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Investigating Cognitive Fatigue as a Factor in Performance Reduction on 

Assessments 
Abstract 

Equity in engineering education hinges on the ability to fairly evaluate students. An 

overlooked factor in assessment design and administration is cognitive fatigue, which is marked 

by decreasing performance during prolonged cognitive tasks. Prior research has found evidence 

for cognitive fatigue for exams given at different times of the day and even within relatively short 

exams. The impact of cognitive fatigue depends on individual traits such as interest, motivation, 

and neurotypicality. In addition, how instructors arrange questions on exams, such as how many 

questions are used and where the most challenging questions are located on exams can affect how 

cognitive fatigue impacts students. Understanding cognitive fatigue is crucial for all assessments, 

especially as AI-driven adaptive assessments become commonplace in assessment. Algorithms 

such as item response theory, machine learning, and other advanced algorithms use features like 

item difficulty, discrimination, and response time to evaluate student performance. However, 

differing question orders in adaptive assessment algorithms may lead to inaccurate assessments 

for many students. This study explores cognitive fatigue in this context. We then examine the 

impact of cognitive fatigue on algorithms used within adaptive testing. The results reveal that 

considering cognitive fatigue impacts fitting item response theory algorithms. Machine learning 

demonstrates promise for detecting and adjusting for cognitive fatigue on assessments, thereby 

mitigating the impact of cognitive fatigue on student performance.  

Keywords: cognitive fatigue; item response theory; random forest models; entropy; 

computer adaptive testing; artificial intelligence 

Introduction 

Effective and impactful education is reliant on accurate and equitable assessment of 

learning and proficiency. Large-scale and local assessments are used for determining admission 

into programs, for course placement, for determining which students have mastered course 

learning outcomes, for reinforcing learning and providing feedback, for informing pedagogy and 

interventions, and for developing self-regulated learning skills [1], [2], [3], [4].  

Cognitive fatigue (CF) is a well-documented phenomenon characterized by diminished 

performance throughout the day, over the course of prolonged cognitive tasks, and even within the 

first few questions on single assessments [5], [6], [7], [8]. This effect is especially apparent for 

protracted assessments requiring advanced cognitive abilities to answer questions at the end of 

assessments. CF is a state of perceived exhaustion that can affect cognitive functioning and result 

in diminished performance and mental acuity [9]. CF manifests as an inability to sustain optimal 

cognitive performance during prolonged mental effort, leading to decreased function and increased 

performance variability [10]. This aligns with exhaustion as a long-term consequence of intense 

cognitive strain from extended exposure to challenging tasks, like tackling difficult questions [11].  

Observed performance declines within large-scale and classroom assessments provide evidence to 

support the importance of examining concept of CF. CF among students is a multifaceted issue 

influenced by personal and environmental factors such as diminished motivation, effort, 

engagement [12], [13], [14], time constraints, diminished working memory capacity, and the 

ability to filter out noise and distractions that can disrupt concentration and [9], [15], [16]. Given 

the evidence that CF can have detrimental effects on students' performance, there is a need for a 

comprehensive understanding of the magnitude of CF on assessment to ensure fair outcomes. Itis 

also essential to consider the potential for differential impacts of CF on diverse students, 

particularly neurodiverse students such as those with attention deficit disorders.  



 
 

In addition to large-scale and classroom assessments, educational researchers use 

assessments to examine student learning, motivation, identity, beliefs, and other latent traits. Since 

these traits cannot be examined directly, researchers typically use surveys, questionnaires or other 

measures to measure these latent traits. Given the focus on latent traits, models based in Item-

Response Theory (IRT) are often utilized to model relationships between latent traits and 

performance on these measures. However, within IRT models the impact of CF has been largely 

overlooked, despite potential impacts to item parameters estimated within IRT models. Therefore, 

it is critical to examine the impact of CF on assessment performance, and the potential role that 

machine learning or artificial intelligence might play in selecting relevant features to measure or 

explain CF and understand CF’s impact on measurement outcomes. 

This study aims to enhance our understanding of CF on assessment, particularly within IRT 

models, and the implications for the measurement of cognitive function in the context of 

assessments. The objective of the study is to establish CF as a valid concept within educational 

assessment theory and to develop a model for it. This modeling is essential for researchers to 

consider performance reduction as a significant parameter in assessment models, particularly about 

the duration of assessments and the effects of item order. This study addresses two research 

questions:   

 

1) What impact does CF have on IRT model parameter estimation and model fit? 

2) To what extent can machine learning simulate CF and assess the impact of CF on 

exam performance. 

 

Cognitive Fatigue 

The exploration of cognitive fatigue (CF) within authentic educational settings has been a 

dynamic field of study, enriched by a diversity of findings and perspectives  [12], [13], [14], [17]. 

Research in this area has provided a broad spectrum of insights, from studies indicating potential 

performance declines associated with increased task length [9], to those uncovering no significant 

effects [9], to those uncovering no significant effects [18], or even instances of facilitated 

performance[19]. Such variability in outcomes underscores the complexity of CF's impact, 

possibly reflecting the multifaceted nature of educational environments, research designs, and 

methods of inducing CF. This study aims to build on the foundation laid by previous research, 

offering new insights into the nuances of CF's effects in educational settings and its implications 

for both theory and practice. 

The variability of results from studies of CF can be partially attributed to differences in 

research paradigms and how CF is induced. In the first paradigm, CF is induced through the 

repetition of different tasks. The impact of CF is then measured by comparing performance on the 

first task to later tasks. For example, Ackerman and Kanfer [12] examined the effects of CF by 

comparing final scores on the SAT for groups who took the exam either three, four, or five times. 

They found that longer testing sessions resulted in increased feelings of fatigue, but no difference 

in performance. Instead, these studies find that feelings of fatigue are related to students’ mastery 

goals, desire to learn, confidence, and anxiety. Studies employing this paradigm tend to conclude 

that any negative impact of CF is moderated by increased concentration and effort from students 

[12], [14], [19] along with practice, warm-up, and testing effects [20], [21]. From these studies, 

one might assume that CF has little impact on performance in authentic settings. However, other 

studies using this paradigm have found decreased performance on later exams (but not earlier 

exams) when multiple exams are scheduled close in time to each other [22], [23]. Overall, within 



 
 

this paradigm, the impact of CF on performance is unclear due to confounds such as practice and 

testing effects or the availability of study time for later exams [24].  

In assessment we are typically concerned with the impact of CF across individual exams. 

As such, the second paradigm examines CF by engaging participants in prolonged tasks where 

target items have been randomly assigned in different orders. The impact of CF is then measured 

by comparing performance on the same items across different item orders. For example, Reyes [9] 

analyzed college admission data for 1.9 million Brazilian high school students who took a high-

stakes test consisting of 180 items across four subjects. The results indicated a decrease in 

performance as a function of item order, with a decline of 5-7% in performance throughout the 

duration of the exam. Importantly, Reyes found decreases in performance of similar magnitude 

across subjects and question order, even within the first 10 items of the exam. Similar findings 

were found by Balart [16] who found a 9-11% decline in performance across a 25-item exam. The 

decline in performance due to CF has been found on authentic exams [16], [17], on psychological 

measures [7], [25], [26], and even on measures of physical performance [27]. Further, these 

performance declines appear to be greater among male participants and those with lower academic 

performance [28]. In addition, current research indicates that CF impacts individuals differently 

based on psychological factors, such as anxiety or mood states [29], motivational factors, such as 

intrinsic motivation or goal orientation [30], attentional processes [12], or socioeconomic 

conditions [13].  

Studies employing this second paradigm seem to provide strong evidence that student 

performance can be impacted within individual exams. This impact can be mediated to some extent 

by engaging motivational resources, however the negative impact of CF is more likely to manifest 

as the number of items completed increases due to ego-depletion, increased physical fatigue, and 

decreased brain activity [25], [30], [31]. Because one can reasonably expect performance to change 

across an exam, it is important to examine how changes in performance might impact assessments 

within an IRT framework. 

 

Mechanisms for Cognitive Fatigue 

To differentiate the effects of CF from measurements of cognition, a causal mechanism is 

needed to explain how CF impacts performance on assessments. Information Processing Theory 

and Constructivism provide insights into how CF impacts cognitive processes [32], [33]. While 

these learning theories represent two distinct educational visions, both theories underscore the 

issue of cognitive fatigue and offer crucial perspectives for understanding how CF impact 

cognition within educational settings [32], [33]. 

 Information Processing Theory likens cognition in the mind to serial order memory 

processing in computers. Within this paradigm, a unidirectional processing mechanism 

sequentially processes information in correspondence with its receipt order. This mechanism filters 

perceptual information, which is processed in working memory into abstract symbols, then 

encoded into long-term memory. When engaged in cognitive tasks, individuals retrieve the 

encoded information from long-term memory and manipulate it in working memory before 

reencoding [32], [33], [34]. Notably, this theory implies that the entropy of responses may exhibit 

an escalating trend concomitant with the progression of the item sequence [35], [36]. In other 

words, CF reduces the resources available to process information (i.e., reduces working memory 

capacity) and to encode or retrieve information from long-term memory. Prolonged cognitive tasks 

thereby reduce the efficiency and capacity of the cognitive system [37], [38]. In this view, CF 

stems from the demands of memorizing and recalling information, resulting in cognitive overload. 



 
 

Constructivism builds on the biological mechanisms of Information Processing and situates 

the individual within a social context and recognizes the individual’s agency. In other words, 

constructivism reveals that individuals are active agents in constructing knowledge based on prior 

experiences and environmental interactions [32], [33], [34]. Within this paradigm, motivation, 

interest, and value are important in determining how an individual responds to feelings of CF [39], 

[40]. In other words, CF begins as an affective state. Once an individual begins to feel fatigued, 

they can allocate resources to compensate for reduced cognitive efficiency. However, the 

individual’s willingness to allocate these extra resources depends on the social context, the 

motivation of the individual to perform well, and the belief that the extra effort will be worth the 

increased affective response. In this view, CF may have greater impact for lower-performing 

students, marginalized students, or neurodivergent students, and on lower-stakes assessments (e.g., 

research surveys that do not impact course grades) [12], [28].  

 

Item Response Theory and Cognitive Fatigue  

In assessment, we are often interested in measuring latent traits, such as student ability. 

This study employs the established psychometric term "ability" to denote a latent trait, distinct 

from directly observable skills, however, we recognize that "proficiency" better aligns with 

contemporary learning theories within authentic educational contexts. IRT models link student 

these latent traits to observable item characteristics through item-characteristic curves. Item-

characteristic curves depict the relationship between the likelihood of correctly answering each 

item based on the latent trait. IRT assumes that the latent trait estimates are independent of the 

specific sample of items administered, and that item parameters remain constant across different 

groups and item orders. This makes IRT a valuable tool for simultaneously examining both item 

characteristics and traits like student abilities during an exam [41].  

Given the above research on the impact of CF on assessment performance, it is not clear 

how the assumption of constant student performance might impact the accuracy of assessment 

accuracy. As noted above, there is evidence for a decline in performance across exams, however, 

it is not clear whether this decline is large enough to impact item parameter estimation in IRT. The 

few studies that have investigated item position effects within IRT have focused on item difficulty 

and found conflicting results [21], [42], [43]. Within IRT, item difficulty is not the only important 

parameter, as many applications use 3PL or 4PL models that incorporate discrimination, guessing, 

and slipping parameters [44], [45]. It is expected that CF will impact these additional parameters 

as well [10].  

The increasing adoption of artificial intelligence in educational institutions has heightened 

interest in methodologies such as Computerized Adaptive Testing (CAT) for both classroom and 

national assessments [46], [47]. CAT operates by establishing an item bank with item parameters 

such as difficulty, discrimination, guessing, and slip, which have been determined using IRT 

models. These parameters are utilized in the sequence they are mentioned for the 1PL, 2PL, or 

3PL IRT models. The selected algorithm then estimates student ability using algorithms that 

calculate the probability of individual responses to specific items. These tests adapt in real-time 

by selecting subsequent items from the item bank based on student responses [48].  

CAT algorithms typically estimate student “ability” through IRT models that are built 

using item parameter estimates determined from static exams where the item position was fixed, 

or by appending new questions at the end of an adaptive exam. Building item banks through these 

processes makes it unlikely that the order of items used in a CAT assessment matches the item 

order where IRT parameters were determined [49], [50], and may result in item parameters that 



 
 

are unaligned with the assessment contexts. Consequently, the degree to which item parameters 

need to account for item position within an assessment, particularly in terms of accommodating 

the flexible item order inherent is CAT, is unclear. This discrepancy underscores the need for 

further exploration into models that can effectively integrate the nuances of CAT administration 

while addressing cognitive fatigue [51]. 

The challenge arises with the introduction of CF models that incorporate more complex 

parameters and require extensive data sets where items are given in different orders to accurately 

capture CF. Existing IRT models have not typically included parameters that account for the 

impact item order. If CF has an impact of student performance, not accounting for item order could 

result in uncertainty in the estimation of item parameters, which could affect an IRT model’s ability 

to accurately measure latent traits.  

One potential method that could help correct for the impact of CF is mixture modeling. 

Mixture modeling methods introduce novel parameters that account for item order and known CF 

effects. These parameters exhibit a degree of complexity and difficulty to implement within IRT, 

as the inclusion of new parameters demands a substantial increase in data, processing resources, 

and a substantial reliance on the definition of prior knowledge [52]. Machine learning offers a 

promising solution for detecting, simulating, and correcting for the impact of CF on assessments 

without these constraints [53], [54], [55], [56], [57], [58]. As adaptive and AI-based assessments 

become widely used, it is imperative that the impact of CF on parameter estimation within IRT 

models is well understood for researchers and educators to have confidence in these assessments. 

 

Methodology 

 

IRT modeling 

To examine the impact of CF on IRT parameter estimation, student population and a bank 

of test questions were simulated in R using the simstudy package (Table 1). Random samples were 

drawn from the simulated population (n = 1000, 2000, 3500) and test bank (n = 20, 35, 50, 75, 

100) to create 15 contexts to examine the impact of CF. It is imperative to highlight that within 

psychometrics, simulations involving a wide array of student responses, tailored to individual 

ability levels, effectively encompass a broad spectrum of response patterns [42], [43], [48]. 

Employing methodologies rooted in logistic regression, these simulations systematically explore 

the influence of factors like cognitive fatigue on test performance and ability estimates. These 

simulation approaches, deemed promising models in psychometrics studies, underscore the 

simulation's utility as an effective method for modeling and studying various aspects of the model. 

Indeed, the accuracy and Root Mean Square Error of Approximation (RMSEA) of the IRT model 

serve as metrics, offering insights into the model's efficacy in the real world [42], [43], [48]. The 

probability of students answering correctly was simulated with and without CF. In the "no CF" 

condition, probability was simulated using the 4PL IRT model (equation 1). If the probability was 

computed below the guessing parameter (c), then the probability was set equal to c to simulate 

guessing on an item. In the CF condition, probability was simulated using the modified 4PL IRT 

model (equation 2), where i is item number. A linear decrease of 0.005 per item was used to 

simulate the results found in the studies by Reyes [9] and Balart [16]. 

 

                                                  𝑃4𝑃𝐿(𝜃) = 𝑐 + (𝑑 − 𝑐)
1

1+𝑒[−1.702𝑎(𝜃−𝑏)] (1) 

 

Table 1: Simulation Parameters 



 
 

Student Population 

     Ability (ϴ) Normal: mean = 0, variance = 1 

     Gender Binomial: p = 0.5 

     URM Status Binomial: p = 0.2 

Test Bank 

          a Lognormal: mean = 1, variance = 0.12 

          b Normal: mean = 0, variance = 1 

          c Categorical: 0.2 (25%), 0.25 (40%), 0.33 (35%) 

          d Categorical: 0.98 (5%), 0.985 (10%), 0.99 (15%), 0.995(40%), 1.00 (30%) 

Note: Student population N = 5000, Test Bank N = 300 

 

Correctness of student answers was simulated with a random draw from a Bernoulli 

distribution using the IRT probability using rbinom() package in R [59]. After simulating student 

responses, item parameters were estimated for a 4PL IRT model using Bayesian Expectation-

Maximization Maximization (BEMM) with the BEMM.4PL() package in R. The difference in 

parameters was calculated by subtracting the simulated parameters from the fitted parameters [60].  

 

                                     𝑃4𝑃𝐿(𝜃,𝑖) = 𝑐 + (𝑑 − 𝑐)
1

1+𝑒[−1.702𝑎(𝜃−𝑏)] − 0.005(𝑖 − 1)  (2) 

 

To compare the accuracy of parameter estimation under both conditions, a difference score 

was calculated by subtracting the known (i.e., simulated) parameter from the fitted parameter 

(equation 3). Using this method, a positive difference indicates an overestimate of the parameter, 

while a negative difference indicates an underestimate. The impact of CF on parameter estimation 

can be examined by comparing the differences of the fitted parameters between CF conditions 

(equation 4). 

                                                      𝑎𝑑𝑖𝑓 = 𝑎𝑓𝑖𝑡𝑡𝑒𝑑𝐶𝐹
− 𝑎𝑓𝑖𝑡𝑡𝑒𝑑𝑁𝑜 𝐶𝐹

  (3) 

 

To examine the validity of our model fitting procedure, we compared our results to the mirt 

package in R, using 2000 subjects and 100 items. The fit statistics indicate that our procedure fit 

the model to the data at least as well as the mirt package except for the difficulty parameter which 

was underestimated slightly more often with our procedure (Table 2) [61]. 

 

Table 2: Comparison of model fitting procedures 

 This study  mirt 

AIC 211474.5  235407.9 

BIC 213714.9  237648.3 

𝑎𝑑𝑖𝑓 0.19 (0.15)  0.44 (0.93) 

𝑏𝑑𝑖𝑓 -0.25 (0.41)  -0.08 (0.84) 

𝑐𝑑𝑖𝑓 -0.01 (0.05)  0.03 (0.15) 

𝑑𝑑𝑖𝑓 0.06 (0.06)  -0.05 (0.09) 

Note: Parameter differences: mean (standard deviation)  

 

Machine Learning Modeling 

Our latest simulation revealed that incorporating CF in a linear model significantly 

enhances the model fit, as evidenced by the RMSEA, with notable alterations in all four 



 
 

parameters, particularly in the guess and slip parameters at the logistic regression's extremities. 

This finding propels us to consider entropy as a pivotal factor in simulating these changes, 

addressing our second research question (RQ) [62]. Moreover, the entropy of item is very 

reasonably understandable as the parameters of c and d in our last simulation increased and there 

is some strong evidence like Ligtvoet et al. [63] which demonstrated through a simulation study 

that the entropy of responses increased as the mean distance between item locations increased, 

supporting the idea that as the order of items becomes more spread out, the response entropy tends 

to increase.  

Entropy quantifies the uncertainty or disorder in a set of responses by considering the 

distribution of different response categories (Equation 4). It involves summing over each unique 

response category, where “Count (i)” represents the frequency of a specific response, and Total 

Responses is the overall count of responses. The logarithmic function with base 2 is applied to the 

ratio of the count of each response category to the total responses, contributing to the entropy 

value. This entropy calculation aids in assessing the information content or variability within the 

simulated and original response datasets [43]. 

 

                               𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ (
𝐶𝑜𝑢𝑛𝑡 (𝑖)

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠
)𝑖 ⋅ 𝑙𝑜𝑔2(

𝐶𝑜𝑢𝑛𝑡 (𝑖)

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠
) (4) 

 

To simulate CF, we adapted an Item Response Theory (IRT) model, specifically a 3PL 

model, integrating CF as a decay component. Machine learning techniques, particularly Maximum 

Likelihood (ML) estimations with Support Vector Machine (SVM) and Random Forest (RF) 

methodologies, were identified from the literature as effective for entropy simulation [62].  

In this process, we trained the model on simulated item parameters and item order, which 

ML was tasked to learn, alongside the entropy of responses as the response variable. This approach 

also aided in simplifying the RF model's complexity. The theta level within the model was 

adjusted, creating a decay factor, to simulate the responses of 200 students across 80 items, 

considering entropy as the response variable. In the given population, the proportions allocated for 

testing and training are 30% and 70%, respectively.  

The 3PL simulation was introduced by modifying the theta level within certain model 

segments, resulting in a reduction of approximately 10%, akin to a decay factor. A key strategy 

was the use of the 3PL model with a decay factor, coding responses below a 50% probability as 0 

and above as 1. The RF model was then employed to detect entropy patterns in item ordering, with 

simulated data indicating theta values ranging between one and four. To address potential 

misclassification, the RF model was primarily trained on middle-tier groups, representing 80% of 

the dataset, while the remaining 20% was sourced from varying ability groups. 

 

Results  

 The mean differences between the fitted parameters are shown in Tables 3-5. As expected 

across all conditions with more than 20 items, model fit, as measured by BIC, was lower for 

simulations that did not include CF. This means that IRT models used for estimating item 

parameters that do not account for CF will produce inaccurate parameter estimates, and that 

inaccuracy will increase as the difference in item order increases, which can result in inaccurate 

“ability” estimates. The degree to which “ability” estimates will depend on the difference in item 

order between the individual assessment and the assessments from which the item parameters were 

originally estimated.  



 
 

Because different IRT use a subset of the item parameters, the impact of CF on each 

parameter is important to examine. The difficulty parameter (b) is most important as this parameter 

is used in all IRT models, while the slipping parameter is only used in the 4-PL model1. Comparing 

the parameter differences under CF and no CF shows consistent large differences in fitting the 

difficulty parameter (b) and the slipping parameter (d), and small differences in the guessing 

parameter (c) but no consistent difference in fitting the discrimination parameter (a). Paired t-tests 

indicate that CF results in lower estimate the difficulty parameter (b) and higher estimates of the 

slipping parameter (d) and the guessing parameter (c). These differences become larger as 

assessments become longer. In other words, when CF occurs, the same item becomes more 

difficult (difficulty parameter) and easier to make a mistake (slipping parameter) the later it occurs 

on an exam. In other words, items taken from static exams may be less accurate in estimating 

student proficiency when given in different positions during future exams [64]. For example, an 

item at the end of a static exam may be estimated as being more difficult, easier to guess, and  

 
1 It is important to note that the slipping parameter represents the probability of missing a question that you 
“know” based on your “ability.” This means that models that don’t include a slipping parameter (d) may 
overestimate item difficulty parameters (b) to some extent. 



 
 

Table 3: Mean and standard deviation for the difference between fitted parameters with and without cognitive fatigue 

𝑁𝑖𝑡𝑒𝑚𝑠 𝑎𝑑𝑖𝑓 𝑏𝑑𝑖𝑓 𝑐𝑑𝑖𝑓 𝑑𝑑𝑖𝑓 ΔRMSEA  ΔBIC 

20 -0.01 (0.30) -0.02 (0.40)  0.04 (0.08)* 0.03 (0.04)** 0.000  935.67 

35 -0.06 (0.31) -0.15 (0.36)*  0.02 (0.05)* 0.06 (0.06)*** 0.002  3172.93 

50 -0.01 (0.34) -0.37 (0.54)***  0.02 (0.07)* 0.07 (0.06)*** 0.001  6922.42 

75 -0.01 (0.41) -0.56 (0.65)***  0.01 (0.04)* 0.10 (0.10)*** 0.002  11633.66 

100  0.05 (0.43) -0.72 (0.72)***  0.01 (0.06) 0.12 (0.12)*** 0.002  17008.52 

Note: 𝑁𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 = 1000, * p < .05, ** p < .01, *** p < .001 

 

 

Table 4: Mean and standard deviation for the difference between fitted parameters with and without cognitive fatigue 

𝑁𝑖𝑡𝑒𝑚𝑠 𝑎𝑑𝑖𝑓 𝑏𝑑𝑖𝑓 𝑐𝑑𝑖𝑓 𝑑𝑑𝑖𝑓 ΔRMSEA  ΔBIC 

20  0.04 (0.29)  0.02 (0.41) 0.04 (0.09) 0.04 (0.03)***  0.000  2249.24 

35 -0.02 (0.22) -0.16 (0.32)** 0.03 (0.06)** 0.06 (0.05)***  0.001  6208.59 

50 -0.03 (0.36) -0.32 (0.47)*** 0.03 (0.07)** 0.09 (0.07)*** -0.001  14088.81 

75 -0.14 (0.32)*** -0.50 (0.68)*** 0.02 (0.06)** 0.13 (0.11)***  0.000  23251.09 

100 -0.07 (0.37) -0.68 (0.88)*** 0.02 (0.05)*** 0.15 (0.14)***  0.002  34756.00 

Note: 𝑁𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 = 2000, * p < .05, ** p < .01, *** p < .001 

 

 

Table 5: Mean and standard deviation for the difference between fitted parameters with and without cognitive fatigue  

𝑁𝑖𝑡𝑒𝑚𝑠 𝑎𝑑𝑖𝑓 𝑏𝑑𝑖𝑓 𝑐𝑑𝑖𝑓 𝑑𝑑𝑖𝑓 ΔRMSEA  ΔBIC 

20  0.03 (0.29) -0.07 (0.34) 0.03 (0.08) 0.04 (0.03)*** 0.000   3788.11 

35 -0.02 (0.20) -0.22 (0.42)** 0.03 (0.05)** 0.06 (0.05)*** 0.000  10689.88 

50 -0.10 (0.14)*** -0.26 (0.35)*** 0.03 (0.06)*** 0.09 (0.07)*** 0.000  24276.67 

75 -0.17 (0.31)*** -0.41 (0.81)*** 0.03 (0.07)*** 0.13 (0.11)*** 0.001  39805.55 

100 -0.14 (0.35)*** -0.67 (0.77)*** 0.02 (0.06)** 0.15 (0.14)*** 0.002  57508.70 

Note: 𝑁𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 = 3500, * p < .05, ** p < .01, *** p < .001 
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easier to make a simple mistake on, as compared to if the same item had been given earlier in the 

exam. 

By employing the MCMC method using the No-U-Turn Sampler, Table 6 reveals 

significant differentiation in the difficulty parameter (b), guessing parameter (c), and slipping 

parameter (d) with consideration of the CF. The entropy of item responses for 70 random students 

are shown in Figure 1 [64].  

 

Table 6: Difference between fitted and simulated parameters assuming CF with MCMC 

method in parameters trend by Wilcoxon signed-rank test 

𝑁𝑖𝑡𝑒𝑚𝑠=50 𝑎𝑑𝑖𝑓 𝑏𝑑𝑖𝑓 𝑐𝑑𝑖𝑓 𝑑𝑑𝑖𝑓 

R2        -6.94          -1.47        -0.69         -1.57 

RMSE         0.12           8.57          0.07           0.04 

P-value<0.05 <0.005 >0.082 >0.07 >0.06 

Note: 𝑁𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠 = 1000 

 

Figure 1. Entropy of each student before and after RF modeling prediction 

 
 

Table 7: Model fit for Random Forest Machine Learning Modeling 

 Training Set 

Performance 

Testing Set 

Performance 

Mean Squared Error (MSE) 0.00029 0.00035 

Root Mean Squared Error (RMSE) 0.01689 0.01865 

Mean Absolute Error (MAE) 0.01683 0.01865 

 

According to Table 7, the model demonstrates satisfactory performance on both the training and 

testing sets, with notable aspects to consider. The Mean Squared Error (MSE) and Root Mean 

Squared Error (RMSE) exhibit low values, indicating close alignment between the model's 

predictions and actual values. The Mean Absolute Error (MAE) is consistently low across both 

sets, reflecting the model's stable performance and suggesting good generalizability. These results 

indicate that the accuracy of ML modeling is acceptable even for a small population of examinees. 
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This means the simple ML strategy for capturing CF as an element that is hidden inside the item 

parameters and is related to the item positionality, can help predict the item parameters based on 

the stable entropy of item responses in different orders [55]. 

 

Conclusion and Discussion 

 

IRT models provide powerful tools for examining latent traits, such as ability, that allow 

for comparisons between students who complete different subsets of items [65], [66], [67], [68]. 

The ability to compare students is the basis for computerized adaptive testing (CAT) and many 

adaptive learning platforms [67], [68]. Adaptive systems, such as CAT, use test banks built from 

items that have been taken by many students (e.g., [47]) from traditional assessments administered 

in a linear manner or appended at the end of existing assessments (e.g., [47]). The findings of this 

simulation study suggest that CF significantly impacts the estimation of IRT model parameters, 

notably the difficulty and slipping parameters. In addition, the impact on the parameter estimation 

increases as the difference in item order increases. In other words, estimation of IRT parameters 

is related to the order in which items were completed. This finding reveals the essential role of 

item sequencing and test length in accurately assessing student “ability”.  

The integration of artificial intelligence within adaptive and personalized learning 

platforms provides the potential to customize and personalize educational interventions to help 

lower-performing students as well as challenge higher-performing students. However, the benefits 

promised by these cutting-edge technologies depends on the ability to assess student performance 

accurately and equitably. With the rise of artificial intelligence and adaptive and personalized 

assessment, such as within CAT, the impact of CF and item order on the accuracy of assessments 

is critical to explore. Additionally, the IRT parameters used for ability estimation within CAT are 

also related to item order. Additionally, the effect of CF is individual (e.g., [28]) meaning that the 

relationship between CF and other traits needs to be explored to ensure equity in assessments using 

IRT models.  

Evidence from different theoretical frameworks, especially information processing theory 

suggests that the entropy of responses may escalate with the progression of item sequence. This 

alignment between CF as a personal element and our result of the first simulation was instrumental 

in our decision to incorporate entropy and item order as key variables in our machine learning 

(ML) simulations for the second research question. The congruence of our model with the 

principles of memory and information processing, as outlined in Information Theory, not only 

substantiates a positive response to our first research question but also offers a plausible 

explanation for CF in the short term, framed within the context of entropy. Moreover, this approach 

aligns seamlessly with the requirements of CAT administration, presenting a more straightforward 

and suitable model for implementation. 

 

Future Directions 

This study presented an examination of simulated student performance as it was critical to 

have a known set of item parameters to compare under the assumption of CF and no CF. Future 

research should aim to examine the accuracy of the machine learning algorithms presented in this 

and other research to student performance on CAT assessments. By examining the performance of 

students on the same items that appear in different orders we can examine our assumptions for 

how CF manifests on student performance within CAT. We have defined CF as a connected yet 

separate construct from “ability”. However, future research needs to examine how to distinguish 
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the extent to which an incorrect response on an assessment is due to CF or their “ability.” This is 

particularly critical when considering how to equitably assess students who may have 

neurodivergent conditions such as ADHD and are more susceptible to CF. 

 In addition to examining the accuracy and efficiency with which machine learning 

algorithms assess students, future research must examine the impact of CF on adaptive learning 

systems to examine how do CAT and ML impact student learning and metacognition. Finally, 

future research needs to examine how to best mitigate the impact of cognitive fatigue. By 

examining the longitudinal impacts of cognitive fatigue and refining adaptive assessment models 

to account for these effects, such endeavors will contribute to the development of more equitable 

and effective educational testing methodologies.  
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