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Abstract 

Computerized Adaptive Testing (CAT) is a modern approach to educational technology 

that can transform classroom assessment and self-assessment strategies. CAT selects questions 

based on ability, item difficulty, and item discrimination at the moment which significantly reduces 

testing time. So, by considering measurement error, CAT ensures assessment accuracy, revealing 

a student's true ability level. The design of CAT within the Learning About STEM Student 

Outcomes (LASSO) platform adheres to a comprehensive spectrum of skills and attributes outlined 

by educators nationwide. CAT within the LASSO adeptly tailors question selection for each class, 

furnishing students with specialized reports grounded in distinct content. LASSO serves as a 

centralized platform enabling classes nationwide to access a diverse array of assessment contents 

and questions aligning with established educational standards, promoting frequent assessment. The 

amalgamation of CAT with cognitive diagnosis models within the LASSO platform empowers 

educators to gauge student mastery levels and confidently navigate the subsequent stages of the 

teaching process. Therefore, teachers can assess the effectiveness of their teaching methodologies, 

a vital aspect of their self-assessment. 

 

Introduction 

 

The emergence of artificial intelligence (AI) is driving a paradigm shift across education, 

particularly within STEM fields such as Physics and Engineering. The emergence of generative 

AI, large language models, and machine learning provides new and more powerful mechanisms 

for individualized and personalized learning. However, to realize the promise of AI in providing 

personalized learning, we must rethink assessment within introductory STEM courses by moving 

from static to adaptive assessments. Traditional assessment methods, while foundational, are often 

rigid and uniform. The static nature of these traditional exams limits their ability to conduct 

individualized assessments, failing to adequately assess skill and content mastery for diverse 

learners of all ability levels, leading to potential misrepresentations of the true abilities of students 

[1,2]. Furthermore, the static nature of these assessments can impact student motivation that stem 

from assessment that fail to adapt to individual student performance frustrating low-performing 

students while boring high-performing students [3]. In this context, Computerized Adaptive 

Testing (CAT) emerges as a transformative solution. Grounded in Item Response Theory (IRT), 

CAT dynamically adjusts question difficulty based on examinee responses. The ability to identify 

questions aligned with an individual’s proficiency level allows for faster and more precise 

proficiency estimates, while providing more accurate measurement of students’ conceptual 

understanding and skill mastery [4-7]. This ability to adaptively assess individual students can 
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provide more accurate and detailed information to tailor individualized interventions following 

assessment, while also improving test security [8]. 

 

This paper describes the development of the Mechanics Cognitive Diagnostic (MCD), a 

cognitive diagnostic computerized adaptive testing (CD-CAT) program that is hosted on the web-

based Learning About STEM Student Outcomes (LASSO) platform [9]. This ongoing project aims 

to harness the potential of CAT on a national scale, creating an accessible and reliable assessment 

system for assessing conceptual STEM understanding for colleges and universities that aligns with 

STEM curriculum and uses Artificial Intelligence (AI) based assessment methods.  

 

Table 1: Operational Definition of Terms 

Term Operational Definition Example(s) 

Proficiency The proficiency of a person reflects the probability 

of answering test items correctly. The higher the 

individual’s proficiency, the higher the probability 

of a correct response. Different fields refer to 

proficiency as ability, latent trait, theta. 

• Percentage correct on 

static exams. 

• Theta estimate on CATs. 

Content 

Area 

Sub-divisions of course material that reflect 

distinct clusters or groupings of facts, concepts, 

theories and principles as defined by content 

experts. 

• Conservation of Energy 

• 2D Kinematics 

Concept An idea that reflects the relationship between 

objects, fields, and forces that can explain natural 

processes or observations. Student conceptual 

understanding can be aligned with canonical 

explanations or can represent an alternative 

explanation (often referred to as misconceptions). 

• An object in a state of 

motion remains in that 

state of motion unless 

acted upon by an outside 

force. 

Skill A procedural or conceptual operation that can be 

applied across content to answer assessment 

questions. Skills are assumed to be latent attributes 

that students need to master to correctly answer 

questions. 

• Construct Force Diagrams 

• Interpret Graphs 

• Solve Trig Equations 

• Solve Questions Using 

Vectors 

 

Literature Review 

 

Traditional Assessments. Traditional assessments are static in question order, question 

difficulty, and exam length. This one-size-fits-all approach assumes that every question can 

equitably assess a wide diversity of student proficiencies. By providing static question difficulty, 

traditional assessments can potentially neglect student diversity in proficiency, potentially leading 

to misrepresentations of the students’ actual skill mastery or conceptual understanding [10-14]. 

Complicating matters is that question difficulty is determined by a complex interaction between 

the content area, concepts, and skills being assessed. Traditional assessments typically do not 

distinguish between these levels, inadvertently linking skill mastery with concept and content 

difficulty, and non-content related skills such as reading level or familiarity with the question 

context. Traditional assessments that merely report a percentage correct also provide inefficient 

feedback for students by not providing students with information about concept or skill mastery 
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that would help direct their studying. Furthermore, standardized tests may inadvertently perpetuate 

biases, favoring certain demographic groups and contributing to disparities in educational 

outcomes based on factors such as race, class, and gender [15]. Finally, fixed question difficulty 

can create challenges for students who find tests excessively difficult or overly simplistic, which 

can impact motivation and course persistence. While static assessments have a long history within 

STEM education and can be designed well, most instructors have little or no training in 

psychometrics or writing assessment questions [16-19].  

 

Because traditional assessments are static where all students receive the same questions, 

issues of academic integrity, test security, and equity remain a large problem. The ability for 

students to share test answers or post test questions to discussion boards makes reusing tests 

between sections or across years difficult, especially with the rise in computer-based and online 

tests [20-22]. While cheating concerns have been addressed by developing multiple forms or 

randomizing question order [23,24], these methods require extensive testing with large numbers 

of students to ensure equity of these parallel questions and large databases of questions in order to 

generate multiple forms of exams. Recently, randomized testing has emerged as a hybrid between 

traditional exams and CAT [25,26]. The randomized question selection allows students to leverage 

the testing effect by retaking exams while also increasing test security [27,28]. However, the 

extensive time and expense for developing the large test databases needed for equitable 

randomized exams are the same as for parallel forms above. In addition, randomized exams still 

typically only report percentage correct and identify which questions student get correct or 

incorrect, which leaves students to try to figure out what skills or concepts they need to study. 

 

In contrast to traditional assessments, CAT dynamically adjusts question difficulty in real 

time based on examinees' responses, yielding benefits such as heightened assessment accuracy, 

testing efficiency, and improved test security [8]. By identifying student proficiency and 

adaptively selecting questions close to the student’s proficiency, CATs continually deliver 

questions within the student’s zone of proximal development [29,30]. The optimal question 

selection allows for cognitive diagnostic models (detailed below) to disentangle the various 

contribution to question difficulty, and therefore more accurately measure skill mastery. 

Additional models can also be added to determine the number of questions that assesses each 

concept and each content area. Finally, while extensive student data and large question banks are 

still needed to develop CATs, we have developed CATs that are available online for all courses 

and institutions, which eliminates the need for individual instructors or institutions to create their 

own CATs. 

 

Computer Adaptive Testing. CAT assessments typically begin by estimating that a 

student is at an average ability level. The algorithm selects an item most appropriate for the 

estimated ability level. Once the student responds to the item, the ability level is adjusted up or 

down based on the correctness of the student answer. The algorithm then selects a new item that 

that is most appropriate for the new ability estimate. As the CAT progresses the student ability 

estimate becomes more stable, and the uncertainty of the ability estimate decreases (Figure 1). 
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Fig 1. Example of dynamic ability estimation in CAT. Note both the stabilization of the ability 

estimate and the reduction of uncertainty as indicated by the error bars. 

 

The process for building a CAT platform begins with the calibration of item parameters 

and the estimation of person parameters, following the principles outlined in various Item 

Response Theory (IRT) models [31,32]. These models involve one to four parameters that describe 

characteristics of logistic curves. For instance, three-parameter (3PL) IRT models describe the 

logistic curve using three item parameters, 'a', 'b', and 'c'. The 'a' parameter represents item 

discrimination, the 'b' parameter represents item difficulty, and the 'c' parameter represents the 

guessing parameter, along with person parameters represented by 'θ' for ability1 as a latent trait.  

 

Parameters for each item are initially calibrated through pretesting where large numbers of 

students answer each item. This allows the item parameter to be calculated independent of 

estimation of individual ability levels. Once the characteristics of each item are calculated, the 

ability levels of test takers can be estimated from their response patterns, usually through 

maximum likelihood estimation. In other words, the simplest strategy for developing and 

delivering CAT utilizes an existing item bank that has been given to a large and diverse sample of 

students. This allows the existing items to be calibrated with IRT models to provide the item 

difficulty, item discrimination level, and item guessing [1, 32-35].  

 

Once items have been calibrated, a method for selecting items for individual examinees is 

needed. Various item selection methods, including the fisher information criterion and others, 

facilitate optimal item selection at each step, aligning the difficulty level with the current ability 

estimate. In other words, the algorithm tries to find any item from the item bank that has the peak 

of the information, and this maximization happens in a specific difficulty value which is equal to 

very close to the ability of the students. This method tries to make the estimated ability close to 

the item difficulty [3,36,37].  

 

CAT Administration. CAT stands at the forefront of educational assessment, offering a 

nuanced approach that ensures each student is appropriately challenged, thereby providing a more 

 
1 We use the term ability consistent with its use in psychometrics to represent the latent construct 

estimated by CAT, however, we feel that the term “proficiency” better reflect our position that 

students’ physics knowledge and problem-solving capabilities can evolve over time. 
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accurate reflection of their knowledge and abilities [38]. CAT integrates a variety of algorithms 

and strategies, each designed to address specific concerns such as mastery level or overall ability 

level. This multifaceted approach allows CAT to provide diverse types of immediate feedback, 

fostering timely reflection and learning. This feedback, crucial for reinforcing conceptual 

understanding, facilitates the early identification of misconceptions and can be tailored to both 

item-level performance and overall student ability. The strategies employed in CAT predominantly 

draw from Item Response Theory (IRT) and are further enhanced by Cognitive Diagnostic Models 

(CDMs), which focus on assessing students' mastery levels. These comprehensive strategies in 

CAT effectively manage exam duration concerns, reducing the number of questions required for 

an accurate assessment of a student [38,39]. Additionally, all questions used with the CAT for this 

project are assessed for question fairness by calculating differential item functioning between 

various genders and ethnicities. 

 

Cognitive Diagnostic Models. CDMs offer a detailed view that complements IRT in 

educational evaluations, providing a nuanced and precise understanding of individual capabilities 

and skill mastery [40,41]. While IRT targets latent traits to estimate student proficiency, CDMs 

use latent classes to classify students by their mastery of underlying skills [40,42,43]. Skills cut 

across content areas and multiple skills may be needed to correctly solve an item. CDMs are 

classification models that aim to classify a student’s skill mastery for predetermined skills 

identified by content experts (See Table 1 for definitions). The skills require to correctly answer a 

question are coded dichotomously within matrix called the Q-matrix, which is used by DCMs to 

estimate mastery. While there are many CDMs, the simplest is the Deterministic Inputs, Noisy 

"And" gate (DINA) model. DINA is a crucial cognitive diagnostic tool to effectively estimate skill 

mastery, such as proficiency in applying vectors in physics, providing a detailed understanding of 

a learner's specific competencies [44]. This model assumes that correctly answering an item in the 

DINA model hinges on satisfying two conditions. First, examinees must possess all the requisite 

skills and avoid slipping. Second, examinee that lack any of the necessary skills must correctly 

guess to achieve a correct answer [43,45].  

 

Learning About STEM Student Outcomes (LASSO) Platform. At the school level, 

items designed by teachers may face challenges in accuracy, reliability, and calibration due to 

limited response data. Our project, aiming to optimize the benefits of CAT for schools, addresses 

these challenges by utilizing the data from the LASSO online platform. LASSO is an online tool 

designed to assist instructors in evaluating their courses [9,46,47]. The platform conducts online 

assessments for students, allowing for more efficient use of class time, and it automatically 

analyzes the collected data. LASSO, aligned with national STEM curriculum and offers a rich test 

bank of traditional concept inventories (Table 2). Using existing conceptual inventories available 

on LASSO and the large national database of student responses to these questions. LASSO has 

developed the MCD, a CD-CAT developed to assess student proficiency, conceptual mastery, and 

skill mastery of physics students enrolled in introductory mechanics courses.  

 

Results 

 

To facilitate the calibration of items for potential inclusion in our item bank, we conducted 

a preliminary analysis of student responses using data from the LASSO platform. This analysis 

was carried out before implementing a CAT based on the Item Response Theory (IRT) Three-
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Parameter Logistic (3PL) model. In Table 3, we present a sample of parameters and characteristics 

of the items obtained after fitting the IRT 3PL model. These items exhibit reasonable values for 

the difficulty parameter (b), falling within the range of -2 to 2, and the discrimination parameter 

(a), which ranges from 0 to 2. Additionally, the guessing parameter (c), which is also within 

reasonable limits. Furthermore, the Root Mean Square Error of Approximation (RMSEA) for each 

item, all below 0.1, signifies that the IRT model demonstrates an acceptable fit, allowing us to 

retain the majority of the items. 

 

Table 3 reveals the items that remain in the Force Concept Inventory (FCI) and the Force 

and Motion Conceptual Evaluation (FCME) after applying the 3PL IRT parameters as filters. 

These assessments encompass a spectrum of skills pertinent to physics education, where each skill 

is precisely defined as a distinct component of knowledge or expected student behavior [33,34,38]. 

 

Table 2: Sample of Available Instruments on LASSO 

Physics Engineering Math 
Psychological 

Inventories 

• Force Concept 

Inventory (FCI) 

• Electromagnetic 

Concepts Inventory 

- Fields (EMCIF) 

• Calculus 1 

Concept 

Inventory (C1CI) 

• Dweck Mindset 

Instrument (DMI) 

• Force and Motion 

Conceptual 

Inventory (FCME) 

• Electromagnetic 

Concepts Inventory 

- Fields & Waves 

(EMCIFW) 

• Calculus 2 

Concept 

Inventory (C2CI) 

• Metacognitive 

Awareness Inventory 

(MAI)  

• Energy and 

Momentum 

Conceptual Survey 

(EMCS) 

• Fluid Mechanics 

Concept Inventory 

(FMCI) 

• Calculus Concept 

Assessment 

(CCA) 

• The Perceived Group 

Inclusion Scale 

(PGIS) 

• Colorado Learning 

Attitudes about 

Science Survey 

(CLASS) 

• Heat Transfer 

Concepts Inventory 

(HTCI) 

• Calculus Concept 

Inventory (CCI) 

• Revised Implicit 

Theories of 

Intelligence (Self-

Theory) Scale 

(RITIS) 

• Brief Electricity and 

Magnetism 

Assessment 

(BEMA) 

• Thermodynamics 

Concept Inventory 

(TCI) 

• Test of 

Understanding of 

Vectors (TUV) 

 

 

The Computerized Adaptive Testing (CAT) for each student's report involves evaluating 

their proficiency level and mastery of various predefined skills, relying on both IRT and Cognitive 

Diagnostic Modeling (CDM). Therefore, our task extends beyond item preparation and IRT 

analysis to also include item preparation for the CDM DINA model. To achieve this, we convened 

instructors and experts in physics education to design the Q-matrix, which represents the binary 

relationship between items and skills necessary to execute the DINA model. Table 4 outlines the 

Q-matrix for the FCI and FCME items. 
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Table 3. Sample results of the IRT model of sample questions from FCI and FCME 

Item 
Estimated Item Parameters Item Fit 

a b c RMSEA.S_X2 p.S_X2 

FMCE 1 1.475 -0.73 0.453 0.009 0.001 

FMCE 2 2.238 0.456 0.356 0.009 0.003 

FMCE 3 1.578 -0.225 0.182 0 0.839 

FMCE 47 1.256 0.215 0.201 0.009 0.214 

FCI 1 1.475 -0.73 0.453 0.009 0.001 

FCI 2 2.238 0.456 0.356 0.009 0.003 

FCI 3 1.578 -0.225 0.182 0 0.839 

FCI 30 1.625 0.332 0.253 0.009 0.224 

 

These skills are aligned with educational standards, learning objectives, or curriculum 

goals, and they aim to encompass the diverse array of abilities required for mastery within the 

educational context. This demonstrates how the skills associated with each item were meticulously 

defined, ensuring that each skill is grounded in at least one foundational skill [48-49]. 

 

Table 4. Q matrix for selected items on the FCI and FCME. 

Item 
Apply 

Vectors 

Select Appropriate 

Equations 

Algebraic 

Manipulation 

Interpret 

Graphs 

FCI_1 1 1 0 1 

FCI_2 1 1 0 1 

FCI_3 1 1 1 0 

FCI_4 0 1 0 0 

FCI_5 1 0 0 0 

FCI_6 0 1 0 0 

FCI_30 0 1 1 0 

     

FMCE_1 1 1 1 0 

FMCE_2 1 1 1 0 

FMCE_3 1 1 0 0 

FMCE_4 0 1 1 1 

FMCE_5 1 1 0 0 

FMCE_6 0 1 0 0 

FMCE_47 0 1 1 0 

 

While we did not employ the CDM DINA model for CAT item selection, we will provide 

a report indicating mastery and non-mastery. As we developed the CDM DINA model after the 

IRT 3PL model, we analyzed the remaining FCI and FCME items using the CDM DINA. In Table 

5, we present the parameters specific to the CDM DINA model, including the Slip and guessing 

parameters. Notably, the guessing parameters, predominantly falling below 0.6, are deemed 

reasonable. The overall model fit, as assessed by RMSEA2 (which relies on the M2 test rather than 
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the Chi2 test), indicates that the model is well-suited to capturing the mastery status based on the 

existing data, as well as for data collected after the CAT administration [44]. 

 

In the CAT system within the LASSO framework, the process initiates with the 

administration of questions of medium difficulty. This methodology is predicated on the 

assumption that at the commencement of the assessment, all examinees possess a uniform ability 

level and a moderate level (mostly ϴ = 0.5). Such an initial strategy is instrumental in fostering 

fairness and equitability within the realm of educational assessments [44]. 

 

Upon the examinee's response to an initial question, the CAT system engages in a prompt 

evaluation of the response's accuracy. This step involves updating the ability level—a critical 

person-level parameter—predicated upon the estimation of likelihood. This immediate assessment 

is integral to the system's next step - adjusting the difficulty level of forthcoming questions. After 

this, by the estimated ability, model by using the Fisher information and minimize the differentiate 

 

Table 5. The CDM DINA model parameters for selected items on the FCI and FCME. 

Item guessing slip  

FCI_1 0.7342 0.0449 RMSEA2 

FCI_2 0.4291 0.1921 0.057 

FCI_3 0.4612 0.0094 AIC 

FCI_4 0.4848 0.071 517766.1 

FCI_5 0.2132 0.2367 BIC 

FCI_6 0.7059 0.0357 518097.1 

FMCE_1 0.2525 0.0998 RMSEA2 

FMCE_2 0.1336 0.179 0.078 

FMCE_3 0.2501 0.1863 AIC 

FMCE_4 0.2197 0.1356 281387.1 

FMCE_5 0.2793 0.1736 BIC 

FMCE_6 0.0713 0.6805 282243.1 

 

of information matrix and item difficulty. Optimal selection occurs when an item is identified 

whose difficulty closely approximates the examinee's estimated ability from the preceding item. 

The reason is that Fisher's information becomes maximum around the point that ability (theta) is 

equal to the difficulty. However, a predicted issue here is to select the items from a full item bank 

regardless of the item content. So, in this step, our algorithm tries to check the minimum number 

of items for each content and if this requirement is met, the algorithm will move on to select from 

other contents. To address this, the algorithm incorporates a mechanism to ensure a minimum 

representation of each content category, transitioning to alternate content areas once this criterion 

is satisfied.  This approach emphasizes the importance of adaptively choosing items that are most 

informative about the examinee's current ability level [44,50,51]. 
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Figure 2. Flowchart of CD-CAT in LASSO  

 
This adaptive process is iterative and dynamic, significantly controlling the precision of 

the assessment. The continuation of this process is governed by predefined termination criteria, 

which may include reaching a specified number of questions, exhausting the maximum allotted 

testing duration, or arriving at a conclusion when the algorithm ascertains that the estimate of the 

examinee's ability has attained a sufficient level of precision. At the culmination of the CAT, the 

system generates a final estimate of the examinee's ability. In line with the objective of CD-CAT 

to ascertain students’ skill mastery, post-CAT responses are analyzed through the CDM DINA 

model to evaluate mastery and non-mastery statuses. To illustrate the operational efficacy and 

mechanics of the CD-CAT system, Figure 1 illustrates the proficiency estimation over the first 18 

questions of a theoretical student taking the MCD. Figure 2 shows the CD-CAT process in LASSO.  

 

Figure 3. Example of a potential student report from the MCD. 

 

https://miro.com/app/board/uXjVNzzQccA=/


10 
 

Discussion  

 

The deployment of the MCD using a CD-CAT framework and delivered on the LASSO 

platform marks a significant evolution in educational assessments. CAT's ability to adjust question 

difficulty in real-time to individual responses enhances both the accuracy and efficiency of 

evaluations, presenting a promising advancement [1,4,52,53]. Yet, integrating CAT across diverse 

educational landscapes, particularly in subjects requiring deep conceptual understanding, presents 

several challenges. These include maintaining the question bank's integrity, ensuring adaptive 

algorithms' accuracy, and aligning evaluations with curricular standards [1,14]. This shift 

necessitates a reevaluation of teaching strategies to complement CAT's sophisticated assessment 

capabilities effectively. 

 

Efforts to broaden CAT's application aim to transform traditional assessment practices, 

offering a tailored evaluation of student abilities. Preliminary results from CAT implementations 

have been promising, indicating enhanced student learning outcomes. Recognizing these 

challenges, the project focuses on large-scale CAT deployment and content balance, aligning with 

current educational research [1,4,53], thereby enriching our understanding of CAT's impact across 

different subjects. 

 

While the MCD has been designed and implemented within LASSO and the preliminary 

analyses look very promising, future work is critical for documenting the efficacy and educational 

impact of this CD-CAT. We are currently engaging in end user testing to examine how best to 

deliver information about student proficiency, and concept, content, and skill mastery for both 

individual students and whole classes. Figure 3 presents an example individual student report 

showing both proficiency and concept mastery. Skill level mastery could similarly be displayed 

using bars. Future directions for the MCD and other CD-CATs that will be hosted on LASSO 

include collecting and analyzing feedback from both students and instructors to examine the 

impact on student outcomes. In addition, in depth qualitative studies will be needed to examine 

how instructors can most effectively use the information from the CD-CATs to target interventions 

to student. This feedback is crucial for refining CAT to meet user needs and improve learning 

experiences.  

 

Because this platform is widely available for a variety of educational contexts (e.g., 

undergraduate courses for majors and non-majors, or high school courses) and across many 

institution types (e.g., HBCUs, HSIs, two-year and four-year institutions), future research will 

examine the impact of individualized feedback on diverse learners. In addition, future research in 

customizing potential supplemental instruction that is matched to mastery profiles is essential for 

large scale implementation. Expanding CD-CAT use across the LASSO platform also requires 

CD-CAT development for additional subjects (e.g., Chemistry or Math) and for additional grade 

levels. Future research and development is needed to encompass these subjects and test the 

versatility and effectiveness of CD-CAT across various educational settings.  
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