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Abstract
The integration of nature-inspired intelligence in computational intelligence curricula,
particularly for robot path planning optimization, represents a significant advancement in both
research and education realms. This study introduces a unique pedagogical approach that
combines sparrow-dissection and scaffolding with flipped learning (SDS-FL) and ongoing
project-based methods. This approach is implemented in a graduate-level course where students
explore various nature-inspired algorithms such as particle swarm optimization, genetic
algorithms, and bat algorithms, provided with source codes for practical application and
adaptation. The flipped classroom model ensures pre-class preparation, enabling students to build
foundational knowledge independently. In-class sessions are then focused on collaborative project
work and discussions, fostering problem-solving, critical thinking, and analytical skills. This
hybrid teaching method, promoting active engagement and practical application, is evaluated for
its effectiveness through various assessments, including homework, exams, and feedback surveys.
The positive outcomes from this innovative pedagogical approach affirm its success in enhancing
students’ understanding and application of nature-inspired intelligence in computational
intelligence, making the learning process more dynamic and impactful.

1 Introduction
The field of engineering education places a significant emphasis on shaping students into
proficient experts. To achieve this, a wide range of teaching techniques, including flipped-based
[1–4], inquiry-based [5–8], collaborative [9–11], and differentiated learning [7, 12–14], have been
explored and integrated. Each technique contributes its own unique aspect to the educational
process, thereby enriching the learning experience for students in engineering.

Flipped classroom models in engineering education have demonstrated notable impacts on student
achievement and engagement. Lo and Hew conducted a meta-analysis covering 29 interventions
with over 5,000 students, revealing significant improvements in student achievement with the
flipped model compared to traditional lectures, especially when classes began with a brief review
[1]. Chiquito et al. [2] observed positive effects on student grades in a second-year engineering
course, particularly among female students, and an increase in exam attendance. Li et al. [3]
enhanced online engineering education through a flipped classroom in a Massive Open Online



Courses (MOOC), using a deep learning model to predict student performance, highlighting the
importance of middle and final course stages. Additionally, Jo et al. [4] found that integrating
gaming elements in flipped classroom online lectures increased student participation and interest.
Each study showcases the flipped classroom’s potential in improving learning outcomes, though
their specific contexts limit the broader applicability of these findings.

Inquiry Learning focuses on fostering student curiosity and investigative skills, promoting active
knowledge acquisition through questioning and exploration. Xenofontos et al. [5] investigated
student engagement with graphing tasks in a computer-supported environment, emphasizing the
positive effects of retrospective action and the importance of offering students a choice of
variables. However, the study’s small sample size of 51 students limits its generalizability.
Notaroš et al. [6] integrated MATLAB-based instruction into an electromagnetics course,
receiving positive feedback despite initial challenges due to students’ limited MATLAB
experience . The assessment was constrained to qualitative feedback and improvements in the
Electromagnetics Concept Inventory, as program changes at Colorado State University (CSU)
restricted a quantitative evaluation of the impact on student grades. Kollöffel and Jong focused on
the impact of virtual lab inquiry learning in electrical circuit education, noting improvements in
students’ conceptual understanding and procedural skills, although their study faced questions
about ecological validity [7]. Lastly, Dong and Guo studied the effects of collaborative
project-based and inquiry-based learning in undergraduate computer networking, observing
positive impacts on students’ understanding, especially in teamwork environments [8]. They
discussed strategies for integrating inquiry-based learning effectively but noted limitations related
to remote collaboration difficulties and time constraints in projects. Each of these studies
highlights both the potential benefits and challenges of implementing inquiry-based and
collaborative learning methods in diverse educational contexts.

Collaborative Learning highlights the importance of group interactions, enriching comprehension
through the exchange of collective ideas. Foldnes compared the effectiveness of the flipped
classroom model with traditional lectures, focusing on two flipped classroom implementations
[9]. The study found no significant difference in student exam scores with the first implementation
without cooperative learning. However, the second implementation, which incorporated
cooperative learning activities, showed significantly higher student scores, suggesting the flipped
classroom’s enhanced effectiveness when combined with cooperative learning. Martin-Gutierrez
et al. [10] implemented augmented reality (AR) in an electrical engineering course, creating an
engaging and interactive learning environment. While students found AR tools beneficial for
understanding and task performance, the study mainly evaluated immediate feedback, leaving
questions about long-term impact and adaptability in different academic settings open. Lastly,
Hadfield-Menell et al. [11] proposed cooperative inverse reinforcement learning (CIRL) for
aligning autonomous system behaviors with human values. Their theoretical approach, focusing
on collaborative goals and communicative actions, suggests Partially Observable Markov
Decision Process (POMDP) solutions but lacks practical application and real-world validation.
Each study contributes to understanding the nuances of effective learning strategies, emphasizing
the importance of context and implementation in educational outcomes.

Differentiated Learning adapts educational methods to accommodate the varied needs and
learning styles of students. Meneskse et al. [12] evaluated the Differentiated Overt Learning



Activities (DOLA) framework in engineering education, confirming the Integrated Cognitive
Antisocial Potential (ICAP) hypothesis that interactive activities enhance learning more
effectively than other types. Their study, while supporting the effectiveness of interactive and
constructive activities, was limited to short-term results and did not explore long-term retention or
broader applicability. Zervoudakis et al. [13] developed a particle swarm optimization-based
clustering algorithm for student classification in differentiated instruction. This method
effectively grouped students with similar characteristics, aiding in class management, but the
study mainly focused on the algorithm’s technical efficiency rather than its practical educational
application. Kolloffel and Jong’s study in electrical engineering education compared traditional
instruction with inquiry learning in a virtual lab [7]. They observed significant improvements in
conceptual understanding and procedural skills in the virtual lab setting, especially in complex
problem-solving. However, the study’s quasi-experimental design and focus on vocational
engineering students may limit its applicability to broader educational contexts. Finally, Cheng et
al. [14] meta-analysis assessed the effectiveness of flipped classroom strategies across various
studies. They found a significant positive impact on student learning outcomes, with variations
across disciplines like mathematics, science, and engineering. Despite favorable results, the
study’s reliance on existing literature limits its scope in addressing diverse educational settings
and long-term effects. Each study contributes to the understanding of effective learning strategies,
highlighting the importance of context-specific implementation and the need for further research
in diverse educational environments.

While flipped classrooms, inquiry learning, collaborative learning, and differentiated instruction
offer valuable approaches to education, they may not fully address the unique challenges of
integrating nature-inspired intelligence into computational intelligence education. These methods
prioritize active learning, group interactions, and accommodating diverse learning styles, but they
lack the structured guidance needed for students to grasp complex algorithms effectively. In
contrast, our proposed approach of sparrow-dissection and scaffolding (SDS) integrated with
flipped learning and project-based methods offers a hands-on, structured framework for students
to comprehend and apply nature-inspired intelligence models. By providing guided exploration
and practical application, our approach addresses the specific challenges of integrating these
advanced concepts into the curriculum.

In this research, a pedagogy of sparrow-dissection and scaffolding (SDS)[15, 16] integrated with
a flipped learning and a milestone on-going project-based method is developed to assist students
to comprehend, create, and implement nature-inspired intelligence models for robot path planning
optimization and control. In our graduate-level Computational Intelligence curriculum, we
introduce students to various nature-inspired intelligence methods such as particle swarm
optimization (PSO), genetic algorithms (GA), and bat algorithms (BA) [17, 18]. These methods
are provided along with their source codes, serving as a ’sparrow’ for students to dissect and
explore how nature-inspired intelligence can be applied to optimize robot path planning. Working
collaboratively with students, we guide them through the process of revising and customizing the
provided source codes for the purpose of robot path planning.

The integration of a pedagogy of SDS with a flipped learning and milestone-driven project-based
method in our Computational Intelligence curriculum is specifically tailored to the unique nature
of the content and learning goals of the course. Nature-inspired algorithms, such as PSO, GA, and



BA, require a deep understanding of their underlying principles and practical application for
optimizing robot path planning. By utilizing a pedagogy of sparrow-dissection, students are
provided with source codes to dissect and explore these algorithms, facilitating a hands-on and
experiential learning approach that is crucial for comprehending complex concepts in
computational intelligence. Furthermore, the flipped learning model empowers students to engage
with course materials at their own pace, enabling them to build a solid foundation in
nature-inspired intelligence methods before engaging in collaborative projects. The project-based
approach, integrated with multiple milestones, not only reinforces students’ understanding of the
algorithms but also cultivates problem-solving, critical thinking, and collaborative skills essential
for success in engineering practice. Thus, these pedagogical approaches are selected for their
suitability in promoting active engagement, deep comprehension, and practical application of
nature-inspired algorithms in the context of robot path planning, aligning closely with the goals
and objectives of the course.

Integrating flipped learning and a project-based approach with multiple milestones can establish a
dynamic and captivating learning environment. Within this flipped classroom model, students
receive nature-inspired intelligence algorithm materials before class, including reading
assignments and online resources. This pre-class preparation empowers students to review these
materials at their own convenience, enabling them to build a solid foundation in nature-inspired
intelligence methods. These ongoing projects, integrated with the flipped learning pedagogy,
serve a dual purpose. They not only aim to improve students’ comprehension of nature-inspired
intelligence algorithms for robot path planning but also to nurture and sharpen their
problem-solving, critical thinking, and problem analysis skills. During in-class time, we utilize
flipped learning activities to introduce and discuss these ongoing projects. We provide project
guidelines and objectives, and we organize students into groups to collaborate on projects related
to nature-inspired intelligence algorithms for robot path planning. We also elaborately design and
provide various practice exercises after each lecture. This hybrid pedagogy empowers students to
take ownership of their learning in nature-inspired intelligence algorithms, build problem-solving
skills and connect these algorithms to practice in robot path planning. It promotes active
engagement, critical thinking, and collaborative learning, making the educational experience
more dynamic and meaningful for students.

In computational intelligence education the emphasis on nature inspired algorithms arises from
their inherent advantages over traditional optimization techniques. These algorithms, drawing
inspiration from natural phenomena or biological processes, demonstrate robustness, adaptability,
and scalability, making them well-suited for solving complex optimization problems encountered
in robotics planning and other domains. Their interdisciplinary nature aligns seamlessly with the
diverse topics covered in computational intelligence classes, offering students a comprehensive
understanding of intelligent systems and their practical applications. Hence, the incorporation of
nature-inspired algorithms into the curriculum underscores their efficacy, versatility, and
relevance in advancing computational intelligence and optimization studies.

2 Description of the Course and Project Design

The course ECE 8833, titled “Computational Intelligence”, serves as a Technical Elective for
students majoring in electrical engineering, computer engineering, and robotics and mechatronic



systems engineering. The course involves two 75-minute lectures per week. In light of
advancements in faster computing hardware and more affordable memory chips, computational
intelligence, a subset of “soft computation”, is gaining significance in various engineering and
non-engineering disciplines, such as robotics and embedded systems [19, 20, 20–26].

This course explores fundamental structures in computational intelligence techniques,
encompassing the theory, design, application, and development of biologically and
nature-inspired computational paradigms. The three primary pillars of Computational Intelligence
— Neural Networks, Fuzzy Systems, and Evolutionary Computation — are thoroughly addressed
[27, 28]. It is important to note that this course diverges from traditional, theory-centric
engineering courses. Instead, it delves deeply into specific and practical topics drawn from
computational intelligence techniques that are highly beneficial for engineering
applications.

The emphasis is on supporting students to build the skills to undertake engineering projects,
ensuring they can meet specified requirements through the application of computational
intelligence techniques as follows:

• Utilize computational intelligence-based algorithms to simulate a robot’s movement in an
environment, showcasing how biological models enable efficient navigation from start to
target while avoiding obstacles and minimizing path cost. Visualize the trajectory and
clearly articulate the path planning algorithm and its computational model in reports.

• Experiment with modifying given algorithms to explore diverse computational strategies
for path planning, including heuristic searches, genetic algorithms, or neural networks.
Analyze the efficiency of generated paths, compare them with the shortest paths, and
discuss observations to enhance understanding.

• Apply AI algorithms on simpler models initially before tackling complex scenarios
involving obstacles, dynamic environments, or varying conditions. This step is essential for
grasping the fundamentals of computational intelligence in path planning effectively.

• Develop both flowcharts and pseudocode based on provided algorithms, elucidating
computational intelligence methods in path planning. Understand and elaborate on the logic
behind AI algorithms employed for navigation.

• Explore different facets of computational intelligence, such as varying heuristics, learning
parameters, or network structures, to observe their impact on pathfinding. Document
outcomes and visually represent generated paths while discussing insights derived from
experimentation.

3 The Project Description and Consideration

3.1 Advanced Optimization in Computational Intelligence

Optimization methodologies are fundamental to computational intelligence, enabling the
development and refinement of systems and designs in electrical engineering to achieve
maximum efficiency and functionality. The process involves selecting the best possible solution



from a set of alternatives under a given set of constraints. Optimization algorithms, which are at
the heart of computational intelligence, are broadly classified into deterministic and stochastic
categories, each with unique characteristics and applications. These algorithms follow a specific
sequence of operations that lead to a predictable outcome, making them suitable for problems
where a guaranteed solution is preferred. Linear programming (LP) is designed to optimize a
linear objective function subject to linear constraints. The general form of an LP problem can be
expressed mathematically as:

maximize or minimize f(x) (1)
subject to Ax ≤ b, (2)

x ≥ 0 (2) (3)

Nature-inspired optimization algorithms leverage biological behaviors through mathematical
models to address complex engineering challenges. These algorithms are pivotal in computational
intelligence due to their adaptability and efficiency. Cuckoo Search (CS) algorithm utilizes a
brood parasitism behavior of cuckoos along with Lévy flights for effective search space
exploration. The position update of a cuckoo i is mathematically expressed as:

x
(t+1)
i = x

(t)
i + α⊗ Lévy(λ), (4)

where x
(t)
i represents the current position, x(t+1)

i is the new position, α denotes the step size, and
Lévy(λ) represents the Lévy flights characterized by a Lévy distribution. This mechanism
facilitates both local and global searches in the problem space. Ant Colony Optimization (ACO)
is inspired by the pheromone trail-laying behavior of ants in finding the shortest paths. The
probabilistic decision of an ant k to move from node i to node j is given by:

P k
ij =

τij(t)
α · ηβij∑

τil(t)α · ηβil
, (5)
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Figure 1: Illustration of the example optimization data plots for the different algorithms discussed
int he course.



where τij(t) is the pheromone concentration on the path, ηij is the heuristic desirability of the
path, and α and β are parameters that control the relative importance of pheromone versus
heuristic information. The pheromone update rule is:

τij(t+ 1) = (1− ρ) · τij(t) + ∆τij(t), (6)

with ρ representing the pheromone evaporation rate, and ∆τij(t) being the pheromone deposited,
which depends on the quality of the solution. Evolutionary Computing (EC) encompasses a
spectrum of algorithms based on the Darwinian principles of natural selection. The EC operates
through genetic operators as follows:

Iselected = Selection(Ii, f(Ii)), (7)

Ioffspring = Crossover(Iparent1, Iparent2), (8)

Imutated = Mutation(Ioffspring, pm), (9)

where Ii represents an individual in the population, f(Ii) is the fitness function, Iparent1 and
Iparent2 are individuals selected for reproduction, and pm is the mutation probability. This process
is iterated to evolve the population toward optimal solutions. These algorithms are adept at
solving diverse optimization problems in electrical engineering, such as system design, parameter
optimization, and resource distribution, by exploiting complex and dynamic search
landscapes.

3.2 Traveling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP) is a renowned optimization challenge that involves
determining the shortest possible route through a set of cities, visiting each city exactly once and
returning to the origin [29]. Mathematically, for a set of n cities with a distance dij between each
pair of cities i and j, the TSP seeks to minimize the total travel distance:

min
n∑

i=1

dπ(i)π(i+1) (10)

where π(i) represents the i-th city in the permutation of cities, and π(n+ 1) = π(1) to ensure
return to the starting city. The TSP is classified as NP-hard, indicating the absence of a
polynomial-time solution for all instances. Cuckoo Search can be adapted for TSP, with each nest
representing a potential route. The new routes are generated using the Lévy flight mechanism,
which swaps city positions within a route. The fitness of each nest is evaluated by the total route
length:

Fitness =
n∑

i=1

dπ(i)π(i+1) (11)

ACO’s incremental solution construction and pheromone-based learning are well-suited for TSP.
Each ant constructs a tour by choosing the next city based on pheromone concentration and
heuristic value, usually the inverse of the distance:

P k
ij =

[τij(t)]
α · [ηij]β∑

l∈allowedk
[τil(t)]α · [ηil]β

(12)
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Figure 2: Illustration of the example TSP solution Utilizing the ACO methodology. (a) depicts
the route taken through the different cities to fine a solution. (b) illustrates the how the objective
function decreases at the number of iteration increases.

where P k
ij is the transition probability, τij(t) the pheromone concentration, ηij = 1/dij the

heuristic desirability, and allowedk the set of yet-to-visit cities for ant k. EC, particularly Genetic
Algorithms, applies a population of solutions to evolve routes for TSP. Each individual in the
population represents a tour. The selection, crossover, and mutation operators generate new
routes, favoring shorter distances:

Fitness(Ii) =
1∑n

i=1 dIi(Ii+1)

(13)

Here, Ii denotes the i-th city in the individual’s sequence, with the fitness function inversely
related to the route length, encouraging minimization of travel distance.These algorithms provide
feasible and efficient solutions for TSP, particularly useful for large-scale problems where
exhaustive search methods are impractical.

3.3 Path Planning Using Optimization Algorithms

Path planning is a fundamental aspect of robotics and autonomous systems, involving the
determination of an optimal path from a starting point to a destination while avoiding obstacles.
Three advanced algorithms, Cuckoo Search, ACO, and GAs from Evolutionary Computation, are
adapted for efficient path planning [30, 31]. Cuckoo Search algorithm, inspired by the brood
parasitism of cuckoo species, can be efficiently utilized in path planning. Each nest represents a
unique path, and new paths are generated through Lévy flight behavior, enabling a broad search
capability and avoidance of local optima. The fitness of each path is evaluated based on the length
and obstacle avoidance, defined as:

Fitness = α · Length + β · Obstacle Avoidance (14)

where α and β are weighting factors for length and obstacle avoidance, respectively. ACO,
mimicking the trail-laying behavior of ants, is well-suited for path planning in complex
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environments. Ants explore paths and deposit pheromones, guiding subsequent ants towards more
promising paths. The transition probability for an ant to move from point i to point j is given
by:

P k
ij =

[τij(t)]
α · [ηij]β∑

l∈allowedk
[τil(t)]α · [ηil]β

(15)

where τij(t) represents the pheromone level, and ηij is the heuristic information, typically the
inverse of the distance or cost associated with the path. Genetic Algorithms, a subset of
Evolutionary Computation, apply principles of natural selection and genetics to path planning.
Each individual in the population represents a potential path, with genetic operators used to
evolve towards optimal solutions. The fitness function, promoting shorter and feasible paths, is
defined as:

Fitness(Ii) =
1

γ · Length(Ii) + δ · Feasibility(Ii)
(16)

where Ii denotes an individual path, and γ and δ are weighting factors for the path length and
feasibility, respectively. These algorithms provide robust and flexible frameworks for path
planning in various applications, from autonomous vehicles to robotic manipulators, offering
efficient solutions in complex and dynamic environments.

4 The Project based Pedagogy Infused with Self-Assessment Method

Our teaching methodology adopts the Sparrow-Dissection and Scaffolding (SDS) approach,
integrated with flipped learning strategies, to segment the comprehensive course content into
smaller, interrelated sub-projects, as detailed in Table 1. This modular structure is distinct from
traditional project-based learning, offering a more granular and interconnected educational
journey. Each sub-project is autonomously significant while also laying the groundwork for the
following modules, thereby ensuring a progressive and cohesive learning experience, as shown in
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for robot path planning).

Figure 4. This approach is specifically tailored for in-depth engagement with graph-based path
planning methods. The initial module, or Sub-Project 1, plays a critical role. It not only
introduces students to the course framework but also initiates the step-by-step development of
skills and knowledge. This gradual progression, moving from foundational concepts to more
complex applications, is designed to deepen students’ comprehension and practical skills in
graph-based techniques for robot path planning. Our course materials, including visual aids like
Figure 5, specifically illustrate the application of these graph-based models in the context of robot
navigation. This structured and phased approach aims to build a comprehensive understanding,
preparing students for the final project that encapsulates all the learned concepts.

The sub-projects listed in Table 1 provide a structured approach to evaluate student progression in
advanced computational algorithms, with a focus on MATLAB code implementation for robotic
navigation. These projects involve the development of written reports and participation in
interviews with the instructor, which aid in cultivating a deeper practical and theoretical
understanding. Beginning with SP1, students are introduced to MATLAB code involving various
advanced algorithms, including the Ant Colony Optimization (ACO) in SP2, Cuckoo Search (CS)
in SP3, Genetic Algorithms in SP4, and Neural Networks in SP5. In these projects, students are
engaged in tasks like constructing flowcharts, coding algorithms, and adjusting parameters to
optimize the performance of these sophisticated path planning methods.

Each sub-project is designed to highlight a specific facet of computational intelligence in path
planning, offering students an opportunity to tackle different challenges and develop solutions for
robotic navigation. They explore the balance between computational efficiency and the
effectiveness of these algorithms in diverse scenarios. The final project (SP5) represents a



Table 1: The descriptions of the sub-projects

Sub-Project Objective Tasks

SP1: Distribution
and exercise of
sample MATLAB
code

• Students are provided with MATLAB source code that encompasses a range of
graph-based algorithms.

• The task for students is to fully comprehend and execute the given MATLAB code.
• At this phase, the instructor’s role involves defining the project requirements, ana-

lyzing the context, and identifying any design constraints.
• A project plan should be formulated and followed, ensuring that the overarching

design goals are achieved.

22%

SP2: Analysis of
Particle Swarm
Optimization in
Path Planning

• Students are required to create a detailed flowchart of the Particle Swarm Optimiza-
tion algorithm, utilizing block diagrams and schematics for clarity.

• Students are tasked with developing code that implements the PSO algorithm,
aimed at efficient path planning.

• Students are provided with opportunities to experiment with various parameters of
the PSO algorithm, enhancing their understanding of its impact on performance.

12%

SP3: Exploration
of Ant Colony
Optimization for
Path Planning

• Students are tasked to diagram the ACO process, illustrating how pheromone trails
are used to find optimal paths.

• Development of a simulation using the ACO algorithm is required, with an empha-
sis on real-time path optimization in dynamic environments.

• An analysis project is included where students modify pheromone evaporation rates
and other ACO parameters to observe changes in path efficiency.

14%

SP4: Genetic
Algorithms for
Optimized Path
Planning

• Creation of schematics illustrating the crossover and mutation processes in Genetic
Algorithms as applied to path planning.

• Students are to develop a path planning solution using Genetic Algorithms, focusing
on evolutionary strategies for optimal route finding.

• An exploration task where students adjust genetic operators like mutation rates to
study their impact on path efficiency and robustness.

11%

SP5: Neural
Networks in
Adaptive Path
Planning

• Students will prepare a conceptual diagram illustrating the architecture of neural
networks used in path planning.

• Implementation of a neural network-based path planning model, with a focus on
training the network for complex environment navigation.

• Students are encouraged to experiment with different network topologies and learn-
ing rates to observe variations in pathfinding effectiveness.

18%

SP6: Final Project:
Demonstration,
Report, and
Presentation

• Students are expected to compile a final submission including comprehensive, well-
commented code, along with a report that details the integration process and ex-
plains the choice of algorithms.

• The effectiveness of the final integrated navigation system must be demonstrated,
either through simulated environments or actual field testing, highlighting its profi-
ciency in diverse scenarios.

• A critical aspect of the project is the performance evaluation, where students com-
pare the efficiency and effectiveness of their system with conventional navigation
methods.

23%



culmination of all the learned concepts, where students are required to integrate and demonstrate
the efficacy of their comprehensive navigation system, benchmarking it against standard
navigation algorithms. This final task not only consolidates their learning but also showcases their
capabilities in applying advanced computational techniques to address complex navigation
challenges.

5 Course Assessment and Project Evaluation

The self-assessments, tailored to gauge learning outcomes, are intricately linked with ABET
standards, functioning crucially in the overall ABET assessment procedure. Conducted before the
semester concludes, these assessments not only provide a basis for instructors to improve
teaching methods and fine-tune course designs but also play a pivotal role in validating the quality
of learning and academic success in this course. In this course, students engage with six specific
questions outlined in Table 1, with corresponding ABET outcomes referenced in
parentheses.

• Question 1 - “I can understand and use knowledge of mathematics including advanced
topics such as differential and integral calculus, linear algebra, discrete math, and
differential equations in nature-inspired intelligence methodologies for optimizing robot
path planning and enhancing motion control.” (Outcome (a): An ability to apply knowledge
of mathematics, science, and engineering principles to electrical engineering, i.e.
Knowledge of mathematics encompasses advanced topics typically including differential
and integral calculus, linear algebra, complex variables, discrete math, and differential
equations.)

• Question 2 - “I can apply formal engineering design methodology to perform the design,
experiments and construction of the nature-inspired intelligence methodology for robot
path planning, and motion control projects based on experimental test data and
interpretation, as well as to analyze and interpret data relating to nature-inspired
intelligence methodology for robot path planning, and motion control projects that resolve
electrical system problems” (Outcome (b): An ability to design and conduct experiments,
as well as to analyze and interpret data relating to electrical systems.)

• Question 3 - “I can understand and design basic nature-inspired models for robot path
planning and motion control with assigned a sequence of projects such as ACO and CS for
optimization, TSP, and robot path planning, and work to meet the final goals.” (Outcome
(c): An ability to design electrical systems, components, or processes to meet desired
needs).

• Question 4 - “I can understand structures and models of nature-inspired intelligence for
robot path planning and profoundly understand some important nature-inspired intelligence
methodologies such as ACO and CS models, and can also identify, formulate, and solve the
issues raised in assigned nature-inspired robot path planning and motion control projects”
(Outcome (e): An ability to identify, formulate, and solve electrical engineering problems).

• Question 5 - “I have effective communication skills in the context of a collaborative,
multi-disciplinary design activity in the project”. (Outcome (g): An ability to communicate
effectively).



• Question 6 - “I can create professional documentation in connection with the assignments
and design project of nature-inspired intelligence methodology for robot path planning, and
motion control”. (Outcome (g): An ability to communicate effectively).

The outcomes of the assessment questionnaire are displayed in Table 2 and visually depicted in
Figure 5. Based on the results in Table 2, most students predominantly indicate either “strong
agreement” or “agreement” with statements aligning with ABET outcomes (a), (b), (c), (e), and
(g). Evidently, the percentages for “strong agreement” in this course are notably higher for
outcomes b, c, and e compared to the instructor’s experience in teaching other courses. This
implies a potential positive influence of the implemented pedagogies on these particular
outcomes. In terms of communication skills, specifically in writing and oral presentation
corresponding to ABET outcome (g), a noteworthy observation is the presence of “disagreement”.
Some graduate students express discomfort with their oral and written presentation abilities,
despite the provision of training in this class and other related curricula.

Of particular note is the remarkable surge in “strongly agree” responses, especially for Question
3, reaching an impressive 83.3%, surpassing the typical rate. Question 3 is closely tied to the
capacity to design electrical systems, components, or processes to meet specific needs, as
illustrated in Figure 5. Moreover, in comparison to the instructor’s past experience teaching the
course using a traditional project-based method (without sub-projects, sparrow-dissection,
scaffolding (SDS), flipped learning (SDS-FL) protocol, and interview sessions for reflection and
adjustments), the current course demonstrates higher percentages for both “strongly agree” and
“agree” with 97.6% in total. This suggests that the integrated approach of project-based pedagogy
and the SDS-FL mechanism in this course is significantly more effective than previous
models.

In relation to Questions 1 and 2, we observe substantial “strongly agree” percentages at 71.4%
and 69.0%, aligning with Outcomes a and b, respectively. These outcomes emphasize the “ability
to apply knowledge of mathematics, science, and engineering principles to electrical
engineering”, encompassing advanced topics like differential and integral calculus, linear algebra,
complex variables, discrete math, and differential equations. Additionally, Outcome (b), which
relates to the “ability to design and conduct experiments, as well as to analyze and interpret data
relating to electrical systems”, similarly receives high “strongly agree” responses. There are
minimal “neutral” percentages of 4.8% each in Questions 1 and 2, corresponding to Outcomes a
and b, respectively. Analysis of interview and survey comments reveals that some students
attribute this to a lack of sufficient background in programming and mathematics, particularly in
discrete math and differential equations.

The marginally lower “strongly agree” percentages for Questions 2 and 4, in contrast to Question
3, stem from the heightened efficacy of nature-inspired intelligence methodologies in the context
of designing robot path planning and motion control projects. This methodology encompasses the
application of electrical system design principles to meet the specific requirements of
nature-inspired intelligence for robot path planning and motion control. This not only contributes
to a more resilient learning experience but also underscores the nuanced effectiveness of these
methodologies in the given context.

Outcome (g), assessed through Question 5, evaluates communication capabilities during the final



project presentation and teamwork. In this context, 7.1% of students express “disagreement”,
while 9.5% express “neutral”, as noted in Question 6, aligning with Outcome (g). The
requirement for high-quality written documentation is a crucial aspect of this project-based class.
However, students often face challenges in acclimating to technical writing, resulting in a 9.5%
“disagreement” rate and an 11.9% “neutral” rate in Question 6, linked to Outcome (g). This
evaluation is vital for the development of professional documentation related to ongoing
assignments and the design project focusing on nature-inspired intelligence for robot path
planning. Given the inherent challenges in oral and technical writing communication skills in
milestone reports and final project report for graduate students studying nature-inspired
intelligence for robotics, 40.5% and 33.3% of students express “strong agreement” for Questions
5 and 6, respectively, both tied to Outcome (g).

Conducting interviews and interactions with students within the SDS-FL protocol plays a pivotal
role in elevating the quality of teaching. Processes like crafting reflection reports and engaging in
interviews with the instructor about sub-projects have emerged as crucial tools in empowering
students. This empowerment is clearly reflected in their adeptness at assuming responsibility for
self-regulation cycles related to problem-solving. Noteworthy, this approach has enhanced
various facets including forethought, self-motivation, execution, exploration, discovery, and the
mastery of artificial intelligence techniques.

In our endeavor to enhance the quality of teaching, we meticulously utilized both quantitative data
and qualitative feedback, particularly drawn from student interviews, to inform and refine our
pedagogical practices. Quantitative data encompassed metrics such as student performance,
assessment results, and engagement levels, offering a broad understanding of areas needing
improvement. Meanwhile, student interviews provided invaluable qualitative insights into the
nuances of their learning experiences. These interviews served as a direct avenue for students to
express their thoughts, concerns, and preferences regarding teaching methods and materials. By
analyzing these interviews, we identified specific areas of improvement, tailored teaching
strategies to accommodate diverse learning needs, and addressed communication challenges. For
instance, if students expressed difficulties with certain mathematical concepts, such as differential
equations, we adjusted our teaching approach accordingly, incorporating more accessible
explanations and supplementary materials. Moreover, interviews guided the implementation of
targeted interventions, such as workshops to improve communication skills, based on students’
expressed discomfort. This iterative process of gathering feedback through interviews allowed us
to continuously assess the effectiveness of our interventions and refine our teaching approaches
for maximum impact on student learning experiences. Ultimately, the integration of insights from
student interviews into our pedagogical practices played a pivotal role in elevating the quality of
teaching and fostering a more enriching learning environment for our students.

Examining students’ performance across various aspects such as homework assignments, Q&A
sessions, exams, self-assessment surveys, and feedback provided in the official university course
evaluation, in conjunction with a comparative analysis against the instructor’s prior teaching
experiences, underscores the pronounced effectiveness of the hybrid SDS-FL pedagogy. This
approach has demonstrably contributed to fostering a profound understanding of nature-inspired
intelligence models.



Table 2: The Questionnaire of Students for Assessment of Learning Quality
Questions and

ABET Outcomes
Survey

Strongly agree Agree Neutral Disagree Strongly disagree
Q1- (a) 71.2% 23.9% 4.9% 0% 0%
Q2 - (b) 69.0% 26.2% 4.8% 0% 0%
Q3 - (c) 83.3% 14.3% 2.4% 0% 0%
Q4 - (e) 64.3% 35.7% 0% 0% 0%
Q5 - (g) 40.5% 42.9% 9.5% 7.1% 0%
Q6 - (g) 33.3% 45.3% 11.9% 9.5% 0%

Q1 - (a) Q2 - (b) Q3 - (c)

Q4 - (e) Q5 - (g) Q6 - (g)

Strongly disagreeStrongly agree Agree Neutral Disagree

Figure 5: The illustration of the assessment of learning quality results.

6 Conclusion

This paper describes an innovative teaching method that combines sparrow-dissection and
scaffolding with flipped learning (SDS-FL), specifically designed for robot path planning and
motion control projects. This adapted project-based approach focuses on teaching nature-inspired
intelligence methodologies. The method breaks down the project into smaller, manageable
segments, enabling students to progressively design, implement, debug, and operate efficient
nature-inspired intelligence methods. Each segment concludes with students submitting milestone
reports and participating in interviews, fostering self-motivated learning. The paper details the
evaluation process of this approach, which includes various milestone assignments, reports,
presentations, and activities. A comprehensive assessment was conducted to measure students’
understanding and comfort with the nature-inspired intelligence methodologies for robot path
planning and motion control, both before and after the project. Feedback was collected after each
milestone to gain insights into the students’ experiences with the implementation and application



of these methodologies. The results, gathered from students’ self-assessment questionnaires,
demonstrate that the SDS-FL integrated pedagogy effectively meets the learning objectives of an
advanced robotics course. This approach has been shown to significantly enhance students’
self-motivation, reflection, performance, and exploration, as well as their overall understanding of
artificial intelligence and robotics techniques.
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[2] M. Chiquito, R. Castedo, A. P. Santos, L. M. López, and C. Alarcón, “Flipped classroom in engineering: The
influence of gender,” Computer Applications in Engineering Education, vol. 28, no. 1, pp. 80–89, 2020.

[3] C. Li, K. Zhao, M. Yan, X. Zou, M. Xiao, and Y. Qian, “Research on the big data analysis of MOOCs in a
flipped classroom based on attention mechanism in deep learning model,” Computer Applications in
Engineering Education.

[4] J. Jo, H. Jun, and H. Lim, “A comparative study on gamification of the flipped classroom in engineering
education to enhance the effects of learning,” Computer Applications in Engineering Education, vol. 26, no. 5,
pp. 1626–1640, 2018.

[5] N. A. Xenofontos, T. Hovardas, Z. C. Zacharia, and T. de Jong, “Inquiry-based learning and retrospective
action: Problematizing student work in a computer-supported learning environment,” Journal of Computer
Assisted Learning, vol. 36, no. 1, pp. 12–28, 2020.
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