagogy. One student indicated that “I think it was a unique
opportunity to take a class and then immediately be able to fix the things that I didn't like
about it.”

Discussion:
The involvement of students in the conversion process played a crucial role in ensuring the
effectiveness and relevance of the converted exercises. Crucial to the success was selecting
students who successfully took the courses they were involved in converting and were
recommended by the instructor of record. In this way students provided valuable insights
beyond mere technical execution as by participating they improved course materials, making
labs and exercises more coherent and easier to follow. By soliciting feedback from these
students, we gained valuable perspectives on the usability and efficacy of the converted
assignments, allowing for iterative improvements beyond basic conversion tasks. This approach
not only enhanced the quality of the converted exercises but also fostered a sense of
ownership and investment among the student community and they were proud to be part of
the effort. In addition, the conversion effort was valuable to the students in that they gained
real debugging and python coding skills. The amount of time needed to convert exercises
depended on difficulty as well as student skill implementing Python. As a recommendation, it
would be helpful to have students apply and demonstrate Python proficiency before being
engaged in the conversion efforts as some students performed the conversion more quickly
and with less overall effort than others as can be seen from the table indicating hours worked.
In addition, the students typically performed the conversion in isolation and another
recommendation would be for the students to collaborate on the conversion more as that too
could reduce the overall effort and improve the output result.

Some limited number of the exercises that needed to be converted used a graphical user
interface (GUI). The students taking these core BME classes do not do any GUI development

themselves, but need the ability to run this code with a GUI in Python. The conversion of these
GUI-based exercises posed a significant learning curve for both students and faculty involved in
the conversion process. Given the limited experience with GUI development in both MATLAB
and Python, substantial time and effort were dedicated to acquiring the necessary skills. Luckily,
one member of the conversion team had significant experience in Python GUI development and
could guide others and provide advice. Identifying such a person for any future conversion
teams is suggested. Overall, the learning experience inherent in tackling GUI development
contributed to student growth and skill diversification. Additionally, resources provided for
Python GUI creation facilitated the adaptation of MATLAB-based projects to Python, albeit with
some adjustments and compromises.

Standardization emerged as a key consideration in the conversion process, particularly
regarding the format and presentation of converted code. Discussions centered around the use
of Jupyter Notebooks for their interactive capabilities and the importance of maintaining
consistency across biomedical engineering classes. While decisions regarding plotting libraries,
such as matplotlib or Seaborn, were deliberated, additional standardization aspects, such as
data handling and function usage, may warrant further consideration to ensure seamless
integration of converted exercises into the curriculum.

Assistance from the Python consultant primarily focused on troubleshooting and providing
guidance on technical discrepancies between MATLAB and Python functions. Notably,
differences in data handling, such as those observed in sound file importation, highlighted the
importance of thorough examination and validation of converted code. Faculty intervention
was instrumental in identifying and resolving such discrepancies, ensuring the fidelity and
functionality of the converted exercises. Furthermore, faculty support extended to reviewing
Jupyter Notebooks for copyediting and formatting, enhancing the clarity and coherence of
instructional materials.

The biggest hurdle to overcome with this transition was overcoming faculty resistance. Faculty
are well versed in MATLAB, for some it is their only known language, and are resistance to
invest the time and energy to improve their skills in Python. While many will say that
computational skills are foundational and agnostic to languages, differences in notations,
function calls, and ways of storing data can be challenging to overcome without significant
effort. One faculty member indicated the conversion effort was neither an insurmountable
challenge nor a trivial one.

Student reception to the changes has been largely positive, and assessment is planned over the
coming years as the first cohort of students to experience the full conversion effort will
graduate in 2026. Since the new cohort of students took their primary introductory course in
Python, the incoming class of students see the Python embedded in the curriculum as a
continuation of their learning and have not noticed a significant change. Faculty feedback so far
has been positive, indicating there have been few problems with the adoption and the
transition has gone smoothly. Students involved in the conversion effort over the summer have
stayed in contact with the faculty teaching the courses and indicated their assignments have

been utilized successfully. Some faculty indicated that some of the exercises are slow and some
of the features in Python are not to their liking. That is to be expected with any change as
faculty have to learn new ways to implement their exercises and gain proficiency in Python
themselves. One surprising benefit of making the transition is that for faculty unfamiliar with
Python, it has brought them closer to their student’s perspective as both students and faculty
alike have had to embark on learning a new tool.

In summary, the collaborative effort to convert MATLAB-based exercises into Python within the
biomedical engineering curriculum benefited greatly from student involvement, faculty
support, and a standardized and methodical approach of utilizing Jupyter Notebooks. By
leveraging student feedback, addressing technical challenges, and ensuring consistency in
presentation, the conversion process yielded a more cohesive and accessible learning
experience. Moving forward, continued collaboration, refinement, and assessment will be
essential to further enhance the effectiveness and sustainability of Python integration in
biomedical engineering education.

As the conversions have taken place and many of the classes affected have been taught once
already, faculty feedback from affected conversion efforts has been strongly positive. Some
instructors notice no difference and say students and their supportive TAs are ready, willing,
and able to utilize the provided Python notebooks to perform class exercises. Some faculty
indicate some students are reluctant to use Python when they are more comfortable with
MATLAB. As the university taught computational course has recently converted to Python, it is
expected that rising upperclassmen will be more familiar with Python and that will be a short-
lived problem.

Conclusion:

This paper details a successful process for converting biomedical engineering curriculum from
MATLAB to Python that could be employed at other institutions by leveraging student
resources on campus. Python has grown in popularity and is the industry’s choice language. It is
to our students benefit to develop their Python programming skills within technical course
content and have biomedically relevant programming exercises to bring home important
concepts and help students develop their programming skills, which will only continue to grow
in importance. Getting faculty buy in can be challenging when the cost of faculty time to make
the conversion is so high. This paper outlines a process for making the conversion as easy for
faculty as possible. We began by selecting a test case course, Signals and Systems, for a
comprehensive conversion effort and a test of the methods described in this paper. Through
discussions with faculty, we opted for Jupyter Notebooks as a uniform platform for Python
integration. Following a trial run with a smaller cohort, we expanded our efforts by hiring
undergraduate students to assist with the conversion process for downstream courses. This
model proved effective in reducing faculty workload and ensuring a smoother transition to
Python with minimal disruption to students. The hiring of a Python consultant and a team of
students over the summer facilitated the systematic conversion of MATLAB exercises to Python
across seven courses, spanning over 14 faculty, ensuring consistency and alignment with

program educational objectives. Overall, our methodical approach, coupled with
interdisciplinary collaboration, has enabled us to successfully bridge the gap between
traditional classroom practices and contemporary industry demands in biomedical engineering
education.

Works Cited

[1] G. C. Fleming, "What engineering employers want: An analysis of technical and professional

skills in engineering job advertisements," Journal of Engineering Education, 2024.
[2] TIOBE, "The TIOBE index," 2024. [Online]. Available: https://www.tiobe.com/tiobe-index/.
[3] A. Gujar, "C vs Python: A Cursory Look with Industry Opinion," Internationl Journal for

Research in Applied Science & Engineering Technology, vol. 11, no. 11, 2023.
[4] S. Cass, "The 2018 top programming languages.," IEEE Spectrum, 2018.
[5] D. Ramel, "Popularity Index: Python is 2018 "Language of the Year"," [Online]. Available:

https://adtmag.com/articles/2019/01/08/ti obe-jan-2019.aspx..
[6] G.-J. J. Samuel-Felipe Baltanas, "Jupyter Notebooks in Undergraduate Mobile Robotics

Courses: Educational Tool and Case Study," Applied Sciences, pp. Vol 11, Iss. 3, 2021.
[7] C. Tang, "Computer-aided Linear Algebra Course on Jupyter-Python Notebook for

Engineering Undergraduates," Journal of Physics: Conference Series, 2021.

Appendix:

BME 303: Modern Diagnostic Imaging Systems

Spring 2022

Homework Assignment #3 Part B, 100 points

Assigned Friday, February 18th 2022
Part 2 Due: by 12:00am on Gradescope on Friday, March 4th, 2022

1. Let’s have some fun in Matlab!

(a) Build a circle in MATLAB with a diameter of 18cm (like you did in
the last problem of Homework 3A) and a µ=0.3 cm�1 using what-
ever method you like. For consistency sake make your total image
20cm wide with a step size of .01, with an 18cm diameter circle in
the middle. Using the ’sum’ command in MATLAB, create 1 pro-
jection of your simulated circle. Please note the ’sum’ command
just adds up all rows or columns so it replaces the integral with a
summation instead.

(b) In MATLAB, using the analytical solution you found in HW 3
Part A, 5b), explicitly determine one projection of the circle using
the same angle you chose previously for the same l you used in
your simulation (20 cm wide with a stepsize of .01cm). Plot your
analytical solution from 5b) on top of your simulated solution from
above. Are the answers the same? Why or why not? What would
you need to do to make them the same? Since you know they
should be the same make any adjustments necessary to your
simulated circle projection to make it match the analytical solu-
tion perfectly. Please don’t ’hard code’ your solution - i.e. if you
were to change paramters when you went to replot the analytical
solution vs the simulated solution would they still match?

(c) If you were to change your object from 20 cm wide with step size
of .01 to 40 cm wide with a step size of .001, how would you fix
your simulated solution?

10

(d) Display the sinogram for a circle, g(l, ✓) for 12 angles. Please make
this sinogram yourself (i.e. no using radon/iradon - I’ll let you use
those in a bit) You should be able to create this sinogram using
matrix math. Create a 3x1 subplot with the original circle on the
first subplot and the plot of the analytical solution on top of the
simulated solution(with appropriate legend) in the second subplot
and the sinogram for 10 angles of the circle in the third. Attach
the figure here.

(e) How many projections do you need to use to make sure your
dataset is Nyquist sampled if you wanted to reconstruct a 128x128
image?

(f) How many projections would you need to make sure your dataset
is Nyquist sampled if you wanted to reconstruct a 512x512 image?

(g) Explain why the number of projections is di↵erent from the two
examples you just calculated.

11

2. Simple Backprojection (Yes, you can do it!)

(a) Using Matlab, create a 128x128 pixel image consisting of an 20x20
pixel white square centered on a black field. This represents your
object. Display this image in grayscale.

(b) Consider that you have an array of 128 detectors. One exposure
of x-rays from the source strikes a row of 128 detectors, that are
each acquiring a line integral for your image. Using the imrotate
function, with ‘nearest’ interpolation, calculate the 128 line inte-
grals (using the ’sum’ command like you did before earlier in this
homework, fixed like you fixed it previously) for your phantom and
acquire 10 projections of your phantom using 8 equal increments
between 0 and 180 degrees (but don’t include 180 that would be
double counting the same projection). Note that imrotate doesn’t
return an image of equal size as its input, so you must crop the
edges of each rotated image so that you are only including the
central 128x128 portion of the rotated image. The size and ceil
functions will be useful here in doing this. After cropping, use
the sum function to obtain a vector of 128 line integrals, repeat
for each value of ✓. Create a 1x2 subplot and display the original
object in the first plot and all 10 projections in a sinogram for the
second. Upload this to Sakai when asked.

(c) Now reconstruct your image from the sinogram. ‘Smear’ each
vector of projections over 128 rows (each row should be identical
using matrix math), and populate a 3D array (128x128x10) with
your ‘smeared’ vectors. Then use imrotate and cropping again
rotate in the opposite direction to re-orient each smeared vector
with the original coordinate system, and populate a new 3D array.
(Hint: Use a ‘for’ loop to step through your # of angles, and
matrix algebra to smear each projection) Finally, use sum(:,:, 3)
to add all the projections together into a 128 x 128 matrix that
represents the backprojection result. Normalize your result, and
display it using the mesh and colormap gray commands. Upload
this figure to Sakai where asked. Can you see your phantom in
the backprojection result?

3. Download Corona.mat from the Sakai site, a 650x650 matrix and com-
plete the following.

12

(a) Use MATLAB’s ’radon’ function to calculate the sinogram for the
image provided in the .mat file assuming you take 179 projections
from 0 to 179 degrees. Note the radon transform uses degrees, not
radians (ironically). Plot the sinogram of your image. What does
the x and y axis of the sinogram represent?

(b) Using the iradon function (which uses filtered backprojection to
calculate the inverse Radon transform), reconstruct an image from
the sinogram. Use ’nearest’ for interpolation and use ’Hamming’
for the type of filter.

(c) Repeat using ’Ram-Lak’ and ’Cosine’ filters and view all 4 images
(Original, Hamming, Ram-Lak, and Cosine) on one figure using
subplot. Display and label all images. Display the image here.

(d) Extract a line profile through the original and the 3 reconstructed
images at the exact same position in the image and, using ’hold
on’, plot all line profiles on top of one another. Use ’legend’ to
specify which line profiles belong to which filter (and MATLAB
has plot features such as ’*’ and ’-’ that allow lines to be plotted
di↵erently even if not printed in color). Describe the e↵ect of the
di↵erent filters on the reconstructed images. Which filter did the
best job of reconstructing your image and why do you feel that
way?

(e) Recreate the sinogram at 10 degree increments (instead of 1 de-
gree) and take the inverse Radon transform using the filter of your

13

choice. Display your image below.

(f) How does reducing the number of projections a↵ect image quality?
What is the trade-o↵ associated with choosing a small number of
projections versus a large number of projections when doing a CT
scan?

(g) Suppose that the number of detectors (i.e. along l axis) is halved.
Make a new sinogram by averaging the signal coming from every
pair of adjacent detectors in the original sinogram from Problem
6. Reconstruct the image using this new sinogram, ‘nearest’ in-
terpolation, and a Hamming filter. Display the reconstructed im-
age. Comment on the di↵erence between this reconstructed image
verses the reconstructed image in (b). What is this equivalent to
in the real world?

14

(h) Display the image below.

(i) Simulate what might happen in your reconstructed image if one
detector’s scintillation crystal fell o↵ and reports no signal for all
theta. Display your reconstructed image with one detector crystal
missing and upload it below.

(j) How might this be di↵erent for di↵erent generations of CT scan-
ners?

15

(k) In class, we’ve talked about how the 0o and 180o radon trans-
forms will have the same data. Is this always true? What factors
might make the attenutation more or less depending on the way
it approaches the detector?

4. (8 points) Extra Credit! Let’s try a new problem if you are so in-
clined, combining Poission Distributions from Xray and CT to see how
it a↵ects image quality in CT.

(a) As mentioned in class, CT data takes Beer’s Law and readjusts
it, such that the radon transform you created from the previous
Corona problem was actually the intregral of µ(x) dx. We ended
up with the following equation: ln(N0

N) = µdx. The Poisson af-
fects the N and N0.Create a 923x180(the size I found the radon
transform produces for an object that is 650x650 like our Corona)
array of poisson distributed numbers with a mean of 100 that will
serve as N0 and another 923x180 array of poisson distributed num-
bers with a mean of 100 that will serve as N for each projection.
Take the second distribution (your N) and multiply by e�µdx and
round the result to the N that makes it to the detector. Be sure
to round() the result as you cannot have 1/2 an Xray making it to
the detector. For this part I got some Infinite results that were due
to the fact that at certain portions of my object no Xrays made it
through the material. To fix this I divided my Radon transform
result by 100. Then take ln(N0

N) for each projection and iradon
the result. Was a mean of 100 enough? If not increase the fluence
until you are happy with the result. Display your filtered back-
projection result below. Display the result for at least 3 di↵erent
fluences using subplot to demonstrate what happens to your CT
as your fluence increases.

16

(b) How did the fact that Xrays obey a Poisson distribution a↵ect the
result? Were there any new artifacts you saw?

17

4/1/24, 7:15 PM BME303HW3BBlankCopy

localhost:8888/lab/tree/Dropbox/Dropbox-home/python/BME303HW3BBlankCopy.ipynb 1/7

BME 303L: Modern Diagnostic Imaging
Systems

Laboratory 3 Part B

Spring 2023

Due: Friday March 10th at 8�00pm

Problem 1:

Let's have some fun in Python!

(a) Build a circle with a diameter of 20cm (like you did in problem 7b of Homework 3A) and a

µ=0.6 $cm^{−1}$ using whatever method you like. For consistency sake make your total

image 22cm wide with a step size of .01, with an 20cm diameter circle in the middle. Using

the ʼsumʼ command, create 1 projection of your simulated circle. Please note the ʼsumʼ

command just adds up all rows or columns so it replaces the integral with a summation

instead.

(b) Using the analytical solution you found in HW 3 Part A, 7b), explicitly determine one

projection of the circle using the same angle you chose previously for the same l

(distance from origin) you used in your simulation (22 cm wide with a stepsize of .01cm).

Plot your analytical solution from 7b) on top of your simulated solution from above. Are the

answers the same? Why or why not? What would you need to do to make them the same?

Since you know they should be the same make any adjustments necessary to your

simulated circle projection to make it match the analytical solution perfectly. Please donʼt

ʼhard codeʼ your solution - i.e. if you were to change paramters when you went to replot the

analytical solution vs the simulated solution would they still match? Your goal is for your

Python simulation to create $\int \mu(x)dx$, as we did in class together.

In []: import numpy as np
import matplotlib.pyplot as plt
import math

In []: #Write equation for a circle here, once equation for a circle is created
#Take the integral of the circle over one dimension (x or y will work) using th

In [1]: # d =
mu =
imsize =
dx =

4/1/24, 7:15 PM BME303HW3BBlankCopy

localhost:8888/lab/tree/Dropbox/Dropbox-home/python/BME303HW3BBlankCopy.ipynb 2/7

(c) If you were to change your object from 22 cm wide with step size of .01 to 44 cm wide

with a step size of .001, how would you fix your simulated solution?

Write your response here

(d) Display the sinogram for a circle, $g(l, θ)$ for 12 angles. Please make this sinogram

yourself using matrix math.

(e) How many projections do you need to use to make sure your dataset is Nyquist sampled

if you wanted to reconstruct a 128x128 image?

Write your response here

(f) How many projections would you need to make sure your dataset is Nyquist sampled if

you wanted to reconstruct a 512x512 image?

Write your response here

(g) Explain why the number of projections is different from the two examples you just

calculated.

Write your response here

Problem 2

#plt.imshow()

In [2]: ## Plotting Simulated and Analytical Solutions

#proj_simulated =

#proj_analytical =

#fig, ax = plt.subplots()
#ax.plot(proj_simulated)
#ax.plot(proj_analytical, linestyle = "dashed")

In [3]: ## EXAMPLE CODE:
import numpy.matlib

#sinogram =
#theta =

#fig, ax = plt.subplots()
#plt.imshow()

4/1/24, 7:15 PM BME303HW3BBlankCopy

localhost:8888/lab/tree/Dropbox/Dropbox-home/python/BME303HW3BBlankCopy.ipynb 3/7

Simple Backprojection - yes you can do it!

(a) Create a 128x128 pixel image consisting of an 20x20 pixel white square centered on a

black field. This represents your object. Display this image in grayscale.

(b) Consider that you have an array of 128 detectors. One exposure of x-rays from the

source strikes a row of 128 detectors, that are each acquiring a line integral for your image.

Using the rotate function in skimage, calculate the 128 line integrals (using the ʼsumʼ

command) for your phantom and acquire 10 projections of your phantom using 8 equal

increments between 0 and 180 degrees (but donʼt include 180 that would be double

counting the same projection). Display all 10 projections in a sinogram for the second.

(c) Now reconstruct your image from the sinogram. ‘Smearʼ each vector of projections over

128 rows (each row should be identical using matrix math), and populate a 3D array

(128x128x10) with your ‘smearedʼ vectors. Then use the rotate function again, but this time

rotate in the opposite direction to re-orient each smeared vector with the original coordinate

system, and populate a new 3D array. (Hint: Use a ‘forʼ loop to step through your # of

angles, and matrix algebra to smear each projection) Finally, use sum(axis=2) to add all

the projections together into a 128 x 128 matrix that represents the backprojection result.

Normalize your result, and display it as a 3D projection. Upload this figure to Sakai where

asked. Can you see your phantom in the backprojection result?

In [4]: #square

#fig, ax = plt.subplots()
#ax.imshow()

In [5]: ## EXAMPLE CODE:
import skimage
from skimage.transform import rotate

#sq_sinogram =

#for n in range():
 #new_pic =
 #sums =

#fig, ax = plt.subplots()
#ax.imshow()

In [6]: #backproj =
#stack_count =

#for n in range():

#final_sum =

4/1/24, 7:15 PM BME303HW3BBlankCopy

localhost:8888/lab/tree/Dropbox/Dropbox-home/python/BME303HW3BBlankCopy.ipynb 4/7

Problem 3

Download Corona.mat from the Sakai site, a 650x650 matrix and complete the

following:

(a) Use skimageʼs ʼradonʼ function to calculate the sinogram for the image provided in the

.mat file assuming you take 179 projections from 0 to 179 degrees. Note the radon

transform uses degrees, not radians (ironically). Plot the sinogram of your image. What

does the x and y axis of the sinogram represent?

Write your response here

(b) Using the iradon function (which uses filtered backprojection to calculate the inverse

Radon transform), reconstruct an image from the sinogram. Use ʼHammingʼ for the type of

filter.

(c) Repeat using ʼCosineʼ filter and view all 3 images (Original, Hamming, and Cosine) on

one figure using subplot. Display and label all images. Display the image here.

#fig = plt.figure()

In [7]: # EXAMPLE CODE
For file processing (IO = input/output):
import scipy.io
For signal processing:
from scipy import signal
For radon transform:
from skimage.transform import radon

Importing corona image data:
#data = scipy.io.loadmat('Corona.mat')

#fig = plt.figure()

##Plot Corona
#ax1 = plt.subplot(121)

##Plot Randon
#ax2 = plt.subplot(122)
#theta =
#cor_sinogram =

#fig.tight_layout()
#plt.show()

In []: #Write code here

4/1/24, 7:15 PM BME303HW3BBlankCopy

localhost:8888/lab/tree/Dropbox/Dropbox-home/python/BME303HW3BBlankCopy.ipynb 5/7

(d) Extract a line profile through the original and the 3 reconstructed images at the exact

same position in the image and plot all line profiles on top of one another. Use ʼlegendʼ to

specify which line profiles belong to which filter. Describe the effect of the different filters

on the reconstructed images. Which filter did the best job of reconstructing your image and

why do you feel that way?

Write your response here

(e) Recreate the sinogram at 10 degree increments (instead of 1 degree) and take the

inverse Radon transform using the filter of your choice. Display your image below.

(f) How does reducing the number of projections affect image quality? What is the trade-off

associated with choosing a small number of projections versus a large number of

projections when doing a CT scan?

Write your response here

(g) Suppose that the number of detectors (i.e. along l axis) is halved. Make a new sinogram

by averaging the signal coming from every pair of adjacent detectors in the original

sinogram from Problem 6. Reconstruct the image using this new sinogram, ‘nearestʼ

interpolation, and a Hamming filter. Display the reconstructed image. Comment on the

difference between this reconstructed image verses the reconstructed image in (b). What is

this equivalent to in the real world?

In [8]: #reconstruction_ham =

#reconstruction_cos =

#fig = plt.figure()

In [9]: #LineProfile_Original =
#LineProfile_Hamming =
#LineProfile_Cosine =

#fig, ax = plt.subplots()

In [10]: #fig = plt.figure()

#ax1 = plt.subplot(121)
#theta =
#cor_sinogram_2 =
#dx, dy =

#ax1.imshow()

#ax2 = plt.subplot(122)
#reconstruction_cos_2 =

#ax2.imshow()

#plt.show()

4/1/24, 7:15 PM BME303HW3BBlankCopy

localhost:8888/lab/tree/Dropbox/Dropbox-home/python/BME303HW3BBlankCopy.ipynb 6/7

Write your response here

(h) Display the image below.

(i) Simulate what might happen in your reconstructed image if one detectorʼs scintillation

crystal fell off and reports no signal for all theta. Display your reconstructed image with one

detector crystal missing and upload it below.

(j) How might this be different for different generations of CT scanners?

Write your response here

(k) In class, weʼve talked about how the 0o and 180o radon transforms will have the same

data. Is this always true? What factors might make the attenutation more or less depending

on the way it approaches the detector?

Write your response here

Problem 4

�. Import an image of an interesting object (black/dark background and signal intensity at

center) and find the radon transform of it and display it from 0^o to either 180^o

or 360^o degrees, depending on what you prefer. You are welcome to find

something off the internet, take a picture of your phantom you made on a dark

background, something you have in your room, whatever you like. The only rule is it can

only have significant signal intensity in the middle of the image (like a CT scanner where

the patient is placed in the middle of the scanner). We'll display our favorites to class as

extra credit!

In []: #Write code here to simulate two detectors being averaged into 1

In []:

In [11]: #damaged_sinogram =

#theta =
#reconstruction_damaged =

#fig = plt.figure()

#ax2.imshow()

#plt.show()

In [1]: #Import Image
#Take Radon Transform as you did before
#Display it for all

4/1/24, 7:15 PM BME303HW3BBlankCopy

localhost:8888/lab/tree/Dropbox/Dropbox-home/python/BME303HW3BBlankCopy.ipynb 7/7

�. Using whatever method you like, perform the filtered backprojection and display both

the sinogram and the reconstructed image in a 1x2 subplot below.

In []: #Your code here

