
Paper ID #41987

Analyzing Individual Contribution in Team-based Software Engineering Projects

Joydeep Mitra, Northeastern University

Joydeep Mitra is an assistant teaching professor in the Khoury College of Computer Sciences at Northeastern
University, based in Boston.

Mitra’s research interests center around mobile app security and privacy. He has been awarded two
Android security rewards by Google for discovering vulnerabilities in the Android platform. Further,
he is passionate about the opportunity to train the next generation of computing professionals. He gets
immense joy from teaching students how their favorite programming languages work under the hood,
as well as developing new teaching methods and evaluating existing ones to understand what engages
students. He was previously awarded a Faculty Fellowship by Stony Brook University to study the effects
of the Process Oriented Guided Inquiry Learning methodology in a large classroom.

Mitra has published in the Journal of Empirical Software Engineering and the Technical Symposium
of Computer Science Education (SIGCSE TS), and has presented at both the International Conference
on Predictive Models and Data Analytics in Software Engineering and the International Workshop on
Advances in Mobile App Analysis. Additionally, he has served as a journal reviewer for SIGCSE TS and
Transactions in Software Engineering and Methodology.

Amir Kirsh

©American Society for Engineering Education, 2024



Measuring Individual Contribution in Team-based Software Engineering

Projects

Joydeep Mitra
j.mitra@northeastern.edu

Khoury College of Computer Sciences
Northeastern University

Boston, MA, USA

Amir Kirsh
kirshamir@gmail.com

The Academic College of Tel Aviv Yaffo
Tel Aviv, Israel

Introduction

Collaboration in Computer Science courses has several benefits. It allows students with diverse
backgrounds and perspectives to come together and understand the subject material holistically
and comprehensively. Working in a team encourages students to exchange ideas, expertise, and
best practices, which helps them learn from one another and not only from the teaching staff.
When students work on programming assignments in a team, it allows students to peer review
their team members’ code. Peer evaluation and feedback help improve the work’s overall quality
and also reflects developers’ workflow in real-world software development projects. Moreover, a
collaborative environment encourages students to be accountable for their and their team
members’ work, enabling them to be disciplined and responsible.

While collaboration has numerous benefits, one of its primary challenges is for instructors to
evaluate individual contributions in group or team projects. Teamwork in programming
assignments may lead to unequal work distribution. Some students may do no or less work than
others for various reasons ranging from lack of effective time management and insufficient
background/skills to apathy and negligence. If students are not graded, or at least perceive that
they can be graded based on individual work, some may be incentivized to work less than their
teammates. Moreover, unequal work distribution, if undetected, may create an environment of
resentment. Also, students who fail to do the necessary work may proceed without satisfying the
desired learning objectives.



One potential method to ensure equal work distribution in group programming assignments is to
have each team member work on individual source control branches, having them know that the
course staff will verify their individual contributions during evaluation.

Given the benefits of collaborative work and the need to assess individual contributions, in this
paper, we focus on answering the following research questions:

1. RQ1(a): Do students in an introductory software engineering course, working in pairs,
distribute work equally?
RQ1(b): Can we use measurements based on git logs to assess each team member’s work
contribution? How is this measurement correlated with the amount of work self-reported by
students?

2. RQ2: Would there be any change in their work distribution if given a recommended
collaboration workflow?

3. RQ3: What collaborative models do students in an introductory software engineering
course follow when working in a team?

Related Work

Working in pairs on programming assignments is helpful for students as it improves performance
and self-efficacy [1, 2, 3, 4, 5]. However, assessing individual work in group activities is
challenging. Therefore, several approaches to effectively evaluate group work have been
proposed – (a) give the same grade to all students; (b) give the same grade to all students unless
otherwise requested by the team or based on the instructor’s perception that the work was
unequal; (c) differentiate between students according to their individual contribution.

There are subjective and objective ways to determine individual contributions in a team.
Subjective measures include peer evaluation and oral interviews organized by the course staff
[6, 7, 8]. As subjective measures are subject to bias, researchers have also proposed considering
objective measures based on version control systems such as git logs for a complete picture of
individual contribution [9, 10, 11]. However, recent efforts have found that objective and
subjective measures of individual contribution may not be correlated [12, 13]. Moreover,
objective metrics can be narrow. For example, estimates derived from git logs may not capture
individual contributions comprehensively as git logs only consider code contributions and not
other forms (e.g., design) [14, 15].

Our effort contributes to the existing discussion on identifying metrics to accurately measure
individual contributions in collaborative programming projects. We use a combination of
objective (based on git logs) and subjective (self-reported effort) measures to determine individual
contributions. Furthermore, unlike prior efforts, we also analyze and report the collaborative
practices of students working in teams.



Methodology

Logistics. Our study is based on an undergraduate course on software development fundamentals
taught in Spring 2023 at a large public research university in the United States. Students in the
class paired up in teams and developed a web application mimicking the Stack Overflow Q&A
forum [16]. Students created the application over the course of three programming assignments
and a final project. In the first assignment, teams used HTML/CSS/JavaScript to build the user
interface of the fake Stack Overflow application. In the second assignment, teams used the React
framework to re-create the front-end features. In the third assignment, teams added a back-end
server (Node.js) and data persistence using a non-relational database (MongoDB). In the final
project, teams extended the application by adding advanced features (e.g., authentication).

We used GitHub Classroom [17] to administer the programming assignments and the final
project. GitHub Classroom allows instructors to create a repository for each team. Students
collaborated in their teams using the git repositories. Team members had read and write access to
the repositories, meaning they could commit changes to the repository unlimited times until a
deadline, create, merge, and close branches, and create and submit pull requests.

We restricted the team size to two. Students were allowed to form their teams. However, they
were not permitted to change once they formed a team. Students who were unable to form teams
were allowed to work individually. We do not consider students who worked alone in our analysis.

Overall, 110 students enrolled in the course. They formed 48 teams. The remaining 14 were
allowed to work alone as they could not create teams. 3 of the 48 teams were not considered in
the evaluation as one of their members dropped the course.

Experimental Design, Instruments, and Metrics. For each assignment and the final project, we
analyzed the repositories of all teams in GitHub classroom. For each repository, we analyzed the
commit history of the main branch. The commit history records the number of lines a team
member added and deleted in each commit. We ignored merges since merges are not novel code
contributions. Also, we ignored lines deleted to avoid double counting of lines added. We
considered the total lines of code added by a team member across all commits as their
contribution and calculated their ratio. We call this ratio the work ratio. The work ratio should be
1 (or close to 1) for equal contribution. Consider an example to understand the idea of work ratio
better. Suppose in a team of two members – Alice and Bob, Alice added N1 lines of code, and
Bob added N2 lines of code across several commits. Assuming N1 < N2, the work ratio N1/N2
indicates that Alice contributed N1/N2 of Bob’s lines of code. If Alice and Bob contributed
equally, the work ratio would be 1.

Furthermore, we calculated a total work ratio – the ratio of the total lines of code added by each
team member across all assignments and the final project. For example, if Alice added A1, A2,
A3, and AP1 lines of code in assignments 1-3 and the final project, respectively, and Bob added
B1, B2, B3, and BP1 lines of code in assignments 1-3 and the final project, then the total work
ratio is (A1+A2+A3+AP1)/(B1+B2+B3+BP1). This metric is necessary because it is possible



SX/PX SY/PY PX/PY SX/SY
SX/PX NA 0.27 / 0.27 /0.44* 0.09 / 0.03 / 0.38* 0.44* / 0.16 / 0.36*
SY/PY 0.27 / 0.27 /0.44* NA 0.64* / 0.18 / 0.5* 0.53* / 0.31* / 0.46*
PX/PY 0.09 / 0.03 / 0.38* 0.64* / 0.18 / 0.5* NA 0.68* / 0.71* / 0.65*
SX/SY 0.44* / 0.16 / 0.36* 0.53* / 0.31* / 0.46* 0.68* / 0.71* / 0.65* NA

Table 1: Comparison of time-based ratios based on Pearson Correlation Coefficient for Assign-
ments 1-2 and final project. Each cell has a notation I/J/K, where I, J, and K are correlation
coefficients of the compared ratios for assignments 1, 2, and the final project, respectively. The
cell highlighted in bold demonstrates the strongest correlation. The coefficients with * indicate
that they are statistically significant, assuming α = 0.05 and a two-tailed t-test.

that team members negotiated with each other and split the work such that one works more in one
assignment and the other balances it out by working more in the subsequent assignment/s. If the
contribution between the team members is equal across all assignments, then the total work ratio
should be close to 1.

Additionally, we used the time taken by each team member to complete the assignments as a
metric to determine if team members distributed work equally. Hence, at the end of each
assignment (except assignment 3), we ran a survey to collect student responses1. For each team
comprising members X and Y, we requested the following:

1. SX : the number of hours X worked individually as reported by X

2. PX : the number of hours partner Y worked individually as estimated by X.

3. SY : the number of hours Y worked individually as reported by Y

4. PY : the number of hours partner X worked individually as estimated by Y.

We calculated four ratios – SX/PX , SY/PY , PX/PY , and SX/SY for each team based on the response
given by its members X and Y The ratio SX/PX is an estimate of the work distribution as reported
by X and SY/PY is the same estimate as reported by Y. The ratio PX/PY indicates the work
distribution of a team based on hours worked as reported for a team member by their partner. On
the other hand, the ratio SX/SY is the work distribution based on hours worked as reported by the
team member themselves. For each metric, the ratio 1 indicates that each member contributed
equally in terms of hours worked. However, we did not consider all four ratios in our evaluation,
as some are more trustworthy than others. The ratios SX/PX and SY/PY can inaccurately represent
work distribution as a team member may incorrectly estimate their partner’s hours to be the same
as theirs. On the other hand, the ratios PX/PY and SX/SY more accurately represent work
distribution even if a student misreports their partner’s hours to be the same as theirs.
Additionally, we compared each ratio pair to determine if they are correlated (see Table 1). A
strong correlation between any pair of ratios indicates that ratios in the pair agree with each other

1We could not collect the responses at the end of the third assignment due to time conflicts.



and can be used to measure work distribution accurately. As the ratios PX/PY and SX/SY show the
strongest linear association, we considered both the ratios as a metric to determine equal
contribution in terms of hours worked individually. In the remainder of the paper, we will refer to
the ratios PX/PY and SX/SY as time-based ratios.

To answer RQ1, we considered each team’s work ratio and time-based ratios for each assignment
and the final project. Furthermore, we compared the work and time-based ratios to determine if
both team members contributed equally in terms of lines of code and time spent. Moreover, we
considered the total work ratio of each team to understand if the total work done by each team
member in a team was equal throughout the semester. We did not consider grades, as team
members received the same grade in each assignment, irrespective of their individual
contributions.

In RQ2, we want to determine if providing students with a recommended collaborative workflow
changes their work distribution. Hence, we recommended a git workflow on the second
assignment but not on the first, as we wanted to measure how the work distribution changes due to
the recommended workflow. We instructed students to list their contributions in a README file
for the first assignment. Additionally, we informed them that we would not verify individual
contributions when grading their work. The course staff graded their submission as a team, i.e.,
both members received the same score regardless of individual contribution. For the second
assignment, as per the recommended workflow, we required teams to create and maintain
different branches – an individual branch for each team member, a test branch for integrating
changes from each individual branch, and a main branch for the final version. When grading, we
assigned equal weights to individual branches and team branches. For example, if student X
mentioned in the README that they implemented feature F1, we verified the correctness of F1 in
branch X. If student Y mentioned that they implemented feature F2, we verified the correctness of
F2 in branch Y. If F1 depended on F2 and vice-versa, we created dummy data to facilitate testing.
Finally, we verified the correctness of features F1 and F2 in the main branch.

To answer RQ2, we compared the work ratio of teams in assignments 1 and 2. If the compared
work ratios differ, the recommended workflow changes how students distribute work within a
team. However, the recommended workflow had no effect if they were similar. Moreover, since
we did not provide any guidance in the third assignment and the final project, we also compared
their work ratios with the previous assignments to determine if the recommendation provided in
the second assignment changed work distribution in later assignments where guidance was absent.

To answer RQ3, we used a similar strategy to understand teams’ git usage. In the first assignment,
where students did not receive a recommended git workflow, we determined how many teams
used git branches to collaborate. We compared this with the teams’ git workflows in the second
assignment, where we gave students explicit instructions to create and maintain four branches – a
main branch for production-ready code, a test branch to test integration, and two development
branches; one for each team member. Moreover, we wished to determine if the workflow
recommended in the second assignment persisted in future assignments. Therefore, we identified
how teams used branches and merges in the third assignment and the final project. Our motivation
for this analysis is to understand if students can learn and adopt advanced version control features



Figure 1: Figures A - D show the work ratio of all teams in assignments 1, 2, 3, and the final project.
Figure E shows the total work ratio of all teams across all assignments and the final project. Each
bar represents the work ratio of a team. The corresponding population mean estimate for each
sample mean is not 1 at a significance level of 0.05.

Figure 2: Time-based ratio based on the time reported by each team in assignments 1, 2, and the
final project. Each bar represents the time-based ratio of a team. The corresponding population
mean estimate for each sample mean is not 1 at a significance level of 0.05.

commonly used in collaborative software projects.

Results

RQ1 Results. In the first, second, and third assignments and the final project 8/45, 8/45, 5/45, and
4/45 teams had a work ratio of 0.75 or greater (see figures 1A-D). Moreover, 23/45, 26/45, 36/45,
and 32/45 teams in assignments 1-3 and the final project have a work ratio of 0.5 or less.
Therefore, for most teams, one team member contributed two times or more lines of code than the
other for each assignment.

Furthermore, the third assignment and the final project have more teams with a work ratio of less



PX/PY vs. WorkRatio SX/SY vs. WorkRatio
Assignment 1 0.33* 0.28
Assignment 2 -0.12 0.2
Final Project -0.008 0.26

Table 2: Comparison of work ratio and time-based ratios based on Pearson Correlation Coefficient
for assignments 1,2, and final project. The coefficients with * indicate that they are statistically
significant, assuming α = 0.05 and a two-tailed t-test.

than 0.25 than the first two assignments. The most likely reason for later assignments having a
relatively more unequal distribution of work than earlier assignments is time constraints.
Towards the end of the semester, when teams work on the later assignments, workload from other
courses may have led to a time crunch, which resulted in students with more coding experience
shouldering more responsibility to finish the work on time.

The total work ratio of 6/45 teams is 0.75 or higher (Figure 1E). Moreover, 28/45 teams have a
total work ratio of 0.5 or less. Therefore, for 28/45 teams, one team member contributed two times
or more lines of code than the other in the entire semester.

Based on the reported time-based ratios from the survey, only 9/21 teams have PX/PY >= 0.75,
and 6/21 teams have SX/SY >= 0.75 for the first assignment (see Figure 2A). Similarly, for the
second assignment, 6 of 23 teams have PX/PY >= 0.75 and SX/SY >= 0.75 (see Figure 2B). For
the final project only 9/29 teams have PX/PY = 0.75 and SX/SY >= 0.75 (see Figure 2C).
Therefore, members in the majority of the teams reported that they did not contribute equally in
terms of hours worked individually.

Comparing each team’s work and time-based ratios using the Pearson Correlation Coefficient
shows a weak linear association (see Table 2). Also, only the correlation between PX/PY and the
work ratio for the first assignment is statistically significant. The weak correlation between the
objective metric (work ratio) and the subjective measure (self-reported time-based ratio) is
consistent with prior research efforts. While this observation points to the limitation of the
metrics, we note that both ratios for most teams across all assignments and the final project are
low (< 0.75). Therefore, despite the weak correlation, both time-based and work ratios indicate a
similar trend, i.e., unequal work distribution between team members.

RQ2 Results. Less than 50% (19/45) of the teams had a higher work ratio in the second
assignment than in the first (see Figure 3). Moreover, only one team had a work ratio of 1, and 7
teams had a work ratio of 0.8 or more in the second assignment. Therefore, based on the work
ratio, recommending a collaboration workflow in the second assignment did not encourage
students to contribute code equally.

30/45 teams in the third assignment and 28/45 teams in the final project had a work ratio less than
the second assignment (see Figure 3). Indeed, for most teams, the work ratio in the third
assignment and the final project is lower than that of the second assignment. Therefore, the
recommended workflow in the second assignment did not cause students to contribute code more



Figure 3: Comparison of work ratio of assignments 1, 3, and final project with that of assignment
2.

Figure 4: Number of branches used by each team in assignments 1, 3, and the final project. Each
bar represents the time-based ratio of a team. Assignment 2 is not shown as all teams were required
to use 4 branches.

equally in later assignments. Hence, recommending a git workflow did not make code
contribution more equal than not recommending one.

RQ3 Results. Most of the teams (34/45) in the first assignment worked on the main branch (see
Figure 4A), i.e., both team members committed and pushed code to the main branch without
maintaining a separate branch. However, a few teams (3/45) followed a workflow where each
team member created and maintained separate branches and used the main branch for integration.
The remaining teams (5/45) created and maintained a branch to develop each individual feature
and integrated all the features in the main branch. Therefore, in the absence of explicit
instructions/guidance, most students are unable to use the full power of a version control system
to collaborate seamlessly.

All teams created and maintained four branches in the second assignment, which is not surprising
as we explicitly asked the students to maintain a main branch for production, a development
branch for each team member where they develop and test the features they are responsible for,
and a test branch to merge and test the integration of code from the development branches.

A third of the teams (15/45) used the workflow recommended in the second assignment in the
third assignment, i.e., they created and maintained a main branch, a test branch, and two
development branches (see Figure 4B). Further, 10/45 teams used a variant of the recommended
workflow, using three branches - the main branch and two development branches. They used the
main branch for both integration and production. The remaining teams used either only the main



branch, the same as most teams in the first assignment, or two branches – the main branch and a
development branch. Similarly, half the teams (22/45) used the recommended git workflow or a
variant in the final project (see Figure 4C). The remaining teams used either only the main branch
or a development branch and the main branch. Therefore, a sizeable number of students found the
workflow provided in the second assignment valuable as half or more of the teams continued
using it even when they were not required to do so.

Results

Observations. There are several potential reasons for the unequal work distribution of students
working in a team even after explicit instructions were provided to encourage students to
contribute equally.

1. Students in a team likely had different backgrounds in programming. Hence, code written
by members with more programming experience may have made it to the repository at the
expense of students with less experience. This contribution pattern is likely why few
students reported equal hours as their partners even if they contributed fewer lines of code.
Moreover, students with less experience may have committed less code to the team’s
repository due to a steeper learning curve. However, this is not necessarily a problem, as
less experienced students can learn from the more experienced teammate even if they are
not contributing the same amount of code. Moreover, this team dynamic mimics the real
world, where a team comprises several individuals with different experience levels. On the
other hand, less experienced students may get disillusioned if their more experienced
teammate/s dismiss their efforts and opinions, especially when they are learning new
concepts.

2. The students in a team wrote code together, most likely on the same device, similar to pair
programming, with one member adding the bulk of the code to the repository. This style of
collaboration is beneficial if the course staff switches the roles of coder and reviewer
periodically to enable all team members to gain experience in writing, reviewing, and
testing code. However, the absence of such role-switching may hamper some students from
gaining experience in writing code.

3. In the second assignment, where we provided explicit guidelines, we graded the students
based on the features they implemented on their branches (as mentioned by them in the
README) and the main branch. We did not verify individual contributions via commit
history. Therefore, it is possible that one team member wrote the bulk of the code on their
branch, and the other member pulled/merged the changes onto their branch before merging
the final version to the main branch. Consequently, both students in the team would have
received the same grade despite having contributed unequally. Due to a lack of strong
enforcement, students may have continued unequal contribution practices in subsequent
assignments. A more stringent grading policy based on checking commit histories may
incentivize students to distribute work equally.



The RQ3 results demonstrate that most students do not use advanced version control features such
as branching and merging unless explicitly guided, as we did by providing a recommended
workflow in the second assignment. The likely reason is that version control systems such as git
have extensive documentation, which can overwhelm new users. Consequently, students get lost
in the documentation and lose the motivation to learn the features needed for effective
collaboration. However, when provided with instructions on recommended workflows and
relevant commands, teams adopt them and continue to use them in the future.

Recommendations.

Based on the results and observations, we recommend the following action items for any course
where students must work on programming assignments in a team using a version control system.

1. Evaluate all students before forming teams. Our results imply that allowing students to pick
teams leads to unequal work distribution. Instructors should perform a formative
assessment of students before dividing them into teams. The evaluation results will give the
teaching staff a better idea of how to pair students. Prior efforts have proposed different
strategies for grouping students [18]. Instructors should explore them and come up with an
appropriate grouping method.

2. Enforce equal work distribution. Without enforcement, not all students are motivated to
distribute work equally. Consequently, students who work more than others in a team are
discouraged from collaborating, adversely impacting all students’ learning outcomes.
Instructors should measure students’ individual and group contributions. Additionally,
instructors can assign specific roles to students in a team, such as tester, designer, and
implementer. Students should be evaluated according to contributions based on their
assigned roles and the team’s performance. For example, in a team of two students with
assigned roles for testing and implementing, the individual evaluations will include
measuring code coverage of tests, their effectiveness in detecting bugs in an incorrect
implementation, and the correctness of the implementation based on student tests and
instructor-defined tests. The roles should be switched in subsequent assignments.

3. Provide detailed and explicit guidance on using version control. While guidance on using
version control systems for collaboration does not improve work distribution in teams, it
allows interested students to learn and adopt an effective workflow early. Indeed, the RQ3
results demonstrate that most teams adopted and continued to use the recommended
workflow. Therefore, instructors should provide all relevant information to use version
control effectively before starting the programming projects/assignments. One way to
ensure all students have the necessary information is to have them complete an assignment
focused on using version control before proceeding.



Threats to Validity

We used lines of code added by each member to measure individual contributions. This metric
might be limiting as a student may have contributed in other ways, such as resolving ambiguities
in requirements, testing, documentation, design, or assisting teammates. However, we do not
consider these since this paper measures individual contributions in writing code. Future studies
should consider such aspects when measuring individual contributions from a broader
perspective. For example, to measure the contribution of an assisting teammate, a mutual-aid
factor, based on a specific format of git commit messages, can be considered [19].

We derived the time-based ratios from student responses in unsupervised surveys. As a result,
students potentially colluded with each other to report inaccurate data. However, we analyzed the
reported data using multiple metrics described in Section 3.2 to minimize the impact of
misreporting on the results.

References

[1] L. Williams and R. L. Upchurch, “In support of student pair-programming,” in Proceedings
of the Thirty-Second SIGCSE Technical Symposium on Computer Science Education, ser.
SIGCSE ’01. New York, NY, USA: Association for Computing Machinery, 2001, p.
327–331. [Online]. Available: https://doi.org/10.1145/364447.364614

[2] C. McDowell, B. Hanks, and L. Werner, “Experimenting with pair programming in the
classroom,” SIGCSE Bull., vol. 35, no. 3, p. 60–64, jun 2003. [Online]. Available:
https://doi.org/10.1145/961290.961531

[3] S. Faja, “Evaluating effectiveness of pair programming as a teaching tool in programming
courses,” Information Systems Education Journal, vol. 12, pp. 36–44, 01 2014.

[4] A. Kirsh and I. Gaber, “Satisfaction, time investment and success in students’ programming
exercise,” in Proceedings of the Programming Experience 2016 (PX/16) Workshop, ser.
PX/16. New York, NY, USA: Association for Computing Machinery, 2016, p. 9–20.
[Online]. Available: https://doi.org/10.1145/2984380.2984382

[5] J. Calver, J. Campbell, and M. Craig, “Student perspectives on optional groups,” in
Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1,
ser. SIGCSE 2023. New York, NY, USA: Association for Computing Machinery, 2023, p.
18–24. [Online]. Available: https://doi.org/10.1145/3545945.3569739

[6] E. Aivaloglou and A. v. d. Meulen, “An empirical study of students’ perceptions on the setup
and grading of group programming assignments,” ACM Trans. Comput. Educ., vol. 21,
no. 3, mar 2021. [Online]. Available: https://doi.org/10.1145/3440994



[7] V. Farrell, G. Ravalli, G. Farrell, P. Kindler, and D. Hall, “Capstone project: Fair, just and
accountable assessment,” in Proceedings of the 17th ACM Annual Conference on Innovation
and Technology in Computer Science Education, ser. ITiCSE ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 168–173. [Online]. Available:
https://doi.org/10.1145/2325296.2325339

[8] J. Porquet-Lupine and M. Brigham, “Evaluating group work in (too) large cs classes with
(too) few resources: An experience report,” in Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1, ser. SIGCSE 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 4–10. [Online]. Available:
https://doi.org/10.1145/3545945.3569788

[9] R. M. Parizi, P. Spoletini, and A. Singh, “Measuring team members’ contributions in
software engineering projects using git-driven technology,” in 2018 IEEE Frontiers in
Education Conference (FIE), 2018, pp. 1–5.

[10] J. J. Sandee and E. Aivaloglou, “Gitcanary: A tool for analyzing student contributions in
group programming assignments,” in Proceedings of the 20th Koli Calling International
Conference on Computing Education Research, ser. Koli Calling ’20. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3428029.3428563

[11] N. Gitinabard, Z. Gao, S. Heckman, T. Barnes, and C. F. Lynch, “Analysis of Student Pair
Teamwork Using GitHub Activities,” Journal of Educational Data Mining, vol. 15, no. 1,
pp. 32 – 62, Mar. 2023. [Online]. Available: https://doi.org/10.5281/zenodo.7646845

[12] K. Buffardi, “Assessing individual contributions to software engineering projects with git
logs and user stories,” in Proceedings of the 51st ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 650–656. [Online]. Available:
https://doi.org/10.1145/3328778.3366948

[13] J. Leinonen, L. Leppänen, P. Ihantola, and A. Hellas, “Comparison of time metrics in
programming,” in Proceedings of the 2017 ACM Conference on International Computing
Education Research, ser. ICER ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 200–208. [Online]. Available:
https://doi.org/10.1145/3105726.3106181

[14] C. Hundhausen, P. Conrad, O. Adesope, and A. Tariq, “Combining github, chat, and peer
evaluation data to assess individual contributions to team software development projects,”
ACM Trans. Comput. Educ., may 2023, just Accepted. [Online]. Available:
https://doi.org/10.1145/3593592

[15] C. Hundhausen, P. Conrad, A. Carter, and O. Adesope, “Assessing individual contributions
to software engineering projects: a replication study,” Computer Science Education, vol. 32,
no. 3, pp. 335–354, 2022. [Online]. Available:
https://doi.org/10.1080/08993408.2022.2071543



[16] StackOverflow, “Stack Overflow,” https://stackoverflow.com/, 2008, Accessed:
26-Jul-2023.

[17] GitHub, “GitHub Classroom,” https://classroom.github.com/, 2021, Accessed: 26-Jul-2023.

[18] R. Agrawal, B. Golshan, and E. Terzi, “Grouping students in educational settings,” ser. KDD
’14. New York, NY, USA: Association for Computing Machinery, 2014, p. 1017–1026.
[Online]. Available: https://doi.org/10.1145/2623330.2623748

[19] K. Tanabata, A. Hazeyama, Y. Yamada, and K. Furukawa, “Proposal of an evaluation
method of individual contributions using the function point in the implementation phase in
project-based learning of software development,” Procedia Computer Science, vol. 192, pp.
1524–1531, 10 2021.


