
Paper ID #42147

A Preference-Based Faculty-Assignment Tool for Course Scheduling Optimization

Dr. Sami Khorbotly, Valparaiso University

Received the Bachelor of Engineering degree in Electrical Engineering from Beirut Arab University,
Beirut, Lebanon in 2001. Received the M.S. and Ph. D. degrees both in Electrical and Computer
Engineering from the University of Akron, Akron, OH in 2003 and 2007, respectively. Currently serves
as a Chair and Professor of Electrical and Computer Engineering at Valparaiso University.

Daniel White, Valparaiso University

Daniel J. White is an Associate Professor in Electrical and Computer Engineering at Valparaiso University’s
College of Engineering, joining as an Instructor in 2013. He received the B.S. EE and M.S. EE in 2005
and 2006, respectively, and the Ph.D. in Ele

©American Society for Engineering Education, 2024

A Preference-Based Faculty-Assignment Tool for

Course Scheduling Optimization

1 Introduction

Course scheduling is one of the most time-consuming tasks that department chairs must perform
every academic semester. The course scheduling problem includes assigning a faculty member,
the course time/day(s), and a classroom for each offered course. Course scheduling is an NP-hard
problem that has been extensively studied over the years.

In this work, rather than addressing the NP-hard course scheduling problem in its entirety, we
tackle only the faculty assignment side of the problem. This “divide and conquer” approach
reduces the task from an NP-complete problem to a problem for which an optimal solution exists.
The goal here is to prioritize assigning the best possible faculty member for each course. Once that
is accomplished, class times and locations can be later assigned using other tools. Faculty
assignment is prioritized because we believe that no factor is nearly as important as having the
most suitable professor teach each course. The time of a qualified professor is by far the most
valuable academic resource, above the limited time slots and the limited spatial resources available
on campus.

Our faculty-assignment optimization tool uses Linear Programming (LP) with the objective
function being the maximization of the overlap between the courses to be offered in a semester
and the faculty members’ preferences and skills. This maximizes the chances of every faculty
member teaching courses they are interested in. A set of constraints is created to ensure the full
coverage of all courses/sections to be offered and also to ensure that no faculty member is assigned
to teach more than a pre-determined teaching load limit. The tool is embedded in a web-based
application and is available for the public to use.

One of the greatest features of the tool is its objectivity. It generates the faculty-course assignments
based on the faculty preferences. It does not favor one faculty member over the other. Disgruntled
faculty members who are not pleased with the outcome can no longer be upset with the chair of
the department. Additionally, the tool also helps identify structural holes in the department’s depth
of coverage across topics, prompting strategic staffing discussions and guiding future faculty
searches. The paper explains how to use the tool and includes some scheduling results for the sake
of demonstration. The paper also includes a link for interested future users to access the free, web-
based version of the tool to find optimized solutions to their own scheduling problems. The source
code is also made available for anyone who may be interested in a modified version of the tool.

2 Literature Review

Course scheduling (also known as timetabling) is a multi-parameter combinatorial optimization
problem with multiple constraints. The created schedule must take into consideration many
parameters and constraints including teacher expertise and preferences, student need for classes,
best (non-conflicting) times for both teachers and students, and (for in-person courses) the
availability of a suitable classroom with adequate teaching equipment. The overall problem is an
NP-hard problem [1] that has been extensively studied over the years. A wide variety of solutions
have been suggested. For example, [2] used genetic algorithms to solve the problem while [3] used
simulated annealing. Similarly, [4] used the Particle Swarm Optimization (PSO) method while [5]
solved the problem using a Tabu search. All of these efforts attempted to find an acceptable
solution while optimizing all the parameters of the problem. A different approach was taken in [6],
where the focus is on maximizing the faculty preference when it comes to the courses to teach and
the assigned time-blocks. Similarly, [7] focused on the optimization of the faculty assignment.
However, their approach was to use the Depth-First Search algorithm which assigns one course at
a time before moving to the next one. Our approach, using Linear Optimization takes a wholistic
approach to optimize the assignment of all the courses.

As a student-first, undergraduate program, the College of Engineering at Valparaiso University
prioritizes the learning experience of our students and the achievement of their learning outcomes.
To this end, while the time of a course and the location of a classroom are important parameters,
we believe that nothing impacts a learning experience more than the quality of the instructor. This
has been extensively studied and documented in the teaching and learning literature. For example,
you can find the following statements in [8] - “In fact, without effective teacher guidance and
instruction in the classroom, learning cannot be achieved” and [9] – “since the instructor is
responsible for most aspects of the college course, including the tone of the classroom, the types
of activities assigned, and interactions within the classroom, that instructor plays a major part on
the students’ learning.” As a result, our tool focuses exclusively on assigning the best faculty
member to every offered course.

3 The Tool

The preference-based faculty-assignment tool uses the linear programming optimization method
and is coded in Python. The linear optimization portion is implemented using PuLP, which is a
linear programming modeler written in Python [10]. The tool is published as a web application
and can be found at the address: https://apps.dgnd.net/scheduling-solver/. The source code for the
tool is available at https://github.com/wiredlab/scheduling-solver. A snapshot of the user interface
of the tool is shown in Figure 1.

3.1 Configuration input

The only input a user needs to provide is an Excel spreadsheet that includes a list of the
courses/sections to be covered in the semester, the teaching load associated with each
course/section, a list of the faculty members to be assigned to those courses with the available load
credits for each of them, and the preferences of each faculty member to teach every course on the
list. An empty template of the spreadsheet is available to download from the webpage of the app
and is shown in Figure 2, truncated to fit the space.

In the template, one can see that row 1 lists all the courses that are scheduled for offering in the
current term. Row 2 (TLC/Section) is the number of Teaching Load Credits (TLC) associated with
each course section. For example, a faculty member gets 1 TLC for teaching a section of the 1-
Credit ECE 211 course while a faculty member who is teaching a section of the 3-Credit ECE 450

Figure 1. The user interface of the scheduling tool.

Figure 2. A sample of the user-input spreadsheet.

course gets 3 TLCs. Row 3 of the spreadsheet shows the number of sections to be scheduled for
each offered course. For example, 2 sections of GE100 will be offered but only 1 section of ECE
221. Row 4 shows the total number of TLCs needed for a course. This is calculated by multiplying
the number of sections by the number of TLCs per section for each course. At the end of the row,
the user can see the total number of TLCs to be covered by the department in that academic term.
Content in the white background cells is ignored by the tool.

Column A lists the names of the professors who are scheduled to teach in the term. Column B lists
the TLC capacity for each professor. For example, Prof A is teaching a full load (12 TLCs) while
Prof B, also serving as the department chair, is only available for 6 TLCs. Similarly, Prof C has a
lower TLC capacity of 9. This is due to an endowed professorship that comes with 25% teaching
load release. Finally, Prof H is an adjunct instructor with a TLC capacity of only 3. Any user can
easily add or remove courses or professors by adding or removing columns / rows in the shaded
regions.

3.2 Teaching preferences matrix

The remaining columns (C - R) correspond each to a course that is scheduled for offering. Figure
2 does not show all the columns to fit the width of the page. The numerical values in these columns
(Cells C5 to R11) represent an instructor’s interest to teach a course. These values are obtained by
asking every instructor to indicate their interest in teaching each of the listed courses using a
number 𝑡௜௝ ∈ [1 − 10], where 10 indicates extreme interest in teaching the course and 1 indicates
no interest in teaching it — a value of zero does not interact well with the tool and would effectively
mean never assign this course. The preference numbers are arranged in the two-dimensional matrix
𝑇 as follows:

𝑇 = ൥

𝑡ଵଵ ⋯ 𝑡ଵ௅

⋮ ⋱ ⋮
𝑡ேଵ ⋯ 𝑡ே௅

൩ (1)

where 𝑡௜௝ represents the interest of instructor 𝑖 to teach course 𝑗.

3.3 The Linear Programming Optimization

The first step in the optimization process is to investigate the feasibility of a solution. This is done
by checking that the number of total TLCs to be covered (cell S4) is less than the TLC capacity of
the available instructors (cell B13). No solution exists if this condition is not satisfied. If a solution
is feasible, the problem is modeled by defining the variable 𝑋 as an (𝑁 × 𝐿) matrix where 𝑁 is the
number of available instructors and 𝐿 is the number of courses to be covered.

𝑋 = ൥

𝑥ଵଵ ⋯ 𝑥ଵ௅

⋮ ⋱ ⋮
𝑥ேଵ ⋯ 𝑥ே௅

൩ (2)

In this variable matrix, 𝑥௜௝ is the number of sections of course 𝑗 that are assigned to instructor 𝑖.

For example, 𝑥௜௝ = 1 means that instructor 𝑖 is assigned to teach one section of course 𝑗 while
𝑥௜௝ = 3 means that instructor 𝑖 is assigned to teach three sections of course 𝑗. Naturally, 𝑋 is
expected to be a sparse matrix. The LP optimal solution is achieved by maximizing the objective
function 𝐹 defined as the dot product of the two matrices 𝑇 and 𝑋

𝐹 = 𝑇 ∙ 𝑋 = ෍ ෍ 𝑡௜௝

௅

௜ୀଵ

∙ 𝑥௜௝ .

ே

௝ୀଵ

(3)

One can see that 𝐹 is the weighted sum of the values denoting the interest of instructor 𝑖 to teach
course 𝑗, only if instructor 𝑖 is assigned to teach one or more sections of course 𝑗. In other words,
maximizing 𝐹 leads to assigning courses to the instructor who have greater interest in teaching
them.

When it comes to the constraints, two sets of constraints must be considered. The first set ensures
that every section is assigned to an instructor. This set can be modeled by the following 𝐿
equations:

෍ 𝑥௜௟ = 𝑆𝐸𝐶௟

ே

௜ୀଵ

, ∀ 𝑙 ∈ [1 − 𝐿] (4)

Where 𝑆𝐸𝐶௟ indicates the total number of sections of course 𝑙 that must be offered (row 3 in Figure
2). This set of 𝐿 equations ensures that, for each course 𝑙 of the 𝐿 courses, the sum of the assigned
sections across all 𝑁 instructors is equal to 𝑆𝐸𝐶௟.

The second set of constraints ensures that the sum of the TLCs corresponding to all the
courses/sections assigned to an instructor does not exceed their TLC capacity. This set can be
modeled by the following 𝑁 equations:

෍ 𝑥௡௜ . 𝑇𝐿𝐶௜ ≤ 𝑇𝐿𝐶஼஺௉,௡

௅

௜ୀଵ

, ∀ 𝑛 ∈ [1 − 𝑁] (5)

Where 𝑇𝐿𝐶஼஺௉,௡ indicates the maximum number of TLCs that instructor 𝑛 may teach (column B
in Figure 2). These 𝑁 equations ensure that, for each instructor 𝑛 of the 𝑁 instructors, the sum of
their assigned TLCs across all courses does not exceed their maximum capacity 𝑇𝐿𝐶஼஺௉,௡.

3.4 The output

The output of the system is a list of the teaching assignments for all available faculty members in
a way that maximizes the objective function while satisfying all the constraints. A sample output
of the system is shown in Figure 3. This output was obtained when the spreadsheet shown in Figure
2 was uploaded to the web app or given as a command line argument. In this sample, a total of 24
course sections 63 TLCs) are assigned to the 7 faculty members in the department.

The results show that Prof A is assigned to teach 2 sections of the course GE100, and also each of
ECE322 and its lab ECE322L. Prof B is assigned the one section of ECE221 and both ECE221L
lab sections, these also match their highest preference course. Adjunct Prof H is assigned two
sections of ECE211 for a total of 2 TLCs.

It is important to note that the number of TLCs assigned to Prof C is 8, slightly lower than their
TLC capacity of 9. The same is true with Prof E who is assigned only 11/12 TLCs and Prof H who
is assigned 2/3 TLCs. That is not surprising because, going back to the input spreadsheet in Figure
2, the number of TLCs to cover (63) is slightly less than the total TLC capacity (66). This may be
acceptable in most departments as it offers some flexibility and also because it is not always
possible to have a perfect 100% load distribution efficiency. Conversely, a department chair may
look at the 63/66 TLC mismatch and conclude that an adjunct professor, Prof H in our case, may
not be needed for this particular semester.

Figure 3. Optimization results output.

4 Summary
In this paper, we presented an LP-based faculty assignment optimization tool to help schedule
makers with the faculty assignment aspect of the course scheduling problem. The tool is embedded
in a web application and is available for public use. The tool takes as an input a spreadsheet
including the classes to be covered, the teaching load capacity of every professor, and the amount
of interest every professor has to teach every class. The output of the tool is a list of faculty
assignments that maximizes the class-interest overlap while covering all classes without exceeding
any professor’s teaching capacity limit. It is important to note that the tool user has the choice of
either using the output as is or tweaking it for other considerations if they choose.

5 References

[1] M. Elmohamed, P. Coddington, and G. Fox, “A comparison of annealing techniques for

academic course scheduling,” International Conference on the Practice and Theory of
Automated Timetabling. Berlin, Heidelberg. 1997.

[2] Y-Z. Wang, “Using genetic algorithm methods to solve course scheduling problems,”
Expert Systems with Applications, vol. 25, 2003.

[3] E. Aycan and T. Ayav, "Solving the Course Scheduling Problem Using Simulated
Annealing," 2009 IEEE International Advance Computing Conference, Patiala, India, 2009.

[4] D-F. Shiau, “A hybrid particle swarm optimization for a university course scheduling
problem with flexible preferences,” Expert Systems with Applications, vol. 38, 2011.

[5] R. Alvarez-Valdes, E. Crespo, and J. Tamarit, “Design and implementation of a course
scheduling system using Tabu Search,” European Journal of Operational Research, vol.
137, 2002.

[6] M. Badri, D. Davis, D. Davis, and J. Hollingsworth, “A multi-objective course scheduling
model: Combining faculty preferences for courses and times,” Computers & Operations
Research. Vol. 25, 1998, pp. 303-316.

[7] M. Wyne, A. Farahani, E. Atashpaz-Gargari, and L. Zhang, “Optimal Faculty Staffing
Using Depth-First Search,” ASEE Annual Conference and Exposition. Baltimore, MD.
2023.

[8] L. Kyriakides, C. Christoforou, and C. Charalambous, “What matters for student learning
outcomes: A meta-analysis of studies exploring factors of effective teaching,” Teaching and
Teacher Education, vol. 36, 2013, pp. 143-152.

[9] B. Trammell, & R. Aldrich, “Undergraduate Students’ Perspectives of Essential Instructor
Qualities,” Journal of the Scholarship of Teaching and Learning, vol. 16. 2016.

[10] https://pypi.org/project/PuLP/

