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Exploring Diverse Work Personas of Engineering Design
Graduates through Cluster Analysis

ABSTRACT

(Paper type: Research) Engineering schools increasingly endeavor to diversify their educational
offerings to meet students’ needs of pursuing various career trajectories. However, students’
aspirations are often shaped by engineering stereotypes and less informed by profiles of
real-world engineering practices. Moreover, little research has been done to portray diverse
profiles of engineering graduates. This study aims to fill this gap by conducting a cluster analysis
to synthesize archetypical work profiles (i.e., work personas) based on a survey sample of 719
graduates of Mechanical Engineering with on average 16.8 years after completing a
graduate-level design program from a U.S. university. What are the different work profiles of
engineering design graduates and how can these different profiles be characterized? To answer
the question, we used Principal Component Analysis (PCA) in combination with k-means
Cluster Analysis which constructed five types of personas based on self-reported behaviors in
engineering, design and innovation activities. We used job functions and a variety of
self-efficacies to further validate and analyze the distinct personas that the engineering graduates
have pursued. Of the five clusters, we find many attributes of Cluster One (C1) (6.1% of the
survey population) diverge from engineering, design and innovation activities; we have focused
on analyzing the Early Career Engineers C2 (25.3%), Expected Engineers C3 (29.8%),
Managerial Engineers C4 (17.4%) and the Innovative Engineers C5 (21.34%). Innovative
Engineers C5 shows consistently high engagement with all the different engineering
design-affiliated work activities. Early Career Engineers C2 and Expected Engineers C3 exhibit
similar shapes of engagement, with relatively lower scores in marketing & sales behaviors than
the other behaviors. Managerial Engineers C4 have the most MBAs and expand what engineers
do. The various engineering design routes engineering designers have taken as evidenced from
the dataset expand our understanding of what engineers could do. The current study provides
concrete insights for guiding engineering students in exploring various career options and
contributes to engineering education research on career pathways.

Keywords: Workplace, Engineering Professions, Quantitative Analysis, Cluster Analysis,
Graduate Education, Career Paths



1 Introduction

One often neglected aspect of engineering education is career education. Along with the
accumulation of disciplinary knowledge and skills, students also develop an identity as an
engineer [34]—a sense of “who I want to become” and “what I want to do”. Career choice is
arguably one of the most important decisions students make as they navigate through their
engineering education. However, senior engineering students are often found unsure about or
struggling with career decisions [34]-[36]. Moreover, while engineering schools endeavor to
diversify their educational offerings to meet students’ needs of pursuing various career
trajectories, engineering students’ aspirations are often shaped by technical course experiences
and engineering stereotypes [37] and less informed by personas of real-world engineering
practices [38]-[39], [43].

The various real-world experiences and practices from professionals with engineering degree
backgrounds could serve as a valuable source of insights. From the perspective of social
cognitive career theory [40], professionals over the years would traverse multiple iterations of
the career development algorithms. Their work pathways may illuminate prospective career
decision-making for engineering students, offering them new perspectives of what their future
could hold. There has been limited empirical research that portrays diverse profiles of work
professionals who graduated from engineering programs [41], [42]-[43]. To contribute to this
research, we examine behaviors and beliefs of professionals with engineering degree
backgrounds. As an initial step, we analyze work profiles based on a rich alumni dataset of
graduates who completed one to two engineering design innovation and entrepreneurship courses
(hereafter referred to: design program) as part of their graduate education at a U.S. university
between 1987 and 2018. We argue that a data-driven approach such as cluster analysis is suitable
for this study by identifying different engineering profiles with similar work behaviors.

In the following sections, we review literature on engineering career challenges, outline our
empirical cluster analysis approach and its background, present findings of five work personas,
and discuss the findings to inform student career planning. We address study limitations and
propose future applications for data-driven approaches.

2 Engineering education research on career pathways

Student career preparedness has been a central concern of engineering education and research.
Efforts for bridging the gaps between education and career are seen in various research initiatives
from studies unpacking students’ experiences (e.g., [30], [33]-[35], [53]-[54]) to transformative
educational programs (e.g., [47]-[48], [61], [66]) to institutional assessments (e.g., [45]) to
examination of engineering practices (e.g., [31], [49]-[51]). Most empirical work on career
development is found to examine perceptions and experiences of students instead of reflections
from alumni/professionals [52]. Due to page limitations, we focus on reviewing relevant research
of engineering alumni and professionals.



2.1 Research about engineering alumni and professionals

Engineering alumni research has been largely driven by the question of education effectiveness
and empirically through collecting qualitative or quantitative data of alumni’s subjective
perceptions to assess the impact of the programs they graduated from [55]-[59]. While some
research has started to focus on alumni’s work activities, often focusing on specific mindsets or
behaviors, such as entrepreneurial tendencies [60]-[63] and research engagements [65], less has
set out to understand general career behaviors. Brunhaver and colleagues [31], [41], [61] acted
upon this critical gap by examining the various employment engagements of early-career
engineers. For instance, [41] analyzed engineers’ different career choices as well as personal,
experiential, and affective outcomes based on a large cross-institutional database of alumni from
various engineering majors. More recently, [31] explored how relationships with coworkers and
supervisors shape early-career engineers’ work experiences and identity. Another related area of
research is design research situated in real-world engineering practices. Instead of career/job
pathways, most research of engineering professionals aims to provide insights about the design
process, design expertise or other design qualities [50]-[51], [64]. Little of this research is
positioned to draw career insights by analyzing various kinds of work profiles.

2.2 Beyond engineering and non-engineering pathways

Not surprisingly, post-graduation work and careers are broad and diverse [41]. This is supported
by empirical evidence that has been consistently found from large-scale, cross-institution survey
studies [67]-[68] as well as small-scale, mixed-methods studies [44]. However, many studies are
found to use generic labels such as engineering versus non-engineering to categorize which
pathways students choose after graduation. Research on engineering versus non-engineering
pathways is partly driven by the call to retain engineers. While this categorization is useful, such
framing may be misleading as to not acknowledge non-engineering work as an important
direction for engineers to flourish and contribute to society. Students who leave engineering
majors are often called “non-persisters” [69]. Similarly, “success” is sometimes implicitly
defined by engineering students completing their engineering degree programs (e.g., [5]) or
pursuing the expected career directions.

Overall, we argue that while it can be useful to learn about broad career trends and patterns,
generic labels often oversimplify the diverse paths that graduates take, neglecting the nuanced
nature of their roles and the dynamic ways they identify with engineering. Instead of framing the
research to address who persists and who does not in engineering, we explore various
possibilities of engineering education outcomes—there is no right or wrong, desirable or
undesirable career choices. Due to the dynamic landscape of modern professions, we argue that
we can get a better picture of work types by relying on what they actually do in their jobs rather
than patterns of job titles. Little career research is grounded in what engineers actually do, which
may hinder a comprehensive understanding of their work and how they flourish in their careers.



The current work attempts to address this gap in research, and contributes to growing the body of
research on engineering alumni.

3 Analysis overview

Cluster Analysis (or clustering) is a family of unsupervised or semi-supervised learning
procedures that seek to organize a dataset into homogeneous clusters [3]. Various cluster analysis
models have been developed with numerous applications across research fields [27]. Cluster
analysis methods primarily rely on a selection of variables with the objective of maximizing
within-cluster similarity and in the meantime enhancing between-cluster dissimilarity [3]. We
argue that cluster analysis is suitable for the current study that explores the un-predefined
profiling of professionals from a large, diverse pool of alumni data. We also note that the
unsupervised or semi-supervised learning algorithms-based cluster analysis methodology is
synergetic with the qualitative methods of persona research (see [9] for a review) that has also
seen emerging applications in engineering education research.

3.1 Cluster analysis in engineering education research

Below, we give a brief overview of cluster analysis methods and applications within engineering
education research. In-depth reviews about cluster analysis techniques can be found in [1], [27],
[28]. Within engineering education research, studies applying cluster analysis are rather limited.
[1] only identified five articles that have applied cluster analysis in the Journal of Engineering
Education by 2017. We have only found three empirical papers using cluster analysis within
ASEE Engineering Research and Methods (ERM) division [6]-[8]. Although applications are
limited, engineering education researchers have used this exploratory approach in various ways.

The majority of studies have applied cluster analysis to understand student learner types in
certain courses or other learning contexts [2], [9], [6], [14], [17], [23], in terms of academic
success [4], [5], anticipation of future goals [11], or other attitudinal and behavioral factors [14],
[23]. A few studies have used higher-education institutions as a unit of analysis to understand
different types of educational systems [20], [21], [26]. We have also identified a few novel
applications of cluster analysis, such as to understand engineering journal usage [16]. Cluster
analysis has also been used as a sampling technique for qualitative research [15], [24]. We have
only found one article that examined engineering alumni data using cluster analysis [24].

Like in other research fields, k-means methods are widely applied in engineering education
research (e.g., [1], [11], [16], [21], [26]). On the other hand, several papers have compared
different cluster analysis methods for their research contexts [11], [18], [23]. However, there is
not an emerging agreed-upon method across these different studies (see appendix S1 for more
review). The three empirical papers we found in the ASEE ERM division have each applied a
different clustering method. [6] applied k-means clustering to understand levels of data analysis
training amongst engineering undergraduates. [7] used hierarchical clustering for creating



engineering student typologies based on self-reported talents and abilities to better prepare
students for future work. Finally, [8] used topological data analysis to capture latent diversities of
first-year undergraduate engineering students in terms of attitudes, beliefs, and mindsets.

4 The current study

We propose that there could be diverse work profiles in graduated professionals even from the
same educational programs. To empirically explore this idea, we analyze a large alumni dataset
of engineering design graduates who have finished their programs about engineering design
innovation and entrepreneurship between 1987 and 2018. More specifically, we aim to address
the following research question: What are the different work profiles of engineering design
graduates and how can these different profiles be characterized?

Because of the large size of the alumni dataset, we started by experimenting with the most
widely adopted method—k-means clustering. The simple k-means clustering method starts with
an assigned number of clusters (i.e., k); partitions are then created as a function of the underlying
data. Then, the algorithm optimizes the partitioning to obtain a solution to best represent the
underlying structure of the data. The steps are repeated to compute optimized cluster centers. The
quality of clustering outcome is often evaluated by variability of observations within each cluster
(e.g., within cluster sum of squares that measures the squared error between the mean of each
cluster and the data points in the cluster) and variation between clusters (e.g., between cluster
sum of squares). Elbow method, silhouette score and gap statistics method are some of the most
popular cluster metrics to help choose the optimal value of k.

To derive a better clustering outcome, we iterated with hybrid approaches to improve the
algorithms’ fit with our dataset. This has led us to choose a two-step varied k-means method,
using principal component analysis (PCA) for data pre-processing and k-means for cluster
analysis [12], [29]. PCA-based k-means clustering is a heuristic clustering approach in which
researchers have developed various algorithms depending on research needs. In this study, we
have followed a simple two-step approach [12], [29] which proves to dramatically improve
clustering results. The selection of variables for inclusion in the analysis plays a critical role in
the resulting solution [1]. Instead of sorting out patterns in job titles, we argue that we can get a
more accurate and nuanced picture of work types by studying what they actually do in their jobs.

5 Methods

5.1 Dataset

The cleaned-up dataset comprises data about 719 engineering alumni who have attained master's
degrees in Mechanical Engineering from a U.S. university, with an average of 16.8 years since
the completion of a graduate-level design program—one to two engineering design innovation



and entrepreneurship courses. Due to page limitation, please find details about Participants and
Procedures, as well as data collection and cleanup in our previous publications [51], [61], [62].

5.2 Measures

Engineering design-affiliated work activities: We included a set of 11 items to capture
participants’ work engagement with various aspects of engineering design. Six items were drawn
from the innovation behavior scale [78]; two engineering-task items came from [73]; the other
three items were based on [76] that measures marketing and product improvement behaviors. A
0-4 point Likert scale was used, i.e., from Never to Very Often. See appendix S2 for details.

Workplace factors: We included a set of eight workplace factor items (see appendix S2) about
ways engineers may engage with their work, from documentation, to solving ambiguous
problems, to leadership and so on. The measure was developed by [73] which captures work
environmental influences on engineers’ workplace behaviors. The same Likert scale was used.

Job roles: A few variables were included to measure job roles, including: working for a medium-
or large-size business (relative to all the alternatives, coded as a 0-1 dummy variable), and
multiple choice questions about specific work functions (e.g., working in R&D, Design,
Manufacturing, or Management roles) and career choices (e.g., Startup career).

Self-efficacy measures: Self-efficacy measures people’s perceived confidence in their ability to
successfully perform tasks and activities in certain domains, and have shown to be important
predictors of their work outcomes [74]. We use pre-established scales as detailed in [61] to
capture participants’ beliefs about their personal efficacies in four interrelated domains that were
the main focuses of the design programs, namely design thinking self-efficacy, innovation
self-efficacy, entrepreneurial self-efficacy, and engineering tasks self-efficacy (see appendix S2).

Demographics: A few demographic variables (see appendix S2) are included following our prior
work [61], including gender, race and ethnicity and years since graduation from the design
program (hereafter referred to: years of experience). We also included graduates’ educational
background (e.g., have obtained MBA or not).

5.3 Analysis

We first computed the principal components based on the selected 11 variables. Based on
eigenvalues that are equal or bigger than 1, we selected principal components to form the
PCA-subspace. PCA dimensionality reduction is beneficial for k-means clustering as PCA allows
us to search for the optimal, and usually better, solution more effectively [12]. With the PCA
subspace, we performed k-means clustering and determined the value of k by comparing the
elbow method and gap stat charts, and assessed the model quality using
within-/between-sum-of-squares statistics. We then make sense of the result and analyze the



structures of the clustered data. Cluster differences are validated with externally variables
[80]-[81] and analyzed using one-way ANOVA, or MANOVA (Multiple Analysis of Variance) in
case of shared dependencies between variables. Post-hoc Tukey’s HSD pairwise comparison
tests are conducted to find out where the cluster differences come from. Here, parametric
methods are used to analyze Likert-scale data subsequent to verifying model assumptions. The
use of parametric methods is recommended in previous literature [82], [83] and is based on the
assumption that the current variables can be construed as continuous variables.

6 Results

6.1 Clustering results of work profiles

The PCA subspace formed based on the first four principal components that capture the majority
of the variability in the data. The results of k-means clustering suggests k = 5 (see Figure S3.1
for elbow method and gap stat charts; see Figure S3.2 for the scatter plot). The ratio of
between-sum-of-squares and total-sum-of-squares is 0.62. The resulting cluster sizes are as
follows—44 participants in C1, 182 in C2, 125 in C3, 214 in C4, and 154 in C5. The five clusters
are ordered by average scores of the 11 engineering design-affiliated work activities.

Figure 2. Cluster profiles of C2 - C5 showing group-average scores on the 11 engineering design-affiliated work
items (see Table S3.5 for detailed statistics).

In terms of common demographic variables (see Table S3.3), we find a higher percentage of
male participants across the board, and there are no cluster differences in the ratio of gender. As
for the racial make-up of each cluster, Whites make up from 45% to 55% of participants within



each cluster, followed by Asian or Asian Americans (27% to 40%). There are no cluster
differences in terms of race and ethnicity. All five clusters are quite experienced, with average
years of experience ranging from 13.6 to 20.7 years; significant cluster differences are found,
F(4, 714) =13.99, p < .001 (see Table S3.4).

6.2 Characterizing work profiles

C1 is the smallest sample of all groups, making up only 6.1% of the full sample. Compared with
the other four groups, C1 scores low across the board in engineering design affiliated activities
(Table S3.5), as well as self-efficacy measures and workplace factors (Table S3.6). Job role
distribution in C1 shows a more varied picture of work than other groups (Table S3.7). These
observations may indicate that those in C1 engage less and identify less with innovative
engineering design domains than other clusters. It is not clear how well the survey captures the
professional engagement of C1. Therefore, we decide to focus on the other four work cluster
profiles—the Expected Engineers C3, Innovative Engineers C5, Managerial Engineers C4 and
the Early Career Engineers C2, which make up 93.9% of the sample. We will come back to
considering C1 in the Discussion (Section 7). The clustering results for the four clusters are
illustrated in Figure 2, showing cluster-average scores on the 11 engineering design-affiliated
work activities.

There is an overall consistency of between-cluster patterns across measures. Many of the cluster
differences in engineering design-affiliated activities (Figure 2) are found to match with the
differences in related yet different measures about self-efficacies (Figure 3) and workplace
factors (Figure 4). One-way ANOVA tests yield significant differences across clusters in all
measures (Table S3.8 & S3.9). Due to potential shared dependencies between measures of
self-efficacies and between items of workplace factors, we have also conducted one-way
MANOVA tests combining all relevant measures and the results do not change.

In order to gain further insights into the diverse work profiles, we also map out how the clusters
vary in terms of specific job roles and other educational and work backgrounds. Figure 5 (and
Table S3.7) illustrates the results that measure and compare the percentage of participants of the
cluster they belong to in a given category of job role/work background. By triangulating the data,
we further analyze each work profile. We highlight some patterns next.

Figure 3. Comparison of clusters C2 - C5 based on z-scores of self-efficacy measures. Error bars represent 95%
Confidence Intervals (see Table S3.6 & S3.8 for detailed statistics).



Figure 4. Comparison of clusters C2 - C5 based on z-scores of workplace factors. Error bars represent 95%
Confidence Intervals (see Table S3.6 & S3.9 for detailed statistics).

6.2.1 Expected Engineers C3 (29.8% of the sample)

Many of C3’s attributes fit the stereotypical image of engineering and suggest that C3 might
describe the traditionally-expected engineers. 1. Excelling in engineering tasks: C3 stands out
as the only cluster that highly engages with engineering activities and yet at the same time not
engaging much with marketing & sales activities (Figure 2). Along with C5, C3 is the most
confident cluster in engineering tasks—the differences of C3 from C2 and C4 are significant, p
= .04 and p < .001 respectively (Table S3.8). Unlike C5, however, C3 is not as confident in other
self-efficacy domains. 2. Taking on typical engineering design roles: C3 has taken typical
engineering design roles—Design, R&D, Manufacturing and Project management (Figure 5,
left), with more than 50% of them working in mid-to-large organizations and unlikely to have
obtained MBA or become a founder (Figure 5, right). C3 on average often engages with various
workplace factors except for cross-functional collaboration (Figure 4).

6.2.2 Innovative Engineers C5 (21.4% of the sample)

The clustering algorithms have assigned C5 as the only group that has high levels of engagement
in all work activities of innovation, engineering tasks, and marketing & sales (Figure 2). 1.
Excelling in engineering, innovation and marketing & sales: As the older group (Myear =
18.53, SDyear = 8.15, Table S3.4) in the “high engineering task pair”, C5 may represent the group
that the Expected Engineers C3 (Myear = 16.12, SDyear = 8.75) is growing into. Though
comparable in engineering task self-efficacy, C5 is more confident than C3 in innovation
(adjusted p < .001), entrepreneurship (adjusted p < .001), and design thinking (adjusted p = .005)
(Table S3.8). 2. More founders and managerial backgrounds than C3: A closer examination
of job roles and work backgrounds (Figure 5) reveals that C5 has a much higher percentage of
founders (30.5%) than C3 (4.2%) or any others (C4: 23.2%, C2: 2.2%); C5 also has a much
higher percentage of having obtained MBA (16.9%) compared with C3 (4.6%). C5 has less
percentage of people to work in mid-to-large companies than C3 (33.8% compared to 56.5%). 3.
Taking on traditional but also diverse job roles: C3 and C5 have similar involvement in
Design and R&D; yet, C5 reports more managing (Project Management, Functional
Management) as part of their job function than C3 (53.9% and 30.5% for C5, as compared with
40.2% and 15.0% for C3), as well as more percentage of people in other job roles that are



traditionally not regarded part of engineering, such as Sales (13.6% vs 4.7%), Public Relations
(16.9% vs 4.7%), and Fiance (7.1% vs 0.9%) than C3. 4. High workplace factors: C5’s work
involves frequently engaging in areas of solving ambiguous problems, cross-functional
collaboration, leadership and work with upper management, and so on. Notably, C5’s
engagement with working on ethical questions is significantly higher than all other groups,
adjusted ps < .001 (Table S3.9).

Figure 5. Comparison of clusters C2 - C5 based on job roles and work backgrounds (see more in Table S3.7).
Percentages are calculated by dividing frequency of occurrence by cluster size for each of the five clusters. Note that
the job roles are not mutually exclusive from each other; participants were asked to choose all options that apply.

6.2.3 Managerial Engineers C4 (17.4% of the sample)

As one of the oldest groups (Myear = 20.77, SDyear = 8.43, Table S3.4), C4 seems to have taken a
slightly different route than the C3-C5 path and are less likely to see themselves as engineers. 1.
Most MBAs with less engineering engagement: C4 has acquired most MBAs (23.2%),
compared with C2 (1.7%), C3 (4.7%) and even C5 (16.9%). A moderate percentage of C4
works in mid-to-large companies (40.8%), and at the same time it also has quite a few founders
(23.2%). According to the clustering results (Figure 2), unlike the Expected Engineers C3 and
Innovative Engineers C5, C4 has a much lower engagement in traditional engineering tasks
including analyzing the operation or functional performance of a complete system; C4 is also
less engaged with designing new products or projects to meet specified requirements. 2.
Expanding what engineers do: Compared with C3 and C5, C4 has less percentage of people in
Design, R&D and Manufacturing. On the other hand, its occupancies in nontraditional
engineering roles, such as Sales (20%), Public Relations (14.4%), and Finance (13.6%) are
comparable to C5. Because a large percentage of C4 choose Others (Figure 5, left), we take a
closer examination of the open-ended responses. Some 12 of them share that they work in
managerial positions from product management to executive leadership (e.g., CEO, COO), three



participants are business owners, and another nine participants identify with business strategy &
planning. A few share that they work in non-engineering jobs, yet three participants explicitly
acknowledge that their non-engineering work “requires an engineering background”. For
instance, one works in a “non-engineering job that requires some technical knowledge and giving
feedback/useful insights to engineering teams.”

6.2.4 Early Career Engineers C2 (25.3%)

While Managerial Engineers C4 and Innovative Engineers C5 are on the more experienced side
compared with C3, the Early Career Engineers C2 (Myear = 13.64, SDyear = 9.26) is on the less
experienced side (Table S3.4). 1. Similar work, less experience than C3: C2 has an even
smaller percentage of founders (2.2% vs 4.2%) and MBAs (2.2% vs 4.2%) than the Expected
Engineers C3. Some 45.6% of C2 works in mid-to-large companies. Figure 5, left, shows that the
job composition of C2 is similar to that of C3, with only slightly fewer percentages in Design or
R&D. C2 is also the only group that exhibits the same shape of engagement with the 11
engineering design-affiliated work activities as C3—i.e., similar levels for all except for much
lower levels in marketing & sales (Figure 2). Across the board, C2 consistently demonstrates
lower levels of engagement in each measure of engineering design-affiliated activities compared
to C3. 2. Less confident in engineering, design thinking, innovation and entrepreneurship
than C3: Though Early Career Engineers C2 is more confident than the Managerial Engineers
C4 in engineering tasks, adjusted p < .001, C2 is less confident than C3 in engineering tasks,
adjusted p = .04, as well as in all other self-efficacy measures, adjusted ps < .001 (Table S3.8).

7 Discussion

To fill the gap in research that lacks empirical insights into how engineering students’ career
pathways may evolve in the future, we conducted a PCA-based k-means cluster analysis study to
portray profiles of work professionals who graduated from engineering design programs. Rather
than relying on traditional job labels, we identify work personas based on what engineers
actually do. We selected a set of creative engineering design-affiliated work activities to identify
five clusters, and further analyzed and validated the work profiles by comparing them across
other variables about self beliefs, workplace factors, job roles and other characteristics.

7.1 Understanding career routes based on the diverse work profiles

To synthesize the findings, we map out the different work personas based on the shapes and
areas of the radar chart Figure 2, to illustrate the cluster differences and potential relationships in
Figure 6. Both Managerial Engineers C4 and Innovative Engineers C5 land in the right two
quadrants, as “roundness” largely reflects whether the work cluster engages with marketing &
sales activities. On the other hand, both Expected Engineers C3 and Innovative Engineers C5
land in the top two quadrants, based on their higher engagements in engineering design-affiliated
activities than the other two groups.



Those in Innovative Engineers C5 are engaged in both developing technical ideas and in their
scaling in terms of business opportunities, whereas Expected Engineers C3 is more focused on
developing technical ideas, and Managerial Engineers C4 on business opportunities. This
diaspora is illustrative of how a common engineering design focused education can lead to be the
basis of professional work that employs different combinations of technical/engineering and
business development/management acumen. We do know that the average experience of those in
Expected Engineers C3 is significantly less than for Innovative Engineers C5 (16.12 yrs vs 18.53
yrs, Table S3.4); this leads us to wonder if some individuals in C3 are on a pathway to join those
in C5 (indicated by the dashed orange arrow in the Figure 6).

  
Figure 6. Mapping group engagements in various engineering design-affiliated work activities. X axis “Roundness”
refers to: to what extent the responses within a cluster resemble a circle (i.e., cluster shapes in Figure 2), measured
by the reversed z-score of the maximum difference in the responses. Y axis “Area” refers to: overall engagement

across the 11 variables, measured by the z-score of the aggregated scores in the responses.

The question of age can also be brought into consideration for Early Career Engineers C2; those
in C2 are significantly younger than C3 and C4 (Table S3.4). This leads us to speculate on
whether the career path of some in C2 may lead into the C4 quadrant (by, for example, acquiring
more business knowledge to round-out their professional capabilities) or into the C3 quadrant
(by accumulating more engineering experiences). These possible paths are indicated by green
dashes in Figure 6. Lastly, we have not focused on C1 in the study. As we analyzed earlier in
section 6.2, it is possible that C1 has ventured beyond “the linear progression” from what their
engineering design education offered. Though only accounting for 6.1% of the current sample,
C1 could help students understand alternative career pathways that have engineering as a central
focus.

7.2 Implications for student career development



Mechanical Engineering students of today and the future are confronted with some of the biggest
societal problems to create a sustainable and caring future. At the same time, they are also
experiencing some of the biggest advances in information and communication technologies that
are eroding the boundaries of traditional disciplines and challenging the very meaning of
“mechanical engineering”. This study provides the first empirical evidence that there are indeed
diverse engineering work profiles drawing on data of real-world professional practices. The
findings are a potential source of insights for career education. Prior work shows that students
can grapple with career decisions well into their senior/final year and even beyond [35], [44].
The diverse work personas concretize the dynamic ways how professionals with engineering
design backgrounds identify with engineering. For instance, insights from C4 reject the simple
dichotomy of engineering versus non-engineering. These findings offer new perspectives for
current engineering students to contemplate how their future career might unfold.

7.3 Study limitation and future direction

The study findings should be interpreted in the context of a few limitations. First, the analysis
lacks grounding in literature/theory, which is a common limitation for data-driven research [19].
We attempted to draw on the engineering epistemology [36] to map out work profiles potentially
along the two axes of people versus matter and practice versus theory. Unfortunately, the data
and method do not match well with this particular theory. Second, more accurate characterization
of the clusters would benefit from triangulation with qualitative interview or observation data.
Finally, caution must be exercised in generalizing the findings as the dataset is obtained from
engineering design graduates from a particular well-regarded U.S. university. For instance, there
could be significant institutional differences in career pathways [33]. Overall, the current
data-driven study still illuminates diverse possibilities of career trajectories. The data-driven
approach calls for more data—there has been boatloads of data collected, such as from ABET
and other research efforts, yet we do not have adequate access to these valuable data sources to
draw insights about alumni work profiles. Future work should also consider taking a longitudinal
approach, from the first job to the most recent job [74], to gain a deeper understanding how the
clustered profiles are developed over time. Relatedly, prior work also suggested teasing out other
types of temporal changes, such as change of motivations, and their effects on the clusters [23].

8 Conclusion

To inform prospective career decision-making for engineering students, we have conducted a
data-driven cluster analysis study to understand what different work profiles there are. The study
is based on an alumni dataset from work professionals who graduated between 1987 and 2018
from a graduate-level engineering design program focusing on innovation and entrepreneurship
from a U.S. university. There had been limited empirical work of this kind. Using PCA-based
k-means cluster analysis, we analyzed the dataset to identify and subsequently validate diverse
work profiles. The emergence of these diverse profiles sheds light on varied trajectories that



engineering students can pursue. By extrapolating real-world practices, our study contributes
valuable perspectives to inform and enhance students' strategic career planning endeavors. We
call for more research to build upon our work and continue to examine how to use empirical
knowledge from real-world practices to enhance students’ career planning.
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Appendix

S1 Additional literature review

S1.2 How cluster analysis is different from traditional statistical approaches

Traditional quantitative analysis methods (e.g., t tests, analysis of variance) typically examine
data groupings based on hypotheses developed by the researcher. In contrast, many cluster
analysis methods are unsupervised and identify data groupings solely based on the given dataset
[1]. As a person-centered approach, cluster analysis is also advantageous for capturing variations
in large datasets with heterogeneous observations, whereas traditional statistical techniques focus
on the “average” or other central measurements, which may hide potentially important
information [23] or overshadow underrepresented individuals as “anomalies” [8]. For instance,
Dillon and Stolk [23] found that compared with traditional analytics that would categories
students into “intrinsic” and “extrinsic” motivational categories, cluster analysis allow them to
discover a large percentage of their engineering student sample simultaneously adopting a range
of motivations that do not fall neatly into the conventional “intrinsic” and “extrinsic” categories.

S1.1 Cluster analysis in engineering education research

Prior work in engineering education research has compared k-means clustering against other
methods. [11] found that k-means delivered best and strongest results in their study context, [18]
found different methods comparable, whereas [23] endorsed different methods without choosing
one over another and analyzed the nuanced differences between similar clusters derived from
them. In the adjacent field of design research, [13] compared various methods for grouping
subproblems in designers’ problem decomposition process, where a novel hierarchical
method—spectral clustering method was found to be a more accurate approach than basic
hierarchical clustering for their dataset.

Some engineering education researchers advocated or developed more complicated methods. For
instance, [5] used a hybrid approach to examine educational barriers based on student
demographic and other background information through bisecting k-means clustering. This
hybrid approach combines the ideas of k-means and hierarchical clustering, another widely
applied cluster analysis method, to address potential problems caused by the random
initialization of centroids in k-means clustering. Similarly, [17] also applied a hybrid approach
combining k-means and hierarchical clustering, namely multistage Euclidean grouping, to profile
normative typologies of students enrolled in a design program.

Despite the popularity of the above two basic clustering methods—k-means and hierarchical
clustering, researchers have advocated newer tools. For instance, [10] applied a probabilistic
clustering method that has been less used in engineering education—Gaussian mixture modeling
to group the multifaceted psychosocial factors of students that may affect their holistic success.



[20] combined a neural network model, Kohonen networks, with k-means to categorize
entrepreneurial educational programs and institutions to understand the technical entrepreneurial
landscape.

Despite the variety of clustering techniques, there seems to be no consensus which technique is
better in engineering education research. This is not surprising as researchers similarly observe a
lack of consensus of clustering methods across research domains [46]. The lack of consensus is
partly due to dataset idiosyncrasies in the different study settings and ranging research questions
that researchers attempted to address with cluster analysis.

S2 Additional measures

The 11 engineering design-affiliated work activity items selected as variables for clustering
analysis capture various aspects of innovative engineering product design. For this set of
questions, participants are asked based on a 0-4 point Likert scale, i.e., from Never to Very
Often, with a “Not Applicable” option (In data cleaning, we decided to code “Not Applicable” as
“Never”): In your current or most recent job, how often are you engaged in the following
activities?

1. Searching out new technologies, processes, techniques, and/or product ideas
2. Generating creative ideas
3. Promoting and championing ideas to others
4. Investigating and securing resources needed to implement new ideas
5. Developing adequate plans and schedules for the implementation of new ideas
6. Designing a new product or project to meet specified requirements
7. Analyzing the operation or functional performance of a complete system
8. Selling a product or service in the marketplace
9. Seeing new market opportunities for new products and services
10. Creating products that fulfill customers’ unmet needs
11. Discovering new ways to improve existing products

The 8 workplace factor items included in the survey are shown below. Participants are asked
based on the same Likert scale: How often are you engaged in the following activities?

1. Presenting your work to senior managers and leaders
2. Working on something that generates interest and feedback from others in your

organization
3. Working in areas or domains that are unfamiliar to you
4. Cross-functional collaboration (working with different business units, etc.)
5. An ambiguous ill-defined problem
6. Leading or directing others
7. Documentation



8. Ethical questions or considerations

The self-efficacy measures included in the survey are shown below. All the measures below are
based on a 0-4 point Likert scale. Participants are asked: How confident are you in your ability to
do each of the following at this time?

Innovation Self-Efficacy: Innovation Self-Efficacy items are drawn from [75]. Item 4 was
added to the original five-item measure [61], as it was the second highest loading item from the
most significant factor (i.e., Experimenting) out of the five original factors [75].

1. Ask a lot of questions
2. Generate new ideas by observing the world
3. Experiment as a way to understand how things work
4. Actively search for new ideas through experimenting
5. Build a large network of contacts with whom you can interact to get ideas for new

products or services
6. Connect concepts and ideas that appear, at first glance, to be unconnected

Entrepreneurial Self-Efficacy: The 10 Entrepreneurial Self-Efficacy items are drawn from
[76]. The current scale makes up two of the six sub-dimensions of the original ESE measure,
namely “developing new product and market opportunities” (item 1-7) and “coping with
unexpected challenges” (item 8-10). It was decided that these two sub-dimensions were most
relevant to the engineering design program from which the engineers graduated [61].

1. See new market opportunities for new products and services
2. Design products that solve current problems
3. Discover new ways to improve existing products
4. Create products that fulfill customers’ unmet needs
5. Identify new areas for potential growth
6. Determine what the business will look like
7. Bring product concepts to market in a timely manner
8. Tolerate unexpected changes in business conditions
9. Work productively under continuous stress, pressure and conflict
10. Persist in the face of adversity

Design Thinking Self-Efficacy: The Design Thinking Self-Efficacy was originally developed
by [79] for evaluating people’s perceived confidence in design thinking. Design thinking was
operationalized as a five-step process including empathize, reframe, ideate, prototype and test.
The measure was based on a 0-100 slider scale and was rescaled to 0-4.

1. Sense how another person feels and what they might be thinking
2. Look at problems in the world from different angles
3. Generate a wide variety of ideas
4. Build a prototype solution that satisfies user needs
5. Accept feedback on your work and make changes
6. Enhance the lives of people by finding a better way to do things



Engineering Task Self-Efficacy: The 5-item Engineering Task Self-Efficacy was developed by
[73].

1. Design a new product or project to meet specified requirements
2. Conduct experiments, build prototypes, or construct mathematical models to develop or

evaluate a design
3. Develop and integrate component sub-systems to build a complete system or product
4. Analyze the operation or functional performance of a complete system
5. Troubleshoot a failure of a technical component or system

Demographic measures:

Demographic variables include gender (Male, Female, I prefer not to answer), race and ethnicity
(American Indian or Alaska Native, Asian or Asian American, Black or African American,
Hispanic or Latino/a, Native Hawaiian or Pacific Islander, White, Other, I prefer not to answer),
and years since graduation from the design program.

S3 Additional results

Figure S3.1. The elbow method (left) and gap statistics (right) suggest k = 5.



Figure S3.2. Scatter plot.

Table S3.3a. Descriptives of demographics based on five clustering results.

Demographics
Weighted membership

C1
44 (%)

C2
182 (%)

C3
214 (%)

C4
125 (%)

C5
154 (%)

Gender
Female 12 (27.3%) 40 (22.1%) 48 (22.4%) 18 (14.4%) 28 (18.4%)

Male 32 (72.7%) 141 (77.9%) 166 (77.6%) 107 (85.6%) 124 (81.6%)

Race

American Indian
or Alaska Native NA 1 (0.5%) 2 (0.9%) NA NA

Asian or Asian
American 14 (31.8%) 50 (27.5%) 71 (33.2%) 47 (37.6%) 61 (39.6%)

Black or African
American 1 (2.3%) 10 (5.5%) 4 (1.9%) NA 5 (3.2%)

Hispanic or
Latino/a 6 (13.6%) 14 (7.7%) 18 (8.4%) 5 (4%) 8 (5.2%)

Middle Eastern
or North African NA NA NA NA 1 (0.6%)

Native Hawaiian
or Other Pacific
Islander

NA 1 (0.5%) NA 1 (0.8%) NA

White 20 (45.5%) 101 (55.5%) 116 (54.2%) 66 (52.8%) 73 (47.4%)
Multiracial and
Other 3 (6.8%) 5 (2.7%) 3 (1.4%) 6 (4.8%) 6 (3.9%)

Years since
completing
the design
program

0-4 6 (13.6%) 28 (15.4%) 14 (6.5%) 1 (0.8%) 7 (4.5%)
5-8 7 (15.9%) 48 (26.4%) 36 (16.8%) 10 (8%) 12 (7.8%)
9-12 2 (1.4%) 28 (15.4%) 41 (19.2%) 18 (14.4%) 26 (16.9%)
13-16 6 (13.6%) 13 (7.1%) 27 (12.6%) 12 (9.6%) 19 (12.3%)
17-20 8 (18.2%) 15 (8.2%) 23 (10.7%) 15 (12%) 18 (11.7%)
21-34 15 (34.1%) 50 (27.5%) 73 (34.1%) 69 (55.2%) 72 (46.8%)



Table S3.3b. Descriptives of demographics based on five clustering results.

Measures
Sample C1 C2 C3 C4 C5

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Years since completing the
design programs 16.81 9.04 16.25 9.08 13.64 9.26 16.12 8.75 20.77 8.43 18.53 8.15

Table S3.4: ANOVA and Tukey’s HSD analysis on years since completing the engineering design innovation and
entrepreneurship course(s) (design program).

Measures

ANOVA Tukey’s HSD pairwise comparison

F(4, 714) p
Between
cluster

comparison
Diff. Lower* Upper* p adj.

Years since completing the
design program

13.99 < .001

C4-C1 4.42 0.24 8.60 0.03

C3-C2 2.47 0.07 4.88 0.04

C4-C2 7.03 4.26 9.80 < .001

C5-C2 4.88 2.27 7.50 < .001

C4-C3 4.56 1.87 7.24 < .001

C5-C3 2.41 -0.11 4.93 0.07

*Note: Lower and upper ends of the 95% Confidence Interval.



Table S3.5. Comparison of five clusters based on the 11 engineering design-affiliated work activities (0-4 pt. scale).

Measures
Sample C1 C2 C3 C4 C5

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

1. Searching out new
tech, processes,
techniques, and/or
product ideas

2.95 1.00 1.14 0.98 2.42 0.89 3.34 0.70 2.82 0.77 3.65 0.59

2. Generating creative
ideas 3.18 0.86 1.95 1.01 2.73 0.81 3.50 0.66 2.98 0.72 3.79 0.44

3. Promoting and
championing ideas to
others

3.20 0.88 1.86 1.07 2.74 0.80 3.52 0.63 3.04 0.70 3.80 0.54

4. Investigating and
securing resources
needed to implement
new ideas

2.79 1.12 1.30 1.00 2.09 1.03 3.12 0.91 2.56 0.88 3.76 0.47

5. Developing adequate
plans for new idea
implementation

2.94 0.97 1.41 0.92 2.56 0.89 3.24 0.80 2.60 0.68 3.69 0.57

6. Selling product/
service in the
marketplace

1.43 1.37 0.36 0.89 0.38 0.60 0.81 0.69 2.49 1.10 2.97 1.02

7. Seeing new market
opportunities for new
products and services

1.90 1.31 0.39 0.69 0.68 0.64 1.64 0.85 2.74 0.78 3.45 0.68

8. Creating products
that fulfill customers’
unmet needs

2.52 1.21 0.43 0.66 1.63 0.98 2.87 0.87 2.54 0.80 3.69 0.54

9. Discovering new
ways to improve
existing products

2.60 1.12 0.91 0.94 1.98 1.03 2.92 0.87 2.46 0.84 3.50 0.72

10. Designing a new
product/project to meet
specified requirements

2.87 1.12 0.75 0.97 2.44 1.00 3.45 0.68 2.28 0.89 3.68 0.52

11. Analyzing the
operation/functional
performance of a
complete system

2.65 1.14 0.86 0.98 2.52 0.99 3.18 0.78 1.99 1.07 3.10 1.00



Table S3.6. Comparison of five clusters in terms of self-efficacy measures and workplace factors (0-4 scale).

Measures
Sample C1 C2 C3 C4 C5

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Self
Efficacy
measures

Innovation
Self-Efficacy 2.96 0.63 2.61 0.81 2.70 0.56 3.01 0.58 2.90 0.60 3.32 0.52

Entrepreneurship
Self-Efficacy 2.67 0.70 1.93 0.77 2.24 0.58 2.75 0.55 2.70 0.65 3.25 0.51

Engineering Task
Self-Efficacy 2.91 0.78 2.36 0.89 2.92 0.64 3.13 0.66 2.56 0.84 3.05 0.81

Design Thinking
Self-Efficacy 3.07 0.52 2.65 0.75 2.88 0.48 3.18 0.44 2.97 0.49 3.35 0.42

Workplace
factors

Presenting to
upper mgmt 3.16 1.01 2.05 1.24 2.77 0.91 3.49 0.77 3.16 1.03 3.50 0.95

Doing work that
elicits interest 3.30 0.83 2.25 1.08 2.97 0.84 3.56 0.63 3.22 0.73 3.69 0.61

Exploring
unfamiliar areas 3.00 0.85 2.34 1.12 2.81 0.87 3.12 0.74 2.98 0.76 3.26 0.79

Cross-fun
collaboration 3.47 0.90 2.50 1.32 3.11 1.02 3.71 0.63 3.54 0.81 3.78 0.60

Ambiguous
prob-solving 3.24 0.87 2.32 1.29 2.95 0.92 3.40 0.74 3.33 0.73 3.57 0.66

Leading/directing 3.19 0.99 2.20 1.32 2.76 0.98 3.39 0.85 3.18 0.94 3.70 0.63

Documentation 3.03 0.93 2.27 1.09 3.03 0.88 3.23 0.86 2.76 0.90 3.17 0.91

Work on ethical
questions 2.00 1.07 1.43 1.15 1.73 0.96 1.93 1.03 2.01 1.00 2.58 1.04



Table S3.7. Comparison of five work profile clusters based on job roles and work backgrounds. Percentages are
calculated by dividing frequency of occurrence by cluster size for each of the five clusters. Participants were asked

to choose all options that apply.

Job roles and
work backgrounds

Clusters

C1 C2 C3 C4 C5

Design 25.0% 53.3% 69.2% 43.2% 62.3%

R&D 36.4% 64.8% 77.1% 44.0% 67.5%

Manufacturing 13.6% 27.5% 39.3% 20.0% 30.5%

Quality 9.1% 23.1% 22.0% 9.6% 18.8%

Security 0.0% 0.5% 1.9% 1.6% 3.2%

IT 2.3% 6.0% 5.6% 12.0% 11.0%

Support 9.1% 4.9% 5.6% 6.4% 5.2%

Project Management 18.2% 30.2% 40.2% 40.0% 53.9%

Functional Management 9.1% 9.9% 15.0% 27.2% 30.5%

Sales 4.5% 0.5% 0.5% 20.0% 13.6%

HR 2.3% 0.0% 1.9% 5.6% 7.1%

Education 15.9% 9.9% 6.5% 6.4% 9.7%

Public Relations 4.5% 0.5% 0.5% 14.4% 16.9%

Legal 0.0% 1.1% 0.9% 4.0% 5.2%

Finance 2.3% 1.1% 0.9% 13.6% 7.1%

Work at mid-large company 31.8% 45.6% 56.5% 40.8% 33.8%

Obtained MBA 2.3% 1.6% 4.7% 23.2% 16.9%

Entrepreneur/Founder 6.8% 2.2% 4.2% 23.2% 30.5%

Others 11.4% 7.7% 6.1% 15.2% 11.0%



Table S3.8. ANOVA and Tukey’s HSD analysis of self efficacy measures (0-4 scale), focusing on results of the four
clusters C2 to C5.

Measures

ANOVA Tukey’s HSD pairwise comparison

F(4, 714) p
Between
cluster

comparison
Diff. Lower* Upper* p adj.

Innovation
Self-Efficacy 28.37 < .001

C3-C2 0.31 0.15 0.47 < .001

C4-C2 0.20 0.01 0.38 0.03

C5-C2 0.62 0.45 0.80 < .001

C5-C3 0.31 0.14 0.48 < .001

C5-C4 0.42 0.23 0.62 < .001

Entrepreneurship
Self-Efficacy 82.53 < .001

C3-C2 0.51 0.35 0.67 < .001

C4-C2 0.46 0.28 0.65 < .001

C5-C2 1.02 0.84 1.19 < .001

C5-C3 0.51 0.34 0.67 < .001

C5-C4 0.55 0.36 0.75 < .001

Engineering Task
Self-Efficacy 19.47 < .001

C3-C2 0.21 0.01 0.42 0.04

C4-C2 -0.37 -0.60 -0.13 < .001

C4-C3 -0.58 -0.81 -0.35 < .001

C5-C4 0.49 0.25 0.73 < .001

Design Thinking
Self-Efficacy 32.78 < .001

C3-C2 0.29 0.16 0.43 < .001

C5-C2 0.47 0.33 0.61 < .001

C4-C3 -0.21 -0.35 -0.06 < .001

C5-C3 0.18 0.04 0.31 0.01

C5-C4 0.38 0.22 0.54 < .001

*Note: Lower and upper ends of the 95% Confidence Interval.



Table S3.9. ANOVA and Tukey’s HSD analysis on workplace factors (0-4 pt. scale), focusing on C2 to C5.

Measures

ANOVA Tukey’s HSD pairwise comparison

F(4, 714) p Btw cluster
comparison Diff. Lower* Upper* p adj.

Presenting to upper mgmt 35.81 < .001

C3-C2 0.72 0.46 0.97 < .001

C4-C2 0.39 0.10 0.69 < .001

C5-C2 0.73 0.45 1.01 < .001

C4-C3 -0.33 -0.61 -0.04 0.02

C5-C4 0.34 0.03 0.65 0.02

Doing work that elicits
interest 49.34 < .001

C3-C2 0.58 0.38 0.79 < .001

C4-C2 0.25 0.02 0.49 0.03

C5-C2 0.72 0.50 0.94 < .001

C4-C3 -0.33 -0.56 -0.11 < .001

C5-C4 0.47 0.23 0.71 < .001

Exploring unfamiliar areas 14.83 < .001

C3-C2 0.31 0.09 0.54 < .001

C5-C2 0.45 0.21 0.70 < .001

C5-C4 0.28 0.01 0.54 0.04

Cross-fun collaboration 34.13 < .001

C3-C2 0.60 0.37 0.83 < .001

C4-C2 0.43 0.16 0.69 < .001

C5-C2 0.67 0.42 0.92 < .001

Ambiguous prob-solving 28.73 < .001

C3-C2 0.45 0.23 0.68 < .001

C4-C2 0.38 0.12 0.64 < .001

C5-C2 0.62 0.38 0.86 < .001

Leading/directing 39.08 < .001

C3-C2 0.63 0.38 0.88 < .001

C4-C2 0.43 0.14 0.71 < .001

C5-C2 0.94 0.67 1.21 < .001

C5-C3 0.31 0.05 0.57 0.01

C5-C4 0.52 0.22 0.81 < .001

Documentation 14.27 < .001
C4-C3 -0.47 -0.74 -0.19 < .001

C5-C4 0.41 0.11 0.70 < .001

Work on ethical questions 19.47 < .001

C5-C2 0.85 0.55 1.16 < .001

C5-C3 0.65 0.35 0.94 < .001

C5-C4 0.57 0.24 0.90 < .001
*Note: Lower and upper ends of the 95% Confidence Interval.


