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Abstract 

This research paper explores how curricular design patterns can be extracted from plan of study 

data systematically. Engineering is a notoriously sequential discipline in its curricular design, 

with courses organized using a variety of prerequisite and corequisite structures to filter students 

through specific experiences in order. Considering how these arrangements can influence student 

progress toward their degree, such as the sequencing of gatekeeper courses like Statics, we posed 

the following research question: “What are the common and uncommon curricular design 

patterns in degree programs across the United States for mechanical, electrical, civil, industrial, 

and chemical engineering?” We leveraged existing data collected as part of an ongoing project 

about connecting a data-driven framework for evaluating curricula (i.e., Curricular Analytics) to 

the Multiple Institution Database for Investigating Engineering Longitudinal Development 

(MIDFIELD) to provide a new perspective for analyzing student success outcomes, such as 

graduation rates. Unlike previous efforts with Curricular Analytics, these data span 13 

universities across five disciplines over a decade – comprising 494 plan of study networks. We 

contend analyzing this dataset and using it in conjunction with student data in MIDFIELD can 

help the community glean new insights and contextualize previous findings. We employed 

network analysis and data mining techniques in Python to uncover the curricular design patterns 

in the dataset for courses related to Introduction to Engineering, Calculus, and Mechanics (e.g., 

Statics, Dynamics, and Strength of Materials). We also juxtapose results about curricular 

complexity across this dataset that can be used alongside our network analysis efforts for further 

research. 

Introduction 

Since ABET’s transition to an outcomes-based philosophy in the accreditation process, 

engineering faculty have more freedom to structure engineering programs instead of following 

overly prescribed disciplinary criteria [1]. Thus, engineering programs can exhibit different 

organizational structures when defining required coursework – which can be influenced by many 

internal and external factors [2]. For example, faculty at Wright State University, led by Nathan 

Klingbeil, have published extensively on a model of introductory engineering mathematics 

courses that circumvents the necessity of the Calculus sequence [3], which has shown 

considerable success in improving graduation rates for students who would be traditionally 

deemed underprepared for Calculus [4]. Similarly, Ellis et al. [5] report on a Calculus sequence 

that was rehoused within the College of Engineering and reworked to focus on applications, 

trimming the number of courses in the sequence from five down to four. Although pathways like 

Calculus seem cemented as commonplace, these reform efforts and the diversity in other 

seemingly standard offerings like first-year introductory experiences is a testament to how 

different programs can be structured to achieve college- and department-specific goals [6]. 



In light of the diverse ways faculty can choose to implement a plan of study for engineering 

students, this paper focuses on understanding the sequencing and overall arrangement of courses 

in a program. We adopt the terminology from Heileman et al. [7] to formally call these constructs 

curricular design patterns, which they describe as, “collection[s] of curricular and co-curricular 

learning activities intentionally structured so as to allow students to attain a set of learning 

outcomes within a given educational context” [p. 5]. Although the term co-curricular is used in 

this definition, there is much greater emphasis on the structure of prerequisite and corequisite 

relationships. Still, by examining these roadmaps for how students are expected to progress 

through their discipline’s plan of study, we can understand how different curricular design 

patterns can lead to a range of student outcomes – such as graduation rates. This analytical 

possibility bridges research interests on persistence and student success with administrative 

benchmarking, leading to the study of curricular design patterns being a fruitful area of inquiry. 

Research Aims 

We posed the following research question: “What are the common and uncommon curricular 

design patterns in degree programs across the United States for mechanical, electrical, civil, 

industrial, and chemical engineering?”  As part of this effort, we leverage a new (soon to be) 

public dataset of curricular requirements for engineering programs linked to a large popular 

dataset for studying engineering student trajectories in attaining their degrees [8]. Thus, this 

effort is one example of how the dataset can be used for future research and highlights the 

analytical richness of curricular data.  

Work has begun to emerge regarding how to optimize curricula to reduce “curricular 

complexity.” For example, Zhang [9] used an integer quadratic programming algorithm to 

rearrange courses that met an established set of learning outcomes but with comparatively lower 

complexity. Our paper delves into course sequences unearthed within historical plan of study 

data for 13 institutions in the United States, providing a valuable resource for researchers and 

practitioners at various institutions. When combined with student data, these discovered 

sequences offer a fertile ground for researchers to guide their curriculum analysis and redesign 

efforts.  

Background 

We have referred to the idea of “curricular complexity” loosely so far, but we can be more 

precise by using a framework that is growing in popularity when describing curricular design 

patterns. The formal analysis of curricular design patterns can be accomplished using a 

framework called Curricular Analytics [10]. The adoption of Curricular Analytics reflects a 

paradigm shift toward a data-driven approach to analyzing curricula and degree requirements. 

This method quantitatively assesses the "complexity" inherent in a plan of study; at its core, 

Curricular Analytics captures and models the intricate web of pre- and corequisite relationships 

within a curriculum, transforming it into a network. This network representation visually depicts 

degree requirements and, by virtue of its data type, becomes a rich testbed for in-depth analysis 

using network analysis techniques. The fundamental premise of Curricular Analytics posits a 

relationship between curricular complexity and completion rates. Both simulation studies and 



empirical evidence support the notion that as the complexity of a curriculum increases, 

completion rates tend to decrease [10], [11]. This insight underscores the practical relevance of 

understanding and managing the complexity inherent in program structures. If faculty can locate 

curricular design patterns with high complexity in a program, then making alterations to them to 

reduce the complexity can have a tangible impact on completion rates.  

Curricular complexity is divided into two components: instructional complexity and structural 

complexity [10]. Instructional complexity attempts to capture the latent factors of the curriculum, 

such as course difficulty and instructional quality, but it is currently only proxied by a course’s 

pass rate. We focus on the structural complexity of curricular design patterns, which assigns a 

score to a plan of study based on the interconnectedness of program requirements (i.e., pre- and 

corequisites). Among the metrics proposed for structural complexity, two have become central to 

how we calculate the overall structural complexity. These are visualized in Figure 1. The first 

metric is the blocking factor, which is found by counting the number of courses inaccessible to a 

student if the course is failed. The second metric is the delay factor, the length of the longest 

prerequisite chain flowing through the course. Adding these two values together yields the 

cruciality, a local measurement of how entangled a course is in the prerequisite structures of the 

plan of study and how essential it is to complete. 

 

Figure 1. Calculating course cruciality using the blocking and delay factors of the gray course 

A notable advantage of representing curricula as networks is the ability to decompose them into 

smaller subnetworks. These subnetworks serve as representations of distinct curricular design 

patterns. For instance, one can isolate patterns like the Calculus sequence or the core Mechanics 

sequence (comprising Statics, Dynamics, and Strength of Materials) – which have seen some 

attention regarding their impact on completion rates [12], [13], [14]. This decomposition 

facilitates a nuanced exploration of specific course sequences and their relationships, shedding 

light on the underlying structure of the curriculum. However, considering the steep data 

requirements and lack of consistency in course names, little work explores how these curricular 

design patterns manifest in engineering programs across the United States. However, with a large 

enough dataset comprised of plans of study across engineering disciplines, it is possible to 

uncover these patterns within engineering curricula across institutions.  



Insights drawn from interrogating curricular structures can translate to practical revisions in 

engineering programs, as exemplified by the redesign efforts at the University of Virginia to 

improve their Calculus sequencing [15]. Their work resulted in creating new courses across two 

tracks: a Core track and an Honors track that repackages topics from Calculus 1 and 2, deviating 

from the conventional Calculus sequence at their university that assumed students came in ready 

to take Calculus II. The success of the redesign initiative described by Pisano et al. [15], 

substantiated by positive outcomes, underscores the pivotal role that course sequence 

information and student performance data can play in steering curricular innovation. In fact, the 

aforementioned Wright State model has been viewed through the lens of Curricular Analytics to 

explain the program's success [16].  

Methods 

Data Collection and Preprocessing 

The dataset used in this research encompasses curricula data from five engineering disciplines 

(i.e., Civil, Chemical, Electrical, Industrial, and Mechanical) across thirteen institutions in the 

Multiple Institution Database for Investigating Engineering Longitudinal Development 

(MIDFIELD) [17], which included required courses, prerequisites, and corequisites. We 

collected the curricular data starting from the most recent record in the dataset and went back 

nine more years to gather a longitudinal perspective on how the curriculum changed over time. 

There were minor gaps in the dataset in cases where the plan of study was not readily available 

or when the discipline was not offered at an institution, leading to a final count of 494 plans of 

study. Additional details of the data collection process can be found in Reeping et al. [8]. 

Prior to analysis, a preprocessing stage was 

conducted to enhance the quality of the 

data. The preprocessing involved 

addressing irregularities – such as special 

characters introduced from copying and 

pasting data from a website – and any 

typographical errors.  

Mining Curricular Design Patterns 

We used Python along with established 

libraries such as NetworkX and pandas to 

process the data. Each step conducted 

during this analysis is shown in Figure 2. 

 

 

 

 

Figure 2. Flow chart for the 

network analysis process 



Step 1: Importing plan of study data: In this step, the pandas library was used to import all the 

plan of study files (.csv format) into dataframes and organize each one with their id’s (names) in 

a dictionary format. This format was crucial because there should always be a way to retrieve the 

file path for each imported plan of study in the later stages of analysis.  

Step 2: Convert plans of study to networks: Networks are an effective way to represent plans of 

study programmatically; classes can be treated as nodes and requisite relations between classes 

can be saved as edges. Nodes can also carry extra information like the term in which they appear 

in the plan of study, which, while not a focus of this paper, can be helpful in different analyses 

regarding curricular complexity or sequence mining in specific years of the plan of study, for 

example, the first-year engineering curriculum or Mechanics sequences in the middle years. 

Step 3: Extract sequences from networks: The saved networks were passed to a function that 

traversed each network and collected all sequences from the plan of study. As shown in the 

example in Figure 3, we retrieve the relationships between courses step by step to build each 

distinct curricular design pattern. After discovering that Calculus 1 is a prerequisite for Calculus 

2, it looks deeper into the sequencing for Calculus 1 and finds a corequisite relationship with 

Physics 1. This relationship is added to the larger sequence of courses leading into Calculus 2. 

When comparing sequences, using lists was found to be the simplest way for Python to interpret 

sequences and check for equivalencies between them. These sequences (lists) were saved in 

dictionaries with keys for each sequence. These keys contained information about the class that 

was the subject of the sequence (Calculus 2 in Figure 3) and which plan of study it was extracted 

from.  

 

 

 

 

 

 

 

 

Figure 3. Sequence mining in networks 

Step 4: Generalize sequences by structure  

When the edges for requisites were added in step 2, the nodes had the course code (e.g., MATH 

1001) as their title. Because these codes are different across universities, years, and even within 

disciplines at the same university, we generalized each sequence by replacing course codes with 

labels in the form of ‘Course n’, where n represented the position of the class in the 



list/sequence. This way, it was easier to implement equivalency of sequences while the original 

courses’ information was retained with keys, as mentioned in step 3. So, these sequences were 

stored in a dictionary format with a key-value pair: course information and the sequence. 

Step 5: Group sequences by type of class 

This study aimed to mine and compare unique sequences for different categories of courses 

across the dataset, focusing on intrinsic examples like Calculus, Differential Equations, 

Mechanics, and Introduction to Engineering. The keys containing course information could be 

used to sort each sequence into the desired categories. However, given the vast scope of the 

dataset and the diversity in course naming conventions, manual generalization of course chains 

based on subject matter was impractical. As shown in Figure 4, there were ~12,300 course names 

in the dataset, with ~1200 of them being unique.  

Figure 4. Sankey Diagram of course name and sequence distribution by category 

To address this challenge, we employed OpenAI's large language model (LLM), GPT-4, using 

their API [18]. We initially experimented with GPT-3.5 but faced issues with short context 

windows (i.e., the amount of text the model could process) and hallucinations. Because of the 

sheer number of course names, the input needed to be divided into batches of fixed windows to 

send to the API. When a window width of forty names was used, the model started ‘forgetting’ 

the prompt commands given, and output quality degraded. This problem was solved by using a 



shorter window width of twenty names, but another issue we faced was formatting. GPT 3.5 

often incorporated typos when formatting its output as a dictionary/.json. This was difficult to 

work with because each file needed to be manually inspected and fixed for formatting errors, 

which was time-consuming.  

These limitations prompted us to use the GPT-4 model, which performed better and kept 

formatting consistent across outputs. It was also more ideal regarding its context window; we 

could safely input up to eighty course names at a time and get reasonably accurate 

categorizations. These minor errors were subsequently corrected by hand. Since there were over 

one thousand unique names and a smaller window width was necessary to control unintended 

errors, there needed to be a workflow in the form of a loop, as shown in Figure 5. 

 

Figure 5. Workflow for ChatGPT API Usage 

Because of the large scale of the dataset and the number of course names, we found it better to 

perform the categorization in two steps. First, we used the API to sort all the course names into 

general categories like the sciences (math, physics, chemistry, and biology) and engineering 

(general engineering, mechanical, civil, electrical, and chemical engineering). We then used 

particular categories to sort them into specific types of courses. For example, we broke down the 

math category and sorted those courses into Differential Equations and Calculus.  

The following code block contains the prompt we used to accomplish the categorization. The {} 

represents variables; the ‘courses’ variable contains the list of course names, and the ‘categories’ 

variable contains the list of categories the courses should be sorted into. 

 task f"""{courses}  This is a list with course names.     

Sort all of these using the course name into distinct categories like {categories} only. 

            If there are any that you can't sort, place them into the category "Other". 

            Don't make any other categories. 

            Return a dictionary in JSON format 

            {{Physics: course name 1, course name 2, Math: course name 1, course name 2 .....}}. 

             The sorted courses absolutely need to be in a dictionary format for Python to use. 

             Don't add any lines between the start of the dictionary and the first element 



             or the end of the list and the last element. 

             Don't write code, just sort the course names and give an answer yourself. 

             Don't write any text with it.""" 

 

Step 6: Mine common sequences by group (e.g., Calculus) 

In this step, we imported all the saved API output files and used a dataframe to store the 

categories and sequences. After this, the sequences were grouped into their respective patterns. 

The output was a single dataframe with information about the prerequisite chain, such as its 

category, length, and count of occurrences. We could also use the dictionary keys containing 

course information from Step 3 to retrieve the occurrences from the plans of study themselves.  

Limitations 

Despite the measures taken to bolster the quality of the research design, there are limitations 

regarding the inferences generated. First, it is crucial to note that these data represent a subset of 

institutions in the United States. They were chosen because of their intrinsic connection to a 

larger data-sharing agreement that opened more analytical possibilities by linking the curricular 

data to actual student pathways. Moreover, the data are longitudinal in nature. Therefore, some 

counts for each curricular design pattern are duplicate observations. However, each curricular 

design pattern is unique – which is what matters for this particular study.  

Results 

After filtering the data for categories of interest – including Introduction to Engineering, 

Calculus and Differential Equations, and Statics and Mechanics – we retrieved course sequences 

that occurred frequently and infrequently. We present a selection of rare sequences to highlight 

the diversity of curricular design patterns across the 13 institutions within the mined categories.  

Introduction to Engineering 

Introduction to engineering courses are multidisciplinary offerings that students take before 

entering their discipline-specific coursework and include myriad topics such as problem-solving, 

graphical representations of data, elementary statistics, engineering drawing and graphics, 

disciplinary concepts like electric circuits, and computer programming [6]. A typical sequence 

for these classes involves a corequisite like ‘Calculus 1’ (78 observations), then ‘Introduction to 

Engineering 1’ followed by ‘Introduction to Engineering 2’ (63 observations). These 

introductory courses can also be requisites for other classes in the plan of study, such as 

discipline-specific offerings like Statics or Circuits. There were 24 distinct curricular design 

patterns for the Introduction to Engineering sequences. 

 

One example of an introductory sequence we found was from East Carolina University. In this 

case, Engineering Graphics, which can be a topic in Introduction to Engineering courses, was 

placed as an independent course as a prerequisite to the second Introduction to Engineering 

course. As shown in Figure 6, along with Introduction to Engineering 1 (just Introduction to 

Engineering in this case), students must take the Engineering Graphics course in their first term. 

Peculiarly, the Engineering Graphics course has a Calculus 1 corequisite as well. The sequence 

continues with the equivalent of Introduction to Engineering 2 (Introduction to Engineering 



Design here), which is followed by another design course with project management embedded 

within the offering. This is one example of our dataset's more complicated introductory 

engineering course prerequisite chains, which has an overall structural complexity of 21. Note 

that removing the potentially unnecessary Calculus 1 corequisite alone decreases the structural 

complexity by 19% (21 → 17). 

 

 

 

 

 

 

 

 
 

Whether these introductory courses serve as bottlenecks for students hinges on how the 

Introduction to Engineering sequences are connected to later offerings. We observed cases of 

isolated first-year courses and well-connected first-year courses. For example, we found North 

Carolina State University’s introductory engineering course, “Introduction to Engineering & 

Problem Solving,” is only a prerequisite for another introductory course, “Engineering in the 

21st Century” – after which the sequence ends. This arrangement would have a structural 

complexity of only 5. Alternatively, Purdue University’s introductory course, “Transforming 

Ideas To Innovation 1” and “Transforming Ideas To Innovation 2” connect to “Linear Circuit 

Analysis 1” and later courses in the sequence, “Thermodynamics 1,” “Basic Mechanics 1,” and 

“Basic Mechanics 2” – embedding the sequence is a more extensive web of prerequisites.  

Calculus and Differential Equations 

Differential Equations is often a required course in engineering curricula and is typically the 

culminating course in the Calculus sequence. It is common to see these sequences as two or three 

calculus courses followed by Differential Equations (181 and 154 observations, respectively). 

However, some institutions have a different sequence. For example, East Carolina University had 

a structure with three calculus courses and a computer applications course followed by 

Differential Equations. In particular, Elizabethtown College’s programs exhibited a unique 

arrangement in their Calculus sequencing. As shown in Figure 7, Calculus 1 is paired with a lab 

class, and it is a direct prerequisite for Calculus 3 instead of Calculus 2. Calculus 2 is also a 

direct prerequisite for Differential Equations. This is an unexpected sequencing and may indicate 

that the topics taught as part of the third Calculus course may include physics topics solved using 

3-dimensional calculus and hence is used as a prerequisite. Decoupling Calculus 2 from Calculus 

3 reduces the complexity of the curricular design pattern by 20% (44 to 35), the benefits of 

which are magnified when considering curricular design patterns this sequencing is connected to. 

Figure 6. Introduction to 

Engineering sequence- East 

Carolina University- Electrical, 

Mechanical and Industrial 

Engineering 

 



 

Figure 7. Calculus and Differential Equations sequence- Elizabethtown College- Civil, 

Electrical, Mechanical, and Industrial Engineering PoS 

Still, the Calculus curricular design patterns are mostly homogeneous across the sampled 

institutions, as shown in Table 1. Note that sequences can be nested in more complicated 

sequences; for example, 'course 1' -> 'course 2' is nested in 'course 1' -> 'course 2' -> ‘course 3’ – 

meaning there are 13 'course 1' -> 'course 2' sequences for Calculus. 

Table 1. Distribution of curricular design patterns for Calculus, course pairs in the brackets are 

taken in the same semester together (i.e., there exists a corequisite relation between them) 

Curricular Design Pattern Count 

'course 1' -> 'course 2' 444 

'course 1' -> 'course 2' -> ‘course 3’ 431 

('course 1' -> 'course 2') -> ‘course 3’ 12 

'course 1' -> ('course 2' -> 'course 3') -> 'course 4' 14 

('course 1' -> 'course 2') 22 

('course 1' -> 'course 2') -> 'course 3' 5 

'course 1' -> 'course 2' -> 'course 3' -> 'course 4' 3 

 

Statics and Mechanics 

Compared to the study of the first-year engineering curriculum and calculus sequencing, courses 

that sophomores and juniors take in the middle years, like Statics and Mechanics, are still mostly 

unexplored [19]. However, considering the dataset has nearly 500 complete plans of study across 

universities, it was possible to explore these core intermediate-level courses and analyze their 

sequencing.  

Term 1 Term 2 Term 3 Term 4



There were 28 different design patterns associated with Statics. Most commonly, programs in the 

dataset have coursework starting with a Statics course in term 3 or 4 and tend to have Calculus 

and physics courses as prerequisites. As shown in the sequence in Figure 8, the Statics and 

Mechanics sequences can have some variety in their structure. The difference between 

universities usually depends on the level of the Calculus prerequisite that their Statics course has. 

The sequencing can also differ within a university if specific disciplines have their own version 

of Statics, including different topics that may need more or less Calculus preparation. 

 

 

 

In Figure 8, the design pattern at the University of Oklahoma situates Calculus 2 as a prerequisite 

for Statics with Physics 1 as a corequisite. However, East Carolina University positions General 

Physics as the prerequisite and Calculus 3 as the corequisite. These arrangements do not differ 

much on the surface; however, calculating the structural complexity of the sequencing for the 

four courses (Calculus 1, Calculus 2, Physics 1, and Statics) in the University of Oklahoma 

design pattern and five courses (Calculus 1, Calculus 2, Calculus 3, General Physics, and Statics) 

in the East Carolina University design pattern reveals the latter pattern is 30% more structurally 

complex than the former (i.e., structural complexity of 20 versus 26). Considering the impact of 

a minor tweak like adding a course to a prerequisite chain, these comparisons can serve as 

springboards for researchers to analyze their curriculum’s sophomore and junior years and 

thoughtfully revisit their requisite structure.  

Discussion 

This paper's demonstration of using a curricular dataset to extract course sequences represents an 

initial exploration of the concept at scale. However, considerable room exists for expanding and 

delving deeper into these areas. For instance, our discussion of potential avenues for researchers 

at respective universities to analyze their curricula builds a foundation for extending our work 

and conducting in-depth examinations in their local contexts. Moreover, leveraging the dataset 

alongside structural complexity data allows for exploring historical trends. Cross-referencing 

Term 1 Term 2 Term 3 Term 4

Figure 8. Statics and Mechanics sequence - University of Oklahoma- Civil and 

Industrial Engineering (left); East Carolina University- Electrical, Mechanical, and 

Industrial Engineering (right) 
 



structural complexity results with curriculum overhaul plans provides an opportunity to verify 

the effectiveness of such changes in improving completion rates [10], [11]. 

It is crucial to note that the structural complexity we've referred to is unweighted structural 

complexity, wherein the terms in which classes are taken are not considered in the calculation. 

By extracting curricular design patterns, especially if the extraction is in the middle of the 

curriculum, the impact of timing on the courses can be lost. However, a more nuanced approach 

involves term-weighted crucialities (TWC) and term-weighted structural complexity (TWSC), as 

outlined by DeRocchis et al. [20]. Like the standard cruciality metric, a course with a high TWC 

is deemed crucial to the curriculum, potentially being a course in the middle years that is a 

requisite for a lot of other courses or being taken later in the students’ degree, indicating less 

flexibility for retaking the course in case of a non-passing grade. When adding term information 

into the calculation, courses that previously were the most crucial may be superseded by other 

courses embedded in similar prerequisite structures but are placed later in the curriculum. TWC 

can be used to strategically place trivial and non-trivial gatekeeper courses and provide other 

supports to enhance student success.  

The core focus of this paper is to present a robust data-driven methodology for handling 

extensive datasets and applying network analysis techniques to unearth prevalent and rare 

curricular sequences. Exploring these sequences holds significant implications for both 

curriculum planning and discerning the impact of intricate courses on student success. The 

methodology outlined in this paper, along with the R package introduced in [8], is generalizable 

and adaptable to other similar datasets. It can be modified to suit other datasets and 

accommodate various complexity calculations, showcasing its versatility and potential 

application to broader contexts.  

Another contribution of our dataset is the ability to analyze different subsections of the 

curriculum. For example, researchers can delve into the nuances of intermediate coursework by 

scrutinizing specific sequences within domains like Statics, Circuits, and Thermodynamics. This 

capability opens avenues for optimizing the requisites of these classes and identifying potential 

bottlenecks. Analyses can also extend to courses in the first year. Introduction to Engineering 

(e.g., [21], [22], [23], [24]) and Calculus (e.g., [25], [26], [27], [28]) curricula have been 

extensively investigated in previous research. The similarity observed in sequences from these 

categories, with few exceptions, suggests a degree of curriculum optimization across universities 

or institutional isomorphism [29]. However, the nature of these courses can evolve over time, 

and their prerequisites may no longer be sensible. For example, Faulkner et al. [30] reviewed 

homework problems for circuits and statics courses at a single institution that had Calculus as a 

prerequisite, finding that only 8% and 20% of problems applied Calculus concepts in some way 

– often only applying basic principles like integration of polynomials. Thus, the network analysis 

framework presented in this paper offers a valuable tool for scrutinizing how we construct 

curricula using a data-driven approach – especially when overlaid with these courses' learning 

outcomes and content.  

 



Conclusion 

This paper presented the first analysis of curricular design patterns in a new dataset to understand 

how curricula in engineering change over time. By understanding how curricular design patterns 

impact student outcomes in different contexts, we can leverage these findings to inform future 

curriculum development efforts. We plan to integrate this work with the Multiple Institution 

Database for Investigating Engineering Longitudinal Development (MIDFIELD) to enrich our 

study by linking common curricular design patterns to actual student course-taking trajectories. 

An avenue for further exploration lies in scrutinizing MIDFIELD trajectories, specifically those 

of students who transferred out of their major or left college altogether. Analyzing these 

trajectories offers valuable insights into critical courses that may have influenced students' 

decisions to transfer or stopout. As we continue analyzing and expanding this dataset, we expect 

the thoughtful analysis of curricula to expand – enabling faculty to have focused conversations 

about design patterns impeding student success.  
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