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Abstract 
In modern Electrical Engineering degree programs, MATLAB is often one of the first coding 
experiences a student is exposed to. Most introductory robotics courses that combine hardware 
and software require students to understand C (typically learned during junior year) or require 
part of the course to teach coding syntax. In order to introduce robotics and cyber-physical 
systems earlier in the curriculum, we have developed an interface to allow students to remotely 
control a wireless microcontroller (e.g., Arduino MKR 1010) using MATLAB. This interface 
comprises two halves: 1) a MATLAB class that abstracts UDP commands transmitted over Wi-
Fi, and 2) a custom C++ library for receiving, parsing, and responding to commands over UDP, 
as well as streaming data back to the client. The interface leverages students’ existing knowledge 
of MATLAB and bypasses the need for C programming, allowing students to get early exposure 
to hardware-software integration, signal processing, edge computing, end-to-end platform 
development, and systems engineering. Our interface facilitates data observation, recording, 
manipulation, and analysis. Students have access to live data streams, real-time plots of sensor 
values, and the ability to use the command window to run and test individual commands outside 
of scripts. We deployed this system in an introductory class where students perform various 
mechatronic lab exercises and complete a final project where their robot navigates a maze then 
collects and classifies objects using sensor data and neural networks. We surveyed two semesters 
of students at the end of the course, and students reported that using this interface enhanced their 
learning experience despite varied responses about the difficulty of implementation. With the 
growing importance of data science in electrical engineering, tools like our interface play a 
crucial role in exposing students to cutting-edge robotics and cyber-physical systems earlier in 
the degree program. Our interface has been made available on GitHub for any who wishes to 
implement it. 
 
 
Introduction 
 
The advent of Arduino microcontrollers has provided a more user-friendly and approachable 
method for introducing topics in robotics and embedded programming [1]. It is common to find 
Mechanical Engineering departments teaching mechatronics courses that cover Arduino 
programming alongside basic circuitry, sensors, and actuation [2]. These courses are intended for 
lowerclassmen (freshman, sophomore) and require the students to learn the basics of 
programming and Arduino syntax, while occurring early enough in the student’s career that they 
are introduced to these exciting topics while still discovering their interests [3]. 
 
In contrast, Electrical and Computer Engineering (ECE) students typically learn C/C++ from the 
Computer Science department before later learning how to use with a focus on low-level 
programming of embedded systems [4]. Many ECE departments lack a course with a low barrier 



to entry that introduces the exciting topics covered in Mechanical Engineering’s mechatronics 
course. Although there has been debate in the academic community about the effectiveness of 
using Arduinos to teach embedded programming, many universities have successfully 
implemented them in the classroom with positive response from the students [5], [6]. While 
many ECE students are familiar with Arduino within our department, this familiarity generally 
comes from personal experience gained outside the classroom. In our ECE department, students 
begin learning MATLAB in their introductory courses. Our department’s decision to use 
MATLAB was influenced by its graphics capabilities and the university-wide license providing 
free access for faculty and students. Additionally, MATLAB’s existing Toolbox add-ons provide 
significant utility for the curriculum, particularly for later courses like Antennas and Signal 
Processing. Although students gain early familiarity with MATLAB, they lack formal education 
on programming Arduinos. Arduino programming can be accessible to a beginner, but 
manipulating and visualizing sensor data is non-trivial, and higher-level functions (e.g., machine 
learning) are challenging to implement. For example, Plata et al. successfully demonstrated the 
use of Arduinos for an early introduction to topics in robotics but dedicated eight of the sixteen 
class sessions to “getting to know Arduino” [7].  
 
At the University of Utah, we have developed a new course for sophomore-level ECE students to 
introduce topics related to robotics and cyber-physical systems that use Arduino hardware paired 
with a unique MATLAB interface (the “MATLAB-MKR Interface”) to bypass the need to learn 
C in class. At the sophomore level, enrolled students have at least completed an introductory 
MATLAB course and an introduction to circuits. This allows us to take advantage of the user-
friendly nature of the Arduino hardware while leveraging students’ preexisting familiarity with 
MATLAB. By removing the time spent learning coding from our course, we were able to add an 
additional unit (alongside the traditional robotics units covering sensing and actuation), which 
covers the basics of intelligence and machine learning (See Table 2). This addition has been the 
most notable difference of our course and other similar courses taught by other departments at 
our university. 
 
Though MATLAB has a toolbox to communicate with Arduino microcontrollers in real-time, 
when this interface was created (Summer 2021), this toolbox only worked reliably with wired 
microcontrollers. The toolbox did not fit the needs of our course, where dynamic wireless 
interfacing with the microcontroller was required to complete the final project, where the 
wheeled robot navigates an obstacle course. Unfortunately, the toolbox did not function correctly 
to allow for wireless communication, specifically with the MKR 1010, and at the time, there was 
scarcely any online support available. For this reason, we chose to build our own interface. Our 
interface allows students to collect data (either individual samples or with a buffered stream) and 
filter, manipulate, and process it using MATLAB’s more comprehensive toolkits. Additionally, it 
allows the students to access peripheral devices and General-Purpose Input/Outputs (GPIOs) of 
their microcontroller wirelessly, run commands outside the script using the MATLAB command 
window, and take advantage of MATLAB’s debugging and workspace tools. By using this 
interface, we expanded the range of topics beyond what most similar courses teach, allowing for 
a greater focus on computational approaches and implementations of digital signal processing, 
data manipulation, and machine learning [2], [7]. 
 



Students reviewed the course positively, indicating that they were more interested in the topics 
because of this method of introduction and that they were more likely to pursue robotics in the 
future. Though the student responses varied when asked about the difficulty of using the 
interface (and no control method was assessed), students generally agreed that this new tool 
enhanced the learning experience overall. 
 
 
Methods 
 
Interface Architecture: 
The MATLAB-MKR Interface allows for wireless communication between the student’s 
computer and the Arduino MKR. Once connected to power, the Arduino MKR establishes a 
wireless access point and configures a static IP address for itself. The student connects their 
computer to the MKR’s access point and begins sending UDP commands using MATLAB. A 
MATLAB class encompasses all accessible commands, manages initial setup and 
communication, and abstracts the available functions. The class contains a callback function that 
asynchronously reads all incoming UDP messages from the MKR. The MKR itself is 
programmed to wait for the initial UDP connection, and then execute the incoming commands as 
they are received (see Figure 1A). 

 

Figure 1: MKR-MATLAB Interface Overview. A) The MKR 1010 connection sequence with 
MATLAB. B) Pinout of the Arduino MKR 1010 mounted to the MKR Motor Carrier. 

Hardware Design 
The Arduino MKR 1010 was selected as the microcontroller for this course. The MKR 1010 
possesses an onboard Wi-Fi module, which enables wireless communication between the 
computer and the microcontroller. It has 256 KB of flash memory and has a clock speed of 48 



MHz. It is a compact board, measuring 61.5 mm long by 25 mm wide [8]. It also has an RGB 
LED mounted to the center of the board, which can be used as a diagnostic tool or an output. It is 
also relatively inexpensive (about 30 USD) and can be reused from semester to semester. 
 
A major advantage of the MKR class Arduino boards is that they can be easily mounted to the 
Arduino MKR Motor Carrier (see Figure 1B) [9]. The MKR Motor Carrier allows for higher 
power actuator usage, facilitating control of up to four motors and four servos, and contains ports 
to attach I2C peripheral devices and two encoders. This board eliminates the need for several 
typical cyber-physical system components (e.g., H-bridge motor drivers) and keeps the hardware 
together in a small form factor.  
 
The MKR Motor Carrier reserves pins A3, A4, D2-D6, and D11-D12 for their functionality; the 
MATLAB class checks for proper usage to prohibit and/or notify students when they are using 
reserved pins. Throughout the course, students attach a variety of different passives, sensors, and 
peripherals to the MKR Motor Carrier, including resistors, potentiometers, FSRs, motors, servos, 
encoders, accelerometers, Hall-effect sensors, ultrasonic sensors, infrared reflectance sensors, 
and photoresistors. 
 
Software Design 
The Arduino MKR was programmed to establish a wireless access point and await commands 
over UDP from an external device (e.g., a student running MATLAB on a laptop or classroom 
desktop). The MKR remains waiting, responding to commands as they are received. 
 
When a command is received to read from a peripheral device or a GPIO pin, for example, the 
Arduino responds with the value. Several data streams have been established to facilitate data 
transfer when several different data values are needed, which will continuously measure and 
transmit data without being polled each time. The Arduino code defines the following four 
different data streams: Analog, which sends the integer values of the four available analog input 
pins; Inertial Measurement Unit, which sends the X, Y, and Z accelerometer float values; 
Ultrasonic Sensor, which streams the time-of-flight integer value from the ultrasonic sensor; and 
Infrared Sensor, which returns the four integer values from an infrared reflectance sensor array. 
These streams are turned on using a ‘start’ command and will continue to stream data until a 
‘stop’ command is received. These streams may be used individually or in any combination with 
each other. In most cases, broadcasting all four data streams simultaneously is unnecessary. 
Activating them all together can result in the Arduino operating below its designed 200 Hz loop 
speed. 
 
The MATLAB code represents the part of the interface that the student interacts with and has 
been built with input error checking to ensure that only viable commands can be sent to the 
Arduino. After connecting to an access point, the student can establish communication with the 
Arduino by constructing an instance of the class type MKR_MotorCarrier. Once the connection 
is established, the RGB LED on the MKR will turn green to indicate it is ready to receive 
commands. The commands available to the student are listed in Table 1, where bolded 
commands are syntactically identical to native Arduino functions in order to facilitate future skill 
transfer. The students were also provided with a demo file, which demonstrated all the 



functionality of the MATLAB-MKR Interface and served as a way to verify hardware during 
debugging. 



Table 1: Commands available to the students through the MATLAB interface.
Function Name Description Arguments

pinMode Sets a digital pin as either an input or an output "Input" or "Output"
analogRead Reads and returns the value on the given analog pin Analog Pin Number
digitalRead Reads and returns the value on the given digital pin Digital Pin Number
digitalWrite Sets the value of the specified pin to a provided value Digital Pin Number
startStream Starts a specified data stream Specific Stream Type
stopStream Stops a specified data stream Specific Stream Type
checkFrequency Tests the frequency of the data transfer
livePlot Generates a real-time plot of either the Analog or IMU data streams Specific Stream Type
getAverageData Returns the average data of the specified data stream Specific Stream Type
getNewData Returns only new data that received since the last time getNewData call Specific Stream Type
startRecording Starts recording all data received, if data is streaming
stopRecording Stops a recording and returns the recorded data
setRGB Sets the RGB LED on the MKR Red Green and Blue values
getVoltage Prints the battery level to the command window
close Ends communication with the MKR 

motor Sets the value of the specified motor to a provided value Motor Number and Speed
servo Sets a value (-180 to 180) to the specified servo motor Servo Number and Angle
readEncoderPose Returns the position of the motor encoder
readEncoderVel Returns the velocity of the motor encoder
resetEncoder Recalibrates the motor encoder to 0

piezoTone Sends a signal to the piezo buzzer for a specified duration Frequency and Duration
reflectanceSetup Initializes the IR reflectance sensor
readReflectance Returns the four IR reflectance values
rgbRead Returns the red, green, and blue values of the RGB sensor
ultrasonicPulse Returns the value of the ultrasonic sensor

General Functions

Motor Functions

External Peripheral Functions

  
 
Once the connection with the MKR has been established, commands can be sent one at a time or 
stacked together in loops and conditional statements from within MATLAB. One of the 
significant advantages of sending commands over MATLAB (as opposed to programming in 
Arduino IDE) is the presence of a debugger, which lets students step through each line of code 
and more easily catch errors within the script. Additionally, manipulating and visualizing data 
can be done easily in the MATLAB workspace. Students can also take advantage of the Read, 
Evaluate, Print, and Loop (REPL) environment to test commands and pull sensor readings 
without the need to run the entire script. Above all, the interface enables students to dynamically 
alter the commands sent to the MKR without needing to recompile code and program the 
microcontroller. 



 

Figure 2: Course final project. A) Labeled model of the final project robot. B) Image of the 
towers holding the blocks to be gathered and classified by the robot. C) Map of the final project 

line following the course. 

Labs and Activities 
 
This interface was used for all the labs in this course. The activities where this interface provided 
the greatest benefit were those requiring continuous streaming of sensor data. For example, the 
Simultaneous Localization and Mapping (SLAM) module went over the basics of that field and 
introduced ultrasonic range sensors. Students were able to stream ultrasonic sensor data while 
walking about the classroom to see how this sensor could be used for obstacle avoidance. The 
Quadrotor Control and Path Planning Module introduced the idea of simultaneous sensorimotor 
loops, allowing students to draw on sensor data in real time (such as a force-sensitive resistor) to 
control an actuator (such as a servo motor). 
 



The distinct addition of our class over other similar courses is the inclusion of five classes 
dedicated to intelligence modules, teaching students about machine learning and classification at 
varying levels of complexity (ranging from Linear Discriminate Analysis to Convolutional 
Neural Networks). In this module, students attached an accelerometer to the end of a 12” dowel 
and used it as a pen to draw numbers (0-9) in the air. Over the course of these modules, they 
would use different supervised learning techniques to train algorithms that could accurately 
predict which numbers were being drawn in real time. 
 
Final Project 
 
The final project was designed to allow the students to combine the experience gained 
throughout the course into a single robot mission. The students were each provided with all the 
needed materials and tasked with navigating a path to collect and classify different blocks. 
Students worked in groups of three or four, allowing them to divide the project among 
themselves and work on different parts in parallel. This project helped solidify the various 
concepts taught throughout the course and gave real-world examples for their implementation 
and use. 
 
For this project, the MKR 1010 (mounted to the MKR Motor Carrier) was attached to a robot 
chassis (see Figure 2A) with mounted peripherals including an ultrasonic time-of-flight distance 
sensor, an infrared reflectance array, an RGB color sensor, and a Hall-effect sensor. The chassis 
had two DC motors with quadrature encoders to provide left and right directional control and a 
servo motor with an encoder that served as a gripper. 
 
The students then wrote a script for the robot to navigate a course using infrared reflectance 
measurements to follow a line (see Figure 2C). Following the lines, the robot would encounter a 
three-way split and navigate all possible paths to find towers holding up blocks (See Figure 2B). 
The robot could approach the tower precisely using the ultrasonic sensor and grab the block with 
the gripper. Each block was either small (2.5 cm) or large (3.0 cm) and had a specific color and 
magnetic field polarity (established by permanent magnets fixed to the inside). The Hall-effect 
sensor, RGB color sensor, and gripper’s encoder would then measure the magnetic polarity, 
block color, and size, respectively. Based on these three metrics, the robot would classify the 
block as either “good” or “bad.” The robot would then navigate to and drop the block in the 
appropriate zone. 
 
A training set of 25 blocks was provided to the students to create a model of good and bad 
blocks. When running the course to earn points, the three towers held blocks from a testing set of 
five different and previously unseen blocks that fit the same criteria as the training set. Students 
were free to choose their own kind of supervised learning model from the many learned about in 
class to classify the blocks. 
 
Points were awarded based on the completion speed and classification accuracy. Partial points 
were awarded for meeting certain milestones (e.g., successfully navigating the curved line-
following portion, approaching the tower, and grabbing a block). Students were allowed two 
days to run the course for points and were allowed to try as many times as possible. 
 



Results 
 
At the end of the semester, students were asked to respond to a questionnaire about their 
experience with the MATLAB-MKR interface and the general class. Of the 44 students who 
have taken the course (15 in the first semester and 29 in the second), 26 responded to the survey. 
When asked, “How difficult was it to program the robot through MATLAB,” students responded 
on a 5-point Likert scale, with 1 being ‘Difficult’ and 5 being ‘Not Difficult.’ The average 
student response was 2.8, with a standard deviation of 1.34 (Figure 3A). When asked to agree or 
disagree with the statement “Programming the Arduino MKR in MATLAB enhanced my 
learning experience,” students responded with a median response of “Agree” (Figure 4B).  

 

Figure 3: Student survey responses regarding the MKR-MATLAB Interface. 

 

Regarding the class as a whole, students were asked to agree or disagree with the statements on a 
six-point scale (scale size based on university course feedback standards). When prompted, “I am 
more interested in pursuing robotics as a career now, having taken this course,” the median 
response was “Agree” (Figure 4A). When prompted, “I would recommend this class to anyone 
who is interested in studying robotics,” the students responded with a median answer of 
“Strongly Agree” (Figure 4B). When prompted, “the electronics materials in this class were 
appropriate for what we learned,” the median response was “Strongly Agree” (Figure 4C). When 
prompted, “I achieved the learning outcomes from this class,” the median response was 
“Strongly Agree” (Figure 4D). 
 
At the end of the provided questionnaire, the students were asked about their favorite lab in the 
class and why. Responses varied evenly across each of the thirteen different labs. Of these, only 
three labs weren’t selected as a favorite among the students (N = 26, See Table 2). When 



responding to why the selected lab was their favorite, 42% (11 of 26) of respondents mentioned 
that the lab was novel or provided exploration into fields beyond prior coursework, 15% (4 of 
26) stated the lab offered practical and real-world relevance to important theoretical concepts, 
and 42% (11 of 26) stated the lab provided a deeper understanding of fundamental concepts, 
filling knowledge gaps.  
 

Table 2: List of modules covered in the course and the percentage of students who voted that 
module as their favorite. 

Unit Module % Reported as 
Favorite Module 

Sensing 

Microcontrollers and ADCs 3.8 
Transduction Principles 0 
MEMS Sensors and Communication Protocols 7.7 
Noise and Filtering 0 
Simultaneous Localization and Mapping (SLAM) 0 

Actuation 

DC Motors and Encoders 15.4 
Other Actuators and Drive Circuits 11.5 
Feedback Control Basics 11.5 
Quadrotor Control and Path Planning 3.8 
Wheeled Robot Modeling and Odometry 11.5 

Intelligence 
Linear Discriminate Analysis Classification 15.4 
Perceptron Classification 3.8 
Convolutional Neural Networks 15.4 

 
Figure 4: Student survey responses regarding the class. 



Discussion 
 
While the average response to the difficulty of the interface leaned more toward “difficult,” than 
“not difficult”, the class responses were well-distributed across this spectrum. Though not 
specifically asked, we speculate that a similar response distribution may have accompanied a 
question about the difficulty of programming the Arduino using the Arduino IDE and coding 
language. Another contributing factor to the reported difficulty may have been the wireless 
nature of the interface, which occasionally produced problems such as dropped connections or 
periods of high latency. Interestingly, despite the fact that the average student regards the 
interface as difficult, they also agree that using the interface enhances their learning experience. 
We speculate the reasons for this are: 1) Using the interface allowed them to quickly run and edit 
scripts without needing to reprogram to the robot, and 2) Running scripts through MATLAB 
allowed the students to take full advantage of MATLAB’s more robust debugging system and 
documentation. 
 
Regarding the class, the students gave overwhelmingly positive responses. Students agreed that 
the course materials were appropriate and that they were more interested in the subject as a 
result. It should be noted that three of the four negative responses seen in Figure 4 all came from 
the same student. The varied responses about the students’ favorite labs are also encouraging, 
and we believe that this indicates that each lab module is well-balanced and structured in a way 
that provides an enjoyable and interesting learning experience. Though three labs weren’t 
selected as favorites, SLAM was mentioned by several students in their qualitative response as 
another lab from which they benefited greatly. We find it especially encouraging that 34.6% of 
students selected labs involving machine learning as their favorite. The machine learning labs 
arguably benefitted the most from using the MATLAB-MKR Interface since teaching machine 
learning concepts in C would otherwise require substantial class time dedicated to lower-level 
programming logic and syntax. 
 
Because this is a new course in our department, there is no previous student performance with 
which we can directly compare. This makes it difficult to say whether the inclusion of this 
interface tool is what made the class so successful. However, student responses indicate that the 
course was a valuable elective, and the interface, though difficult at times, did not take away 
from the experience. As future cohorts of students take this course, further survey responses will 
highlight weaknesses in the lab design and the interface, which will provide vital feedback for 
continuing to develop effective teaching tools. 
 
Conclusions 
 
We developed a novel interface between MATLAB and an Arduino microcontroller to introduce 
undergraduate students to hands-on robotics concepts earlier in their education. Using this tool 
allowed us to eliminate class time devoted to teaching C programming in favor of covering a 
broader range of topics. Responses indicated that using this tool enhanced their learning 
experience despite sometimes being difficult to use. Responses about the course indicate the tool 
assisted in the success of the class, which students generally enjoyed and reviewed positively. We 
believe that the inclusion of this interface was successful in its design and that students are more 
interested in pursuing robotics education and future careers as a result. Additionally, we feel 



confident that this course has provided exposure to the relationships between data science and 
electrical engineering, as well as edge computing and systems engineering. Over the course of 
future semesters, we intend to further refine the interface by adding a method for wired serial 
connection and improving data streaming to allow for a better run-time experience. Additionally, 
we plan to update the hardware and move from the Arduino MKR 1010 to the Arduino Nano IoT 
to address the MKR Motor Carrier being discontinued. As the interface continues to improve, we 
believe it will become more intuitive to use, helping the students to achieve the desired learning 
outcomes with even more ease. 
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