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WIP: An Interdisciplinary Subject on Hardware Accelerated 

Computing 

 

Abstract 

 

In this paper we report on the initial design and delivery of a hardware accelerated computing 

subject targeted at an interdisciplinary cohort of engineering and computing students. Within the 

subject, students explore different approaches to accelerating computationally intensive 

algorithms through customized hardware, with a particular emphasis placed on the use of FPGAs 

and high-level synthesis (HLS) tools. The subject aims necessitate covering aspects from a 

diverse range of topics, including fundamentals of digital design, computer architecture, parallel 

programming, and systems thinking. Although such concepts naturally intersect within the 

discipline of computer engineering, structural considerations within our master’s programs and 

disparate prior knowledge within our cohort entail students inherently experience the subject as 

interdisciplinary in nature. This presents numerous challenges in subject design but offers an 

opportunity for developing interdisciplinary competencies and an appreciation for other 

disciplinary ways of thinking. Based on instructor observations while teaching, we reflect on the 

successes and shortcomings in the subject’s design that impact interdisciplinary knowledge 

development. We then conclude with proposed revisions to address identified shortcomings. 

 

Introduction 

 

Today’s engineering graduate will have the opportunity to work on a set of unique and 

meaningful problems with aspects spanning multiple disciplines. For example, meeting many of 

the current global development goals [1], such as providing sustainable energy, clean water and 

sanitation, or high-quality education, will require a seamless integration of knowledge and 

methods from numerous technical and non-technical disciplines. Intuitively, an engineering 

graduate that has developed interdisciplinary competencies will be well-suited for solving such 

challenges, where interdisciplinarity may be considered “as attempts to address real-world cases 

and problems by integrating heterogeneous knowledge bases and knowledge making practices” 

[2]. These heterogeneous knowledge bases and practices may include both different engineering 

and science disciplines as well as non-technical disciplines that illuminate the economic, social, 

and cultural dimensions of a given problem. Such a well-rounded perspective has long been high 

on the list of desirable attributes sought in future engineering graduates [3]. For example, 

ABET’s accreditation requirement that students be able to solve complex engineering problems 

includes solving problems with “many components or sub-problems, involving multiple 

disciplines, or having significant consequences in a range of contexts” [4]. 

 

In this work-in-progress paper, we report on the initial design of a new subject within our 

coursework master’s program that teaches the techniques of hardware acceleration [5][6] to an 

interdisciplinary cohort of engineering (electrical and mechatronics) and computing (software 

engineering and information technology) students. Much of the conceptual material sits squarely 

within the discipline of computer engineering, but recent trends in computer architecture [5][6] 



and limited exposure to the topic within both our engineering and computing curricula creates an 

opportunity to develop interdisciplinary competencies. Ideally, through formal teaching and 

learning activities and associated peer interactions, students will be able to apply methods and 

approaches from their peers’ discipline, appreciate other disciplinary ways of thinking, and 

practice the synthesis of knowledge and methods from the other discipline with their own 

domain expertise. These three capabilities will serve as our definition of interdisciplinary 

engineering competencies within this paper. 

 

We begin with a brief overview of relevant literature on interdisciplinary engineering education 

and explain the suitability of hardware acceleration for developing such competencies. We next 

detail the subject’s design and, based on instructor observations and student feedback, reflect on 

the successes and limitations encountered in the subject’s first offering. Among the shortcomings 

identified in reflection are the balance of disciplinary knowledge exercised, providing sufficient 

scaffolding to the different cohorts within the subject, and reliably assessing whether 

interdisciplinary knowledge and ability have been gained. Such challenges have previously been 

identified in the literature, and so we discuss our experience in light of these reported findings. 

Finally, we propose possible future subject modifications along with qualitative and quantitative 

metrics to be collected in support of a rigorous evaluation of its design. 

 

Background 

 

Interdisciplinary Engineering Education 

 

A common taxonomy found in the literature distinguishes between a multidisciplinary setting, in 

which two or more disciplines are present but remain largely distinct in the outcome of any 

interaction, and an interdisciplinary setting, in which a significant integration occurs 

synthesizing knowledge and perspectives from multiple disciplines into something new [7]. Our 

interest lies primarily in this latter setting, as the challenges faced by future engineering 

graduates are unlikely to be solved by simple divide-and-conquer approaches. There is also 

discussion in the literature as to whether interdisciplinarity is a distinct competency that can be 

developed within a student or whether it is simply a description of the desired knowledge or 

solution produced, but it is generally now understood to be “both a process and outcome” [8]. 

 

Despite a range of publications exploring interdisciplinary engineering education, it is still an 

active area of research with numerous open questions and a lack of clear guidance for subject 

designers. Van den Beemt et al. [2] extensively document major themes that have emerged in 

recent publications on the topic, examining the motivations for interdisciplinary engineering 

education, its teaching aspects, and its necessary support structures. We now highlight some of 

the key themes they identified. A common justification for interdisciplinary learning is to equip 

engineers to solve complex real-world problems in a socially aware manner. To this end, many 

interdisciplinary learning experiences are designed around a single disciplinary cohort and 

introduce knowledge and methods external to that discipline, while others bring together students 

from multiple disciplines in a common setting. Systems approaches and project-based learning 

(PjBL) pedagogies are key enablers in this context, but care must be taken that a vagueness of 



vision for the purpose of interdisciplinary learning does not result in unclear learning goals. As 

might be expected, pedagogical considerations common to PjBL are highly relevant for 

interdisciplinary subject design, especially team formation aspects, providing an appropriate 

level of scaffolding, and balancing disciplinary contributions within the project. 

 

A key observation made in [2] is that greater insight into the definition and assessment of 

interdisciplinary learning outcomes is needed by subject designers for rigorous constructive 

alignment [9]. Some useful guidance for subject design, however, can still be drawn from results 

in the literature. Richter and Paretti [7] propose a number of interdisciplinary learning outcomes 

based on surveying the literature and their own case study, which include the ability of students 

to: 

 

• “Identify contributions that new areas of knowledge can make to their own disciplinary 

expertise;” 

• “Identify ways in which their disciplinary expertise can contribute to the solution of 

interdisciplinary problems;” 

• “Identify the value and contributions of other areas of expertise to a particular 

interdisciplinary challenge;” and 

• “Synthesize both concepts and approaches from multiple domains to develop an 

integrated solution.” 

 

In terms of assessment, Mansilla et al. [10] developed a rubric for evaluating interdisciplinary 

writing, with criteria that include: 

 

• Purposefulness – multidisciplinary nature of the problem is given clear framing. 

• Disciplinary grounding – disciplinary knowledge and methods are used correctly. 

• Integration – perspectives from multiple disciplines are present and combined in a 

balanced manner. 

• Critical awareness – an understanding of the limitations of the work is demonstrated. 

 

Although specifically designed for the evaluation of interdisciplinary writing, these criteria are 

relevant and easily generalizable to assessments of other formats. 

 

Hardware Accelerated Computing 

 

Modern computing systems are elaborately complex, having evolved over decades through the 

combined effort of computer engineers, computer scientists, electrical engineers, software 

engineers, and information technologists. This is in addition to any domain-specific expertise 

needed to realize applications of interest, e.g., in the modeling of genomics, fluid mechanics, etc. 

Table 1 highlights major levels of abstraction in computer system design, where each level is the 

domain of specialized practitioners with extensive expertise. At the very least, this is a 

multidisciplinary setting in which a systems approach is necessary to manage complexity and 

allow practitioners to collaborate with their peers at adjacent levels.  



Table 1: Levels of abstraction in computer system design. 

 

Abstraction Level  Example Practitioners  

User Applications  Computer Scientists & Software Engineers  

Information Systems Management  Information Technologists  

High-level Languages  Computer Scientists & Software Engineers  

Operating Systems  Computer Scientists & Software Engineers  

Instruction Set Architectures  Computer Engineers  

Microarchitecture  Computer Engineers  

Digital Logic  Electrical and Computer Engineers  

Circuit Design  Electrical Engineers  

Semiconductor Fabrication  Physicists & Electrical Engineers  

 

Much of the exponential gain in computing performance has been driven by a raw increase in 

processing power afforded by advances in semiconductor fabrication, which have in turn been 

leveraged by computer architects, first through the use of instruction level parallelism and 

subsequently through the addition of parallel processing cores [5]. With the breakdown of 

Moore’s Law, however, new approaches are needed to continue increasing performance, with 

one of the most promising approaches being the spread of domain specific accelerators (DSAs) 

[5][6]. DSAs are hardware cores tailored to perform computations for a specific domain of 

applications, with performance gains over general-purpose processors achieved through the use 

of specialized arithmetic units, reduced instruction overhead, and an expanded use of parallelism 

and memory locality [6]. The successful design of a DSA requires a thorough understanding of 

algorithms within the domain, with codesign of algorithms and hardware being a common 

practice. This synthesis of knowledge from different domains is interdisciplinary in nature and 

“will require vertically integrated design teams that understand applications, domain-specific 

languages, …, computer architecture and organization, and underlying technology” [5]. DSA 

design thus promises to be an excellent topic by which to expose students to interdisciplinary 

engineering practices. 

 

Recently, a number of innovative subjects on hardware acceleration [11]-[13] have appeared at 

both the graduate and undergraduate levels, often with a strong emphasis on designing 

accelerators for machine learning applications. At UCSD, an undergraduate subject on embedded 

systems [11] teaches students accelerator design through the lens of parallel programming and 

has generated an open-source textbook [14] of illustrative projects. High-level synthesis (HLS) 

for FPGAs [15] is a key enabling tool deployed in most subjects to lower the of barrier entry to 

hardware design and increase the speed of design space exploration. At Georgia Tech, a subject 

[12] is taught that covers similar material at the graduate level with many of the lecture examples 

and laboratories focusing on the acceleration of neural networks. A subject at UC Berkeley [13] 

focuses exclusively on hardware design for machine learning but, again, relies on HLS as the 

tool to facilitate exploration. 



Subject Design 

 

Cohort Prior Knowledge 

 

In designing any new subject, it is important to identify relevant student characteristics and prior 

knowledge, however this is even more critical for interdisciplinary cohorts in which these 

qualities vary greatly. Both our engineering and computing students are enrolled in separate 

coursework master’s programs lasting two to three years. Students in all programs are a 

combination of pathway students, from our undergraduate bachelor’s programs, and lateral entry 

students, from other institutions, with a significant proportion of students having an international 

background. These factors all increase the variation in student prior knowledge to be managed. 

 

Table 2 lists the prerequisite knowledge we assume of each cohort along with complementary 

knowledge some students may have gained in elective subjects. For engineering students, we 

assume a fundamental understanding of digital logic design and basic programming abilities with 

some possible exposure to microprocessor architectures. For computing students, we assume 

familiarity with the modeling of computations and strong programming abilities, with some 

possible exposure to parallel programming and cloud computing concepts. 

 

Table 2: Assumed prior knowledge in subject cohorts. 

 

  Engineering  Computing  

Prerequisite 

Knowledge 

Digital Logic  

Embedded Systems 

C Programming 

Computational Models 

Software Modeling and Design 

Complementary 

Knowledge 
Microprocessor Design 

Parallel Programming 

Cloud Computing 

 

Learning Outcomes and Syllabus 

 

Subject intended learning outcomes (SILOs) for the initial offering addressed disciplinary 

learning outcomes, primarily in the domain of computer engineering but also with 

complementary outcomes in the electrical and software engineering domains. On successful 

completion of the subject, a student is expected to be able to: 

 

1. Explain hardware accelerator architectures and computational models. 

2. Implement digital logic functions in a variety of industrial tools, such as hardware 

description languages, high-level synthesis tools, and OpenCL. 

3. Analyze advanced computational algorithms for amenability to hardware acceleration, 

mapping to heterogeneous computing systems to exploit parallel computation. 



4. Design hardware to accelerate computationally intensive algorithms using a systems-

based approach with consideration given to trade-offs in speed, energy efficiency, and 

area. 

5. Articulate the importance of hardware acceleration for computational systems as a 

continuing trend in industry. 

 

Interdisciplinary competencies are not explicitly mentioned in the current SILOs, but there is an 

implicit need for interdisciplinarity to meet SILOs 3-4, i.e., creating DSAs requires combining 

domain algorithm knowledge with an understanding of computer architecture concepts, all while 

considering performance constraints imposed by digital logic. 

 

Figure 1 outlines the main conceptual topics covered in lecture over the 12-week long semester. 

To establish a common knowledge baseline among the cohorts, the semester began with a review 

of relevant content from electrical and software engineering. From the engineering side, this 

included a review of digital logic design, FPGA architectures, and the use of a hardware 

description language (HDL). From the computing side, this included models of computation and 

basic parallel programming concepts. The majority of the semester was then spent covering 

hardware accelerator design as expressed through parallel programming concepts applied via 

HLS. HLS allows a more rapid exploration of hardware design spaces than is possible with 

traditional HDLs and alleviates the need for computing students to master an HDL, a notoriously 

time-consuming affair. Introductory material still covers the basics of the Verilog HDL so that 

key concepts and limitations of hardware design are not abstracted away from students seeing the 

topic for the first time. The final weeks of semester introduce convolutional neural networks 

(CNNs), which are the basis of the subject’s design project, and supplementary knowledge on 

graphic processing units (GPUs) as a point of comparison. 

 
Week  1  2  3  4  5  6  7  8  9  10  11  12  

  Review  
- computational models  
- digital design  
- Verilog HDL  
- FPGA architectures  

 Accelerator Design  

- high-level synthesis  
- hardware parallelism  
- memory locality  
- arithmetic specialization  
- codesign  

 Supplemental  
- CNN basics  
- CNN optimizations  
- GPUs  

 

Figure 1: Syllabus of conceptual topics covered in lecture. 

 

Assessment 

 

PjBL strategies are well suited for exercising interdisciplinary competencies, as selecting an 

appropriate project can setup interdisciplinary interactions. In line with a PjBL pedagogy, half of 

the points awarded in the subject are for completing a significant design project, including 

workshop-based assessments introducing the design tools, a set of intermediate project 

milestones, and a final project report. Individual written exams still account for the remaining 

half of subject points as it is important to ascertain whether an individual student has developed 



competencies outside of their specific discipline. Table 3 summarizes the assessment breakdown 

in the subject. 

 

Table 3: Subject assessment and associated weighting. 

 

Assessment  Weight  

Guided Workshops  10%  

Mid-semester Exam  10%  

Project Milestones  15%  

Project Report  25%  

Final Exam  40%  

 

CNN Design Project 

 

The assigned project for semester was to design a hardware accelerator for the inference step of a 

convolutional neural network trained to perform image super-resolution (SRCNN) [16]. This 

task is similar to the second laboratory in Georgia Tech’s subject [12] but requires implementing 

a complete network rather than a single layer, which ensures sufficient project scope based on 

the allocated assessment weighting. Accelerators were designed using AMD’s Vitis HLS tool 

[15] and deployed on AMD’s Kria KV260 AI Vision Starter Kit [17], a development board built 

around a Zynq Ultrascale+ MPSoC with a quad core ARM processor system (PS) and substantial 

programmable logic (PL) fabric. 

 

Students worked on the project in teams of two that were self-selected in composition. The 

guided workshops in the first half of semester served to familiarize students with the tools and 

techniques employed to complete the project. These initial workshops also gave students the 

chance to identify a partner for the project. Full project details were then released in week eight 

of semester, and teams were assigned three milestones as checkpoints for instructors to give 

formative and summative feedback: the submission of a C++ (golden) reference implementation, 

a 15-minute project update presentation, and a final written report documenting all design and 

performance results. Lectures covering the basics of CNNs and potential optimization 

approaches were timed to coincide with when teams were ramping up their investigations for the 

project. 

 

The majority of computational load for a CNN is in performing multidimensional multiply 

accumulate (MAC) operations at each convolutional layer. Despite the relative simplicity of the 

algorithm, the project afforded teams ample optimization opportunities along multiple 

dimensions. At a macroarchitecture level, teams had to make intelligent choices about memory 

management to minimize global memory access and pipeline reading, computation, and writing 

latencies. These macroarchitectural considerations were made more complex by the need to 

apply successive convolutional layers within the CNN. At the microarchitecture level, teams had 

to make design choices about how to parallelize the MAC operations among multiple processing 



engines (PEs). Those teams that converted the algorithm from its original floating-point 

implementation to fixed-point arithmetic could reduce PE footprint, possibly trading off fidelity 

to the original model against increased parallelism from the instantiation of more PEs. Stronger 

teams within the cohort also explored alternative architectures beyond a straightforward tiled-

based implementation of the network. 

 

Discussion 

 

In total, 25 students enrolled in the subject with the breakdown between cohorts being two thirds 

engineering students and one third computing students. Student feedback, both formal and 

informal, was generally positive with computing students expressing a strong appreciation for 

obtaining greater exposure to the hardware underlying their typical software designs. Feedback 

from engineering students was generally more mixed, with a common theme being that too much 

time was spent on the review of digital design. 

 

Balance of Disciplinary Knowledge 

 

A major instructor concern entering semester was whether students in one cohort would be at an 

advantage based on their prior knowledge, however there was no discernible disparity between 

the final grade distributions of the two cohorts. Additionally, the vast majority of project teams, 

whether mono- or interdisciplinary, produced a reasonable outcome on the SRCNN project. 

 

Although no cohort grade disparity existed, this does not mean the balance struck between 

disciplinary content was optimal. Upon instructor reflection, and in alignment with student 

feedback, it was determined that the start of semester review was heavily weighted toward 

prerequisite material from electrical engineering, particularly the basics of digital logic design. 

This level of review was deemed necessary to ensure computing students had the conceptual 

knowledge to make sense of later discussions on accelerator design and performance tradeoffs, 

but it is clear many engineering students did not find value in the extent of review. The challenge 

of balancing the learning needs of two different cohorts is a common theme arising in 

interdisciplinary engineering education [2]. Two major adjustments are planned for the second 

offering to address this imbalance. The first adjustment is to include a more extensive review of 

topics from computing, particularly the use of computational models. The second adjustment is 

to shift much of the prerequisite review to offline learning modules that students can complete 

independently. This will allow students to work through prerequisite material at their own pace, 

possibly spending less time on topics with which they are already familiar. This format will 

maintain sufficient lecture time to cover new material. 

 

Although not reported in student feedback, another instructor observation was that the project 

could better utilize expertise from both disciplinary cohorts. In its current form, the SRCNN 

project is the implementation of a machine learning algorithm for a computer vision application, 

two fields closely associated with software engineering. This means the project domain aligns 

well with the computing cohort’s background; however, in practice the solutions produced by the 

project teams were primarily hardware-based in nature, methodologies for which more closely 



align with the digital design experience of the engineering cohort. In the next subject offering, it 

would be desirable that the project also necessitate a significant application of methods and 

techniques from software development. One way this could be achieved is by selecting a 

different target algorithm for which a significant fraction of the computational complexity is 

naturally implemented in software rather than only parallel hardware. Alternatively, the SRCNN 

algorithm could be retained but reframed as one part of a larger application involving the 

integration of the accelerator with other software-based subsystems. 

 

Interdisciplinary Learning Outcomes 

 

The current subject design relies on an implicit interdisciplinary experience created by bringing 

together two distinct student cohorts and addressing a topic sitting at the intersection of those 

two disciplines. To best achieve the development of interdisciplinary competencies it is 

important to avoid vagueness of purpose [2], and so the next subject iteration should revise 

learning outcomes to include an explicit focus on interdisciplinary outcomes. This should include 

learning outcomes grounded in both the individual cohort disciplines as well as outcomes with an 

integrative aspect [7][8]. Existing SILO 2 already covers disciplinary methods from electrical 

engineering and can be modified to include language on how such techniques can “contribute to 

the solution of interdisciplinary problems” [7]. An explicit learning outcome covering techniques 

from the computing side, most likely in relation to parallel computational models, should be 

added with similar verbiage about its interdisciplinary relevance to accelerator design. Finally, 

SILOs 3-4 can be modified to make explicit the dependence of hardware accelerator design on 

the synthesis of knowledge and techniques from both the engineering and computing domains. 

 

With a modification to learning outcomes, a corresponding adjustment to assessment is 

warranted to maintain proper constructive alignment. Revisions to the design project discussed in 

the previous section will help ensure both disciplinary outcomes (related to digital design and 

software design) and interdisciplinary outcomes (related to the design of hardware accelerators 

through the synthesis of disciplinary knowledge) are thoroughly assessed. Additionally, project 

teams in the revised subject will shift from being self-selected to instructor-assigned to increase 

the number of close interdisciplinary interactions occurring between the cohorts. Naturally, the 

efficacy of this change relies on a balance in the enrollment numbers from each cohort. 

 

Subject Evaluation 

 

Finally, evaluation of this initial subject iteration has largely been informal, based on student 

feedback and instructor observations. It is important that the next offering collect metrics 

relevant to establishing the efficacy of the subject’s design in meeting its interdisciplinary 

objectives. The large percentage of subject points awarded for written exams (totaling 50% for 

the mid-semester test and final exam) affords the chance to measure individual achievement 

relative to the stated disciplinary and interdisciplinary learning outcomes. Specific exam 

questions can be written targeting each discipline as well as the synthesis of disciplinary 

knowledge required for hardware accelerator design. Student performance on questions covering 

their own field of study relative to those that cover the other discipline would then be of interest, 



as would any asymmetries in statistics between the cohorts. Furthermore, the final report 

assignment can be modified to require a reflection on the design approach taken by each team. 

These statements would then be useful qualitative data for determining the extent to which teams 

are taking interdisciplinary design approaches and the value they place on contributions from the 

other discipline [7]. 

 

Conclusion 

 

In this paper we have detailed our design of a subject on hardware accelerate computing taught to 

an interdisciplinary cohort of engineering and computing students at the master’s level. 

Hardware acceleration is a natural topic for use in exploring interdisciplinary competencies due 

to an inherent need for synthesizing diverse knowledge and methodologies. Although the first 

subject offering was relatively successful based on student feedback and instructor observations, 

a number of important adjustments are planned for the next iteration. These include establishing 

a better balance between disciplinary learning outcomes, making explicit the interdisciplinary 

outcomes expected of students, and incorporating more formal subject design evaluations for 

future analysis. 
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