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Enhancing Zero-Shot Learning of Large Language Models for
Early Forecasting of STEM Performance

Abstract

This paper introduces an innovative application of conversational Large Language Models
(LLMs), such as OpenAI’s ChatGPT and Google’s Gemini, for the early prediction of student
performance in STEM education, circumventing the need for extensive data collection or
specialized model training. Utilizing the intrinsic capabilities of these pre-trained LLMs, we
develop a cost-efficient, training-free strategy for forecasting end-of-semester outcomes based on
initial academic indicators. Our research investigates the efficacy of these LLMs in zero-shot
learning scenarios, focusing on their ability to forecast academic outcomes from minimal input.
By incorporating diverse data elements, including students’ background, cognitive, and
non-cognitive factors, we aim to enhance the models’ zero-shot forecasting accuracy. Our
empirical studies on data from first-year college students in an introductory programming course
reveal the potential of conversational LLMs to offer early warnings about students at risk, thereby
facilitating timely interventions. The findings suggest that while fine-tuning could further
improve performance, our training-free approach presents a valuable tool for educators and
institutions facing resource constraints. The inclusion of broader feature dimensions and the
strategic design of cognitive assessments emerge as key factors in maximizing the zero-shot
efficacy of LLMs for educational forecasting. Our work underscores the significant opportunities
for leveraging conversational LLMs in educational settings and sets the stage for future
advancements in personalized, data-driven student support.

Introduction

“There’s Plenty of Room at the Bottom.”
Richard Feynman (1960)

Artificial intelligence (AI) methods are revolutionizing undergraduate science, technology,
engineering, and mathematics (STEM) education through early forecasting of end-of-semester
academic performance [1, 2, 3, 4, 5, 6]. These methods typically leverage numeric features of
students’ academic trajectories to train AI models. The advent of Transformer-based [7] large
language models (LLMs) [8, 9, 10, 11] has significantly expanded the potential for cross-domain
applications due to their extensive knowledge bases [12, 13] and complex task-solving
capabilities through basic reasoning [9, 14, 15] and planning [16]. Fine-tuning these LLMs via
transfer learning is a common approach for enhancing their performance in specific domains.



However, the prerequisites for such fine-tuning—extensive datasets and computational resources,
along with domain-specific machine learning expertise—often pose significant barriers.

This paper explores an alternative pathway by investigating the use of pre-trained LLMs to infer
STEM students’ end-of-semester performance without the need for extensive data collection or
model fine-tuning. Our focus is on a training-free approach that leverages the inherent zero-shot
learning capabilities of LLMs, which, despite their proven effectiveness across various
tasks [17, 18, 19], have yet to be thoroughly examined within the context of STEM education
forecasting.

Employing conversational LLMs, specifically OpenAI’s ChatGPT 3.5 and 4.0 [20] and Google’s
Gemini [21], we aim to demonstrate how these tools can forecast STEM students’ performance
early in the semester with minimal cost. Our research is driven by two primary research questions
(RQs):

• RQ1: To what extent are conversational LLMs effective as zero-shot learners in STEM
education, i.e., in the early forecasting of STEM performance?

• RQ2: How can the zero-shot learning performance of LLMs be enhanced in the STEM
education domain?

We collected data from 48 first-year college students enrolled in an introductory programming
course. This dataset includes a range of features, from students’ background information and
socio-economic status to their cognitive and non-cognitive attributes, all of which we translate
into natural language text suitable for LLM processing. Our analysis assesses the capability of
LLMs to make early semester performance predictions based on data sequences of varying
lengths and at different granularity levels.

Addressing RQ1, we undertake a comprehensive analysis of the zero-shot predictive power of
LLMs within the academic sphere, focusing on two key dimensions.

Primarily, we explore the temporal aspect of prediction—determining how early in a semester
LLMs can provide accurate forecasts of student performance. To this end, we analyze data
spanning three distinct timeframes: 2-week, 4-week, and 8-week intervals. The selection of these
intervals allows us to assess the efficacy of LLMs at different stages of the semester. Secondly, we
aim to identify the optimal granularity for performance prediction by LLMs at these specified
intervals. We categorize student performance into following three progressively detailed levels,
facilitating a nuanced analysis of LLMs’ ability to differentiate between students who are at risk
and those who are prone to risk, as well as their capacity to discern various degrees of risk among
students. This approach enables us to address critical questions regarding the timing and precision
of LLM-based forecasts, such as the earliest point at which LLMs can effectively predict student
risk levels, and how accurately they can distinguish between students at different risk levels.

• Two types: at-risk or prone-to-risk (grade below B-), and average or outstanding (grade B-
or above)

• Three types: at-risk or prone-to-risk (grade below B-), average (grade B- or above but
below A-), and outstanding (grade A- or above)



• Four types: at-risk (grade below C-), prone-to-risk (Grade C- or above but below B-),
average (Grade B- or above but below A-), and outstanding (grade A- or above)

Addressing RQ2, we delve into the impact of integrating students’ background and
non-cognitive features on the predictive accuracy of LLMs. We hypothesize that a richer feature
set, reflecting both the academic and experiential learning trajectories of students, can
significantly enhance LLM forecasting capabilities.

Our contributions are manifold:

• We present a novel, cost-effective, training-free approach for leveraging conversational
LLMs in the early forecasting of undergraduate STEM performance.

• We provide empirical evidence of the effectiveness of LLMs’ zero-shot learning in this
unique application domain.

• We outline strategies for enhancing LLMs’ zero-shot forecasting accuracy, emphasizing the
role of comprehensive feature integration to enrich the models’ understanding of students’
academic and experiential backgrounds.

Reflecting on Richard Feynman’s insightful declaration, “There’s Plenty of Room at the Bottom,”
our study underscores the vast potential for further enhancing LLM efficacy in educational
forecasting through innovative data utilization and model engagement strategies, paving the way
for future research in this promising intersection of AI and education.

Method

We collected data from 48 first-year college students enrolled in an introductory programming
course (CS1) at a public university in the United States, following approval from the University’s
Institutional Review Board. The dataset captures measures of three types of features of students’
academic trajectories: static background factors (comprising course-related meta-information and
socioeconomic status) and two types of time-variant factors, i.e., cognitive and non-cognitive. To
investigate whether pre-trained LLMs can accurately forecast STEM students’ end-of-semester
cognitive summative performance early in the semester, we formulate prediction as a natural
language generation problem.

The LLMs generate student end-of-semester performance by using zero-shot learning, i.e., we do
not fine-tune the LM using the data. Instead, LLMs take combinations of cognitive,
non-cognitive, and background data as input and generate the output sequence (inference), e.g.,
“At the end of the semester, the student will be prone to risk”. The conversational LLM-based
language generation approach requires the input data to be in a natural language format. Since our
original dataset is numeric, first, we transform it into a natural language dataset. Figure 1 provides
an overview of the approach for developing a language dataset on student learning for utilizing
pre-trained LLMs for zero-shot forecasting of early performance.



Figure 1: An overview of the approach for developing a language dataset on student learning for
utilizing pre-trained LLMs for zero-shot forecasting of early performance.

Language Dataset Development

Numeric Dataset of Student Learning. The background numeric data is 5-dimensional and was
collected at the beginning of the semester via a Qualtrics-based web survey. It includes students’
course-related meta-information (class standing and major) and socioeconomic status (gender,
race, and family yearly income). The numeric cognitive data is 21-dimensional and includes
students’ assessment scores (formative and summative) over the first 8 weeks of the semester
(first 4 Diaries, 6 Labs, 4 Quizzes, 6 Homework Assignments, and 1 Project) in the 16-week
course. This data was obtained from the course’s learning management system, namely Canvas.
The non-cognitive ordinal (numeric) data is 2-dimensional and includes repeated measures of
students’ emotional engagement. The non-cognitive data was collected through a
privacy-preserving smartphone-based application that triggered contextually appropriate,
study-specific daily questions based on rules specified by researchers. Participants’
de-anonymized answers were aggregated on secure, cloud-based servers for analysis. The three
types of features were used to create the numeric sequences of the input data. Finally, we created
three numeric datasets based on 8-week-long, 4-week-long, and 2-week-long input sequences,
adjusting the number of cognitive features accordingly.

Missing Value Imputation of Non-Cognitive Numeric Measures. The non-cognitive data
contained missing values caused by participants’ skipping questions or temporarily uninstalling
the app. We identified two types of missing values, (i) responses to all questions on a day were
missing, and (ii) responses to a fraction of the questions were missing. For the first case, we used
the Last Observation Carried Forward (LOCF) imputation method [22]. However, in some cases
we could not find a previous day with all questions answered, so we used a matching future day.
Addressing the second case was challenging due to the presence of missed follow-up questions.
When the response to the trigger question on the previous day differed, copying the response for



the follow-up question using LOCF would be unreliable [23]. To remedy this, we searched for a
previous day in which the participant responded to both the trigger question and the follow-up
question, and the trigger question’s response was the same as the missing day’s trigger question’s
response. In such a case, we applied the LOCF method on the matched previous day. If no
matching previous days were found, we used a matching future day for imputation.

Verbalizing the Dataset. The language dataset is created by transforming the numeric dataset
into natural language text. For this transformation, we designed a template (see the Appendix)
comprising the verbalized input sequence. In addition, to facilitate the LM for zero-shot learning,
the input sequences include suitable additional information, such as we prepended the following
message to the student’s cognitive information: “A student obtained the following assessment
scores in an introductory programming course ...”, and the following message to the student’s
background information: “Some background information about the student: ...”. Finally, we
included a task instruction for conversational LLMs to initiate the process of generating
performance forecasting in a specific format, i.e., “Predict the end semester performance of the
student into one of these classes ...”.

(a) The output generated by Gemini after the initial input doesn’t include the forecasted performance.
.

(b) After receiving further instructions, Gemini generated the forecasted performance.

Figure 2: Illustration of an instance when Gemini didn’t initially generate the desired output (i.e.,
students’ future performance) and how the issue was fixed.



Zero-shot Inference Using LLMs

A conversational LLM takes the verbalized data as input to infer the end-of-semester
performance. Given the small size of our dataset, we manually typed in the input sequence into
the dialog box. In most cases, the LM generated the output in the desired format given through
the instruction in the input, such as “At the end of the semester, the student will be prone to risk”.
However, sometimes, the LLM couldn’t generate the desired text against the input. In such cases,
we provided further instructions (e.g., behave like you are an expert) to the LLM and engaged it
in a dialogue until it generated the desired output, though sometimes the output was not in the
desired format. Figure 2 illustrates this infrequent phenomenon.

Experiments

To systematically investigate the research questions presented in the Introduction, we designed a
series of experiments utilizing datasets of varying lengths (8-week, 4-week, and 2-week) to
predict end-of-semester performance across three levels of granularity. These predictions were
made through zero-shot learning, employing three conversational LLMs: ChatGPT-3.5,
ChatGPT-4.0, and Gemini. Our experimental design involved testing four distinct feature
combinations—cognitive, background, and non-cognitive—to assess their impact on forecasting
accuracy. Initially, the models’ predictive capabilities were assessed using only cognitive features.
Then, we incrementally added background and non-cognitive features to explore how these
additional dimensions influenced predictive performance.

Results

The performance of the LLMs, depicted in Figures 3, varies according to the dataset’s duration
and the complexity of the classification task, encompassing combinations of cognitive (C),
cognitive and background (C + B), cognitive and non-cognitive (C + NC), and all features
combined (C + NC + B).

When the models exclusively utilize cognitive features for inference, they demonstrate enhanced
effectiveness in binary classification tasks, irrespective of the length of the data presented. This
indicates that models optimized with cognitive features are particularly adept at distinguishing
between binary outcomes. The most accurate predictions were made by ChatGPT 4.0 (as shown
in Figure 3(b)), achieving an accuracy of 67% with 2-week data, and improving to 69% accuracy
for both 4-week and 8-week datasets. Nonetheless, when tasked with a more nuanced four-class
classification using only cognitive features, the accuracy across all three datasets falls below
50%.

The incorporation of background features (C + B) notably enhances binary classification
accuracy. For example, ChatGPT 4.0’s accuracy for 2-week data improved to 73%, and further
increased to 75% and 77% with 4-week and 8-week data, respectively. Gemini showed
exceptional performance in two-class accuracy with 79% on the 8-week dataset, as indicated in
Figure 3(c), although its accuracy in four-class classification modestly improved or slightly
declined from cognitive-only models.

Adding non-cognitive features to cognitive ones (C + NC) did not substantially improve



(a) ChatGPT 3.5
.

(b) ChatGPT 4.0
.

(c) Gemini

Figure 3: Performance comparison of three conversational LLMs.

performance compared to using cognitive and background features together (C + B). In scenarios
where (C + NC) features slightly outperformed (C + B), the improvement was marginal, not
exceeding a 2% increase in accuracy.

The introduction of all three feature types—cognitive, background, and non-cognitive—leads
to a significant improvements in four-class classification accuracy. Both ChatGPT 4.0 and



Gemini reached 60% accuracy on 8-week data, with ChatGPT 4.0 also hitting 60% for 4-week
datasets, showcasing an improvement from its performance in the cognitive and binary
feature-based scenarios. However, this comprehensive feature combination does not significantly
better the 2-week 4-class accuracy, likely due to the substantial amount of missing non-cognitive
data in the first weeks. Despite this, we observe an uptick in three-class classification accuracy:
60% for 2-week, 65% for 4-week, and an impressive 75% for 8-week datasets by Gemini. Yet,
it’s interesting to note that the addition of all feature types does not surpass the accuracy achieved
by combining just cognitive and background features in binary classification tasks for the 2-week
and 4-week datasets.

Discussion.

Our experimental findings provide insights into two primary research questions, particularly
focusing on the zero-shot predictive capabilities of conversational LLMs in the early weeks of a
semester. By the end of the second week, our analysis suggests that binary
classification—distinguishing between students who are outstanding/average and those who are
prone to risk/at risk—provides the most effective performance grouping. Notably, ChatGPT 4.0
emerges as a powerful tool in this early detection, capable of distinguishing between at-risk and
not-at-risk students with an accuracy of up to 73%. This underscores the potential of ChatGPT
4.0 for forecasting performance as early as the second week, highlighting its utility in identifying
students who may require additional support.

The practical implications of our study suggest the significant value of integrating background
factors and non-cognitive measures to maximize the zero-shot predictive accuracy of
pre-trained LLMs in early performance forecasting. In scenarios where non-cognitive data is
unavailable or prohibitively expensive to collect, incorporating background information alongside
cognitive data can notably improve the forecasting capabilities of LLMs. Our findings from
supplementary experiments, as illustrated in Figure 4, indicate that excluding family yearly
income from the combination of cognitive and background factors does not markedly affect the
LLMs’ performance. This finding indicates that readily accessible background features—such as
class standing, major, gender, and race—are sufficient for maintaining high prediction accuracy,
offering a pragmatic strategy for leveraging conversational LLMs in educational contexts without
the need for extensive data collection.

Furthermore, our analysis reveals that while ChatGPT 4.0 consistently exhibits the highest
performance across the board, Gemini’s efficacy aligns closely with that of ChatGPT 4.0,
particularly as the dataset expands to include 8-week data. This observation suggests that Gemini
could serve as an effective alternative to ChatGPT 4.0 in certain forecasting scenarios, especially
as the amount of available data increases.

Finally, our study highlights a fundamental limitation in the existing knowledge base of these
sophisticated conversational LLMs. Despite the integration of a comprehensive set of
features—cognitive, non-cognitive, and background—and the extension of the dataset to
8-week-long data, the accuracy of even the leading models, ChatGPT 4.0 and Gemini did not
surpass the 80% threshold in binary classification tasks. This finding points to a critical ceiling in
the current capabilities of conversational LLMs, suggesting that while they hold significant
promise for educational forecasting, their effectiveness is bounded by the complexity of the task



(a) 8-week
.

(b) 4-week
.

(c) 2-week

Figure 4: Performance of three LLMs based on a combination of cognitive and background factors.
The background features exclude family yearly income and include students’ class standing, major,
gender, and race, which are easily available.

and the depth of their pre-trained knowledge.

Conclusion

In this paper, we introduced a cost-effective, training-free methodology that leverages the intrinsic
knowledge of of pre-trained conversational LLMs to forecast the academic performance of STEM
students early in their educational journey. Our approach circumvents the conventional need for
domain-specific model training, showcasing that LLMs possess an innate ability to generate
reasonably accurate predictions based on individual student data, thereby obviating the necessity
for extensive, domain-specific dataset accumulation.

Our empirical investigations reveal that these models, particularly when supplemented with a rich
set of cognitive, background, and non-cognitive features, can offer significant predictive insights.
This finding is pivotal, suggesting that in contexts where gathering extensive domain-specific data
is impractical or where expertise for model customization is limited, enhancing the feature set
used for prediction could markedly improve outcomes. The accessibility and low cost of
conversational LLMs further underscore the viability of this approach, emphasizing the strategic
advantage of feature optimization over traditional model training or fine-tuning.

Moreover, our research indicates that while direct application of conversational LLMs in
educational forecasting is promising, there exists a discernible limit to the accuracy achievable
without domain-specific adaptation. This limitation, however, does not diminish the value of our
findings but rather highlights a critical area for future exploration. The potential for increasing
predictive accuracy through refined feature selection, the thoughtful design of cognitive
assessments, and the integration of diverse student data points remains vast and largely
untapped.

Emphasizing the untapped potential in this research area, there is plenty of room for further
improvement of LLMs’ efficacy by utilizing our data-focused, training-free approach. This aspect
of our work highlights the promising avenue for future research, aimed at refining and enhancing
the predictive capabilities of LLMs in the educational domain without the need for extensive



model retraining. Looking ahead, we see substantial opportunities for advancing LLMs’
efficiency in educational forecasting by continuing to refine our approach, which will constitute
the focus of our future work.
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Appendix

In this section, we provide the template used for verbalizing numeric data into a language-generation dataset.

Instruction: Predict the end of semester performance of the student into one of these classes: [LIST OF TEXT
SEQUENCE DESCRIBING END OF SEMESTER PERFORMANCE GROUPS]

Input: The student obtained the following assessment scores in an [NAME OF COURSE] on [NAME OF
LANGUAGE] in [SEMESTER] from week 1 to week [n] for
COGNITIVE FEATURES [LIST OF COGNITIVE TESTS]: In the first week, scored [?] out of [?] in [NAME

OF COGNITIVE TEST], ...
NON-COGNITIVE FEATURES Student believes that student might get [EXPECTED SUMMATIVE PER-

FORMANCE] grade and student is [SATISFACTION LEVEL] satisfied with performance. In week 2 [....
BACKGROUND FEATURES Some background information about the student: Student is a [RACE], [GEN-

DER], in his/her class standing year with a major in [MAJOR]. Student’s family income is [INCOME].

Note: The following three tags are not shown in the input sequence. These are used to help identify different
types of features used in the experiments: COGNITIVE FEATURES, NON-COGNITIVE FEATURES, and
BACKGROUND FEATURES
Legends:

• LIST OF TEXT SEQUENCE DESCRIBING END OF SEMESTER PERFORMANCE GROUPS
– If the input includes only cognitive features, then include the following sequence: 1) At the end of
the semester, the student will exhibit an average or outstanding performance and 2) At the end of the
semester, the student will be at risk or prone to risk.
– If the input includes cognitive and background features, then include the following sequence: 1)
At the end of the semester, the student will exhibit an outstanding performance, 2) At the end of the
semester, the student will exhibit an average performance, and 3) At the end of the semester, the student
will be at risk or prone to risk.
– If the input includes cognitive and background features, then include the following sequence: 1)
At the end of the semester, the student will exhibit an outstanding performance, 2) At the end of the
semester, the student will exhibit an average performance, 3) At the end of the semester, the student
will be prone to risk, and 4) At the end of the semester, the student will be at risk.

• NAME OF COURSE: name of the course used in the study

• NAME OF LANGUAGE: name of the programming language taught in the course

• LIST OF COGNITIVE TESTS: name all cognitive tests used for formative or summative assessment
throughout the duration of the input sequence

• NAME OF COGNITIVE TEST: name the cognitive test

• EXPECTED SUMMATIVE PERFORMANCE: A/B/C/D/not pass

• SATISFACTION LEVEL: very/somewhat/a little/not at all

• MAJOR: Agriculture Engineering/Biological System Engineering/Construction Engineering/Mechan-
ical Engineering/Prefer to self-describe

• INCOME: Less than $10,000/$10,000 - $19,999/$20,000 - $49,999/$50,000 - $99,999/$100,000 -
$149,999/More than $150,000.


