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Developing a Human-Centered Engineering Design Self-

Assessment Survey 

Introduction 

In this paper, we will present the development of an assessment tool intended to measure 

Human-Centered Engineering Design (HCED) self-efficacy over a multi-year sequence of 

courses in undergraduate engineering. We will discuss our motivations and intentions for this 

work and how these informed the design of the survey, including the reasoning behind using 

self-efficacy measures. We will also present our early analysis of the validity of this tool and its 

utility in measuring HCED learning. Findings from this paper cover data collected at the 

beginning of the Fall 2023 semester. Future work will include pre/post comparison and 

longitudinal analysis. 

Design is a central part of engineering and continues to play an important role in 

engineering undergraduate education [1]–[3]. Design projects have been positioned in the 

freshman and senior years as cornerstone and capstone projects [1], [4]–[7]. Beyond these 

design-focused courses, many engineering courses employ a project-based learning approach, 

often utilizing design projects as a way to engage students in experiential learning [8]. We have 

noted growing interest in design projects, especially from faculty teaching technical electives. 

These courses and design experiences cover topics from all manner of engineering disciplines 

and are wide ranging and diverse in their topics and approaches. This means that one student’s 

exposure to design learning experiences may differ greatly from another’s. Because design is a 

central part of engineering, we should expect that students receive appropriate training in design 

throughout their undergraduate career. By developing assessment tools that can be used to 

measure design self-efficacy over time, we can facilitate a better understanding of how students 

are developing the design knowledge, skills, and abilities necessary for their success. 

Learning progressions outline students’ journeys through an academic program in the 

context of developing a specified competency or knowledge base and are important for assessing 

students’ achievements [9]. A learning progression framework presents a broad description of 

essential content and general sequencing for student learning and skill development, providing 

scaffolding for curriculum design [10]. By developing HCED frameworks and assessment tools, 

we seek to assist educators in planning and building curricula for engineering students to develop 

human-centered engineering design knowledge, skills, and mindsets [11]. 

We represent the Siebel Center for Design at the University of Illinois Urbana-

Champaign. Part of our mandate is to support the integration of Human-Centered Design [12]–

[17] concepts within the College of Engineering. This study is motivated by the design question, 

“How might we develop assessment tools to measure student learning of human-centered 

engineering design over a four-year undergraduate degree?” To this end, self-efficacy has been 

selected as an indicator of learning progress. While not a perfect analog for learning [18], self-

efficacy has been shown to track with achievement in a variety of contexts including engineering 

education [19]–[23]. For our purposes, self-assessment provides an accessible way to collect data 

without significant effort or cognitive load from our participants, allowing for data collection at 

various touchpoints throughout their undergraduate education. This led us to the research 

questions for this study: 



RQ1) How do self-efficacy assessments differ between students at various academic levels? 

RQ2) Can we assess self-efficacy in various content areas and differentiate between them? 

Methods 

In this section, we will first provide an overview of the study design and how it relates to 

these research questions. Then we will present our methodology for participant recruitment and 

selection, as well as the demographics of our sample. We will then describe our analysis 

methodology, the results of which can be seen in the Results section. 

Study Design 

 This paper represents our findings from the development and initial pilot deployment of 

our HCED self-efficacy assessment. The intention is that this tool may be used to measure 

students’ learning at various touchpoints throughout their four-year engineering undergraduate 

education. Our initial goal was to collect pre/post data in all courses affiliated with the design 

center, in each semester, over the next several years. However, differences in response rates from 

pre-test to post-test, and the proximity of the Fall post-test to the Spring pre-test may result in 

changes to this schedule. 

 At each instance of data collection, students respond to a short survey (see Figure 1) 

which includes items intended to measure students’ self-efficacy in various aspects of human-

centered engineering design. These questions ask students to “Rate your degree of confidence to 

perform the following tasks by recording a number from 0 to 100.” In addition to these 

questions, students are asked a series of demographic questions to facilitate demographic sorting. 

Responses are submitted through a university provided web portal and linked to the student’s 

Figure 1 – Screenshot showing sample questions from the survey. 



university ID. These identifiers are removed, and data is anonymized using an automated python 

script before the data is accessible to researchers. This process maintains a record of which 

response belongs to which anonymized ID. This will allow us to explore longitudinal data in 

future work. By seeing growth in a specific semester, we can learn more about what is being 

learned in those classes. This will help us understand what is working at a college-wide level. It 

is important to note that in this study, only data from the beginning of the Fall 2023 semester is 

used. Therefore, in this work, students are not tracked as they progress from freshman to 

sophomore to junior, however data from students at each of these levels will be explored. The 

same survey is sent to all students, regardless of academic year or department. Therefore, the 

items must be generic enough to apply to a verity of types of engineering design (e.g. both 

mechanical and software design). As the scope of data collection is expected to grow over time 

to theoretically cover all students in the college of engineering, we have chosen multiple choice 

answers to simplify data analysis. 

 Student responses to the HCED items are combined into five factors relating to HCD 

taxonomy spaces. To answer RQ1, we’ve collected data from 100-, 200- and 300-level students, 

and will compare the factor scores of each group using an independent sample t-test to determine 

whether there is a significant difference among self-efficacy at various academic levels. Each of 

these factors is associated with a different HCED content area. We seek to answer RQ2 by 

verifying that these factors can be measured independently.  

Participant Recruitment and Selection 

A link to a web survey was distributed to faculty members teaching design courses within 

the College of Engineering. The link was then passed on to students. The first page of the survey, 

which contained all of the required information for informed consent, asked potential 

participants 1) to confirm that they were at least 18 years old and had read the sheet in its 

entirety, and 2) whether they agreed to participate in the study. All those who were at least 18 

years old and provided informed consent were included in the dataset. Informed consent is 

collected each time the survey is deployed, and no compensation has been provided for 

participation. Upon investigation of responses, we rejected those with missing responses to the 

core HCED items as well as those with obvious faults (e.g., selecting the first option for every 

question). This paper will focus on responses to the pre-survey from Fall 2023. A pre/post 

comparison and additional longitudinal investigations are planned for future work. 

Survey Design 

We started with an existing Engineering Design Self-Efficacy instrument, developed by 

Carberry, Lee, and Ohland [24]. Students are asked to “rate your degree of confidence to perform 

the following tasks” on a scale of 0 to 100. This simple survey seemed like an ideal basis for 

expansion to measure HCED learning progressions. Firstly, it had already been used in the 

context of engineering design learning and was shown to track with design experience, that is 

those with more experience also had higher self-reported confidence scores. We aimed to add 

items to the survey which further covered the activities of Human-Centered Engineering Design. 

Early, pilot survey deployments included the nine original Engineering Design items from 

Carberry et al. in order to verify that the responses to these questions were in line with existing 

work. However, these were dropped from subsequent versions to reduce the overall length and 



focus on HCED concepts. Importantly, there is significant overlap between “traditional” 

engineering design and HCED. However, as you may imagine, HCED has an emphasis on 

stakeholder engagement in the design process, which is not typically emphasized to the same 

extent in the generalized views of engineering design.  

We used the Human Centered Design Taxonomy [25] to inform the development of new 

survey items covering HCED. For each space in the HCD taxonomy (Understand, Synthesize, 

Ideate, Prototype, Implement), we asked, “What is the goal of this space in the context of 

engineering design?” From there, we asked, “What are the activities necessary to accomplish this 

goal, in the context of engineering design?” From this process, we came up with a set of 24 

potential items. After discussing as a team, we reached a consensus on the set of 17 in the table 

below. These items were then reviewed by a third-party researcher with PhD qualifications and 

relevant experience in the field. These became the items for our HCED Self-Efficacy Instrument 

and are listed in Table 1. As there is no agreed set of HCED activities available in the literature 

yet, these items may not be sufficient to capture the desired level of detail in all cases. Further 

work is necessary to confirm the completeness of the set in its coverage of HCED concepts and 

tasks, as well as the robustness of interpretation of these items. We have taken some early steps 

toward the validation and verification of this instrument, which are outlined in the subsequent 

sections. 

Table 1 - HCED Self-Efficacy Instrument items 

Q# Survey items HCD Taxonomy Space 

12 Conduct background research (e.g. 
internet search, market investigation, etc.) 

Understand 
Goal: To attain a good 

understanding of the unmet need 13 Empathize with stakeholders to identify underlying needs 

14 Resolve conflicting information from stakeholders Synthesize 

Goal: To synthesize information 
to identify insights 

15 Define the goals of the design problem 

16 Identify trends/patterns in gathered information 

17 Frame design needs so that solutions can be developed 

18 Collaboratively generate design ideas Ideate 

Goal: To generate multiple 
potential solutions 

19 Generate a range of design ideas 

20 Assess feasibility of design ideas 

21 Create rough prototypes to get intermittent feedback Prototype 

Goal: To create representations 

of design concepts 
22 Select viable prototyping methods (e.g., physical prototyping, 

wireframing, simulations, etc.)  

23 Iterate based on findings from prototyping 

24 Clearly identify the purpose of creating prototypes  

25 Create a plan for the implementation of a design solution Implement 

Goal: To implement a design 

concept in the real world 
26 Evaluate the effectiveness of an implemented design solution 

27 Communicate design solution to stakeholders 

28 Ensure the design solution continues to work in the future 

Cronbach’s alpha 

To explore the internal consistency between related items within our sample, we 

computed the Cronbach’s Alphas for the groups of items belonging to each HCD taxonomy 

space [26]. The Cronbach’s Alphas for all categories were above 0.8 and are shown in Table 2.  



Table 2 – Cronbach’s Alphas for the groups of questions belonging to each HCD taxonomy 

space 

HCD Taxonomy Space Cronbach’s Alpha 

Understand 0.829 

Synthesize 0.923 

Ideate 0.925 

Prototype 0.959 

Implement 0.937 

Factor Analysis 

We can further explore the relationships between items through factor analysis [27]. This 

gives us a sense of the underlying factors which are being measured by our items. Theoretically, 

our items represent five underlying factors corresponding to the five HCD taxonomy spaces. To 

verify that we have five factors represented in our data, we can look at the eigenvalues to 

determine how many are greater than one (kaiser criterion), or above the ‘elbow’ (skree plot), or 

greater than the corresponding eigenvalue of randomly generated data. In our case, these 

methods all suggest two factors, but using just two factors results in multiple questions with 

roughly equal weight in both factors. This suggests that these items do not measure five 

independent constructs. However, this is not entirely unexpected. Our theoretical model allows 

for the overlap of HCD taxonomy spaces, i.e. one can simultaneously engage in Ideate and 

Prototype spaces. Yet our items were intended to cover all five spaces. Thus, we proceed with 

factor analysis with five factors, and will compare how the factor loadings align with our 

expected model.  

A heatmap of factor loadings for five factors is shown in Figure 2. Loadings vary from 0 

(dark purple) to 1 (bright yellow). Each row represents one question, each column represents one 

factor. Recall that we expect to find a factor related to the Understand space and associated with 

Figure 2 – Heatmap of factor loadings 



questions 12 and 13. A “Synthesize” factor associated with questions 14-17. An “Ideate” factor 

associated with questions 18-20. A “Prototype” factor associated with questions 21-24, and a 

“Implement” factor associated with questions 25-28. The factor loadings computed through 

Exploratory Factor analysis do not perfectly match our expected model, though there are notable 

similarities. Factor 1 has high loadings for questions 21, 22, and 23 and no other factors include 

these questions in a meaningful way. This suggests that Factor 1 roughly corresponds to our 

“Prototype” space. Interestingly, we also see contributions from questions 17, 25, 26, and 28, 

which are related to problem framing, planning and decision making. Factor 2 is most strongly 

associated with questions 12, 13, and 14, with lesser weights for questions 15, 16, 17, and 27. 

This seemingly aligns with the “Understand” space. The inclusion of question 27 is also notable 

in light of the shared term “stakeholder” which appears in 13, 14 and 27. Factor 3 is most 

strongly associated with questions 18, 19 and 20. This is a good match with the “Ideation” space, 

though there is some overlap with items expected to fall under “Synthesis.” Interestingly, these 

expected synthesis questions 14-17 are spread among these first four factors. Questions 15 

(Define the goals of the design problem), 16 (Identify trends/patterns in gathered information), 

and 17 (Frame design needs so that solutions can be developed) contribute to the “Understand” 

and “Ideate” factors as well as Factor 4, which is most strongly associated with question 16. 

Thus Factor 4 is roughly mapped to “Synthesize.” The nebulous nature of this factor is 

appropriate for the synthesis space, which is notoriously difficult to pin down. Finally, Factor 5 

is most strongly associated with question 27, as well as 24, 25, 26, and 28. These reasonably 

represent the “Implement” space. To summarize, Factor 1: Prototype, Factor 2: Understand, 

Factor 3: Ideate, Factor 4: Synthesize, Factor 5: Implement. Additionally, items expected to be 

related to synthesis were found to be associated with understanding, ideation, and synthesis. 

Finally, participants seemed to associate questions which included the word “stakeholder.” This 

suggests some latent factor related to stakeholder interactions. While these factor loadings don’t 

perfectly match the expected theoretical model, they are a reasonable match for many items. The 

distributed nature of question 17 (Frame design needs so that solutions can be developed) and 

question 20 (Assess feasibility of design ideas) which appear to contribute to many factors each, 

suggests that these questions may need to be clarified. Otherwise, this might be an indication that 

respondents in our sample do not strongly associate these items to a particular construct. This 

could be because the item itself is not associated with a particular construct, or that the 

respondents are not aware of the underlying association. More could be learned by changing 

these items and comparing the results. 

We will use these factor loadings to compute a factor score for each of the five spaces, 

Understand, Synthesize, Ideate, Prototype, and Implement. Only items with positive factor 

loadings will be included. This is because including items with negative weight means that the 

maximum factor score corresponds to a low response on some items. Since all of our questions 

ask for a degree of confidence from 0 to 100, having a maximum factor score associated with a 

degree of confidence less than 100 makes little conceptual sense. Therefore, factor scores for 

each factor are computed as the linear combination of items weighted by their factor loading, 

ignoring any items with negative weight. 

Results  

 In the beginning of Fall 2023, there were 307 respondents. These students were affiliated 

with 10 different courses in the College of Engineering, at the 100, 200, and 300 levels. The 



demographics of the sample can be seen in Table 3 and a pie chart showing the number and 

percentage of students at each academic level is shown in Figure 3. The ‘other’ category 

includes students who did not respond to this survey question, or whose response could not be 

interpreted as an academic level.  

 

 Each student rated their own degree of confidence related to the 17 HCED items 

described previously. The distributions of confidence levels for each item are shown in Figure 4. 

Students at the 100, 200, and 300-levels are shown in blue, orange, and green respectively. Note 

that these histograms are plotted with counts on the y-axis, so differences in the sizes of each 

group result in different heights. Note that for several questions (e.g., 17, 21, 22), there is a clear 

increase in confidence from the 100-level to the 300-level. Individual items were combined into 

larger factors as described in the Methods section. 

The average factor scores for each academic level are shown in Figure 5 as well as Table 4. 

Note that the Prototype factor score is the lowest for all three groups but increases substantially 

from 100 to 300-level. An independent samples t-test was used to compare the average factor 

Table 3 – Demographic Distributions 

Race/Ethnicity Number (%) Gender Identity Number (%) 

Asian or Pacific Islander 127 (41.4%) Female 67 (21.8 %) 

Black or African American 2 (0.7%) Male 233 (25.9 %) 

Hispanic or Latino 22 (7.2%) Transgender 1 (0.3 %) 

Native American or Alaskan Native 1 (0.3%) None of these 2 (0.7 %) 

White or Caucasian 125 (40.7%) Other or prefer not to say 0 (0 %) 

Multiracial or Biracial 21 (6.8%) N/A 4 (1.3 %) 

A race/ethnicity not listed here 7 (2.3%)   

N/A 2 (0.7%)   

Figure 3 – Pie chart of academic level of students in sample. 



scores at different academic levels. There was a significant difference in every factor from the 

Figure 4 – Histograms for each HCED item in the survey showing the distribution of degree of 

confidence for 100, 200 and 300-level students. 



100 to 200 level, but no significant difference from 200 to 300 level. The results of these t-tests 

can be seen in Table 5. Because this data was collected at the beginning of the Fall semester, 

students at the 100-level represent incoming freshman, and the change from 100 to 200 may be 

due to the learning experiences during the freshman year. Similarly, changes from 200 to 300 

may be due to learning experiences during the sophomore year.  

Table 4 – Mean factor scores  

Factor 100 level 200 level 300 level 

Understand 57.07 72.18 75.05 

Synthesize 61.25 75.14 75.98 

Ideate 62.97 76.36 76.88 

Prototype 54.57 71.28 74.28 

Implement 58.05 72.87 74.84 

 

Table 5 – T-test results indicating change from year to year 

Factor 100 → 200 level 200 → 300 level 

Understand t = -4.552, p = 1.035e-05 t = -1.144, p = 0.254 

Synthesize t = -4.664, p = 6.420e-06 t = -0.355, p = 0.723 

Ideate t = -4.470, p = 1.460e-05 t = -0.207, p = 0.836 

Prototype t = -4.896, p = 2.332e-06 t = -1.128, p = 0.261 

Implement t = -4.515, p = 1.209e-05 t = -0.797, p = 0.427 

 

Figure 5 – Average factor scores for 100, 200 and 300-level students 



Conclusions 

 In this paper, we’ve presented our early findings around the development and deployment 

of a Human-Centered Engineering Design self-efficacy assessment tool. Data was collected 

during the Fall 2023 semester, with 307 responses from students at the 100, 200, and 300 levels. 

Cronbach’s alpha was computed for each group of items belonging to each of the HCD 

taxonomy spaces and was found to be >0.8 for all constructs. Additionally, factor analysis was 

carried out to explore how factor loadings compare to the theoretical model. While agreement 

was not perfect, five emergent factors from exploratory factor analysis were mapped to the five 

HCD taxonomy spaces. Notably, questions intended to be associated with the “Synthesis” space 

were found to contribute to factors for “Understand”, “Ideate”, and “Synthesis.” Additionally, 

questions around stakeholder interactions were found to be related even when describing 

different parts of the design process. This suggests that students consider stakeholder interactions 

as a separate aspect of the engineering design process. Items 17 and 20 were found to be weakly 

associated with multiple factors, suggesting that these items may need to be clarified or 

otherwise revised. 

 These factor loadings were used to compute factor scores associated with “Understand”, 

“Synthesize”, “Ideate”, “Prototype”, and “Implement” spaces. The average factor scores for 100, 

200 and 300 level students were compared to answer RQ1) How do self-efficacy assessments 

differ between students at various academic levels? A significant difference was found for all 

factors between the 100 and 200 level students. Notably, Prototyping confidence increased from 

an average of 54.57 for the freshman to 71.28 for sophomores. While there is significant growth 

indicated from the 100 to 200 levels, we cannot yet attribute this to learning experiences in 

freshman design courses. A major limitation of this work as it currently exists is a lack of control 

groups or other control measures. This means that we cannot differentiate between a change 

caused by a design learning experience and a change due to other unknown circumstances. One 

might expect that students naturally mature and gain confidence as they move through their 

undergraduate careers. Ideally, this effect will be measured in future work in two ways. First, by 

collected data from students who are not receiving significant training in human-centered 

engineering design, and second, by including questions to measure background maturation and 

increases in confidence unrelated to engineering design education. Future work will also focus 

on the generalizability of these items, and their validity beyond our context of use. 
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