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Challenges in Automated CAD Modeling Assessment 

Abstract 

Automating the assessment of CAD models has been the focus of significant research efforts. 
One focus of this has been in its application to grading in support of training of engineering 
students in 3D parametric modeling skills and practices. However, there continue to be 
significant challenges in producing broadly acceptable tools of practice due to the complexities 
involved in creating a CAD model and in identifying formal evaluation criteria that robustly 
capture whether skills have been acquired.  Of interest is whether tools can be developed that 
provide more robust formative assessment of a modeling activity. This contrasts with summative 
assessment approaches which largely benefits the assessor in reducing grading times by 
evaluating the result but can miss important tendencies in a student designer that might need to 
be corrected. For this to be feasible better metrics that reflect how a modeling activity is 
progressing not just with respect to realizing a final shape goal, but also in capturing design 
intent and meeting best practices is needed. In this paper some of the challenges of evaluating 3D 
CAD modeling efficacy are explored. These challenges increase with the level of complexity 
desired in the result which can range from just creating a final 3D shape to capturing design 
intent and finally skill at incorporating best practices. A case study of a capstone modeling 
project given to students in an introductory CAD class is used to illustrate these challenges. This 
example also highlights the difficulties encountered with assessing more open-ended modeling 
experiences when students are given less guidance and have many more options that they can use 
in satisfying the modeling requirements. A simple case study is also presented to demonstrate the 
viability of collecting a more complete set of assessment metrics during a modeling activity. A 
discussion of how access to a richer set of metrics might lead to a better understanding of 
modeling tendencies is presented. 

Introduction 

The challenge of assessing the skills of a student in a 3D CAD modeling activity is one that 
is well known to instructors in the field. Classes with large numbers of students completing 
numerous assignments over the course of a semester presents a volume of work that is time 
consuming to grade consistently. More importantly there is a question of whether the model 
being graded, the final result of completing an assignment, captures enough information to truly 
reflect the skills of the student being assessed. Then, if it does, how is that information extracted, 
interpreted, and correlated with a specific deficiency in the skills of a student that an instructor 
can proactively address. It can be argued that for this to be most effective it needs to include 
more information during the activity when the student is building the model so that their 
modeling decisions are more holistically understood. The busy nature of engineering classes 
means that students often do not have the time to rework skill acquisition type problems like 
those in CAD modeling based on feedback for improvement. Repetition helps, but this can be 
frustrating for those students who have adequately grasped the skill. 

Unless an instructor is carefully monitoring each student as they complete a modeling 
exercise, a practical impossibility in a large CAD class, they will not get a clear picture of how 



deftly a student is practicing a skill. Two students can arrive at the same result with markedly 
different efforts. The ease with which information can be deleted or changed without any record 
of this being retained by the model, can mask the true process followed by a student to arrive at a 
result. An additional complication is that as more modeling know-how is acquired by a student, 
the number of paths they can follow to get to a result increases. Instructors can constrain the 
choices possible in an assignment by requiring that certain practices be observed. For example, it 
might be required that the hole feature be used for diameters up to a certain value, or that fillets 
be created as a feature rather than using an arc edge on a sketch that will be extruded or revolved. 

All of this complicates assessment of skills let alone developing approaches for automation. 
To further study and illustrate the challenges faced, metrics extracted from a complex part 
modeled as part of a capstone assignment in an introductory CAD class will be presented and 
discussed. The capstone assignment was chosen as it most completely captures the culmination 
of skills acquisition from the class. Students are given limited instructions and are expected to 
demonstrate an appropriate use of modeling practices learned from the more structured training 
and weekly assignments that proceeded it. This will be followed by a simpler example used to 
demonstrate the potential for expanding the range of metrics that can be used to assess how 
effectively a modeling assignment is completed. 

 Some Relevant Reported Research 

A significant body of past work exists around automating CAD model assessment. Most of 
this work has focused on the summative approach that analyzes a result with the goal of scoring 
a student’s work and providing ex post facto feedback on the differences with the expected 
result. One focus of this research is on evaluating 2D drawings generated from 3D CAD models. 
Hekman et al. [1] describe their experiences with a system that extracts geometric information 
from an Autodesk DXF file submitted by students and scores its accuracy by comparison with 
the expected result. Their method was developed using LabVIEW with a second version 
implemented to support a student receiving automated feedback that they can use to improve 
their grade before a final submission. Likewise, Bryan [2] directly utilizes information in an 
Autodesk DXF file and geometric reasoning to compare a students work with the desired result. 
The method offers both offline assessment of work as well as online assessment. The latter uses 
a server with a Python implementation to analyze work in-process and display results through a 
browser that provides immediate feedback about a submitted drawing. Applying a similar 
strategy, Ingale et al. [3] have also developed an approach for providing automated feedback 
though focused more narrowly on how well a student creates sectional view drawings in a spatial 
visualization class. Other researchers utilize images created from drawings as the basis for 
assessment. Younes et al. [4] describe a system called ViTA which is CAD system independent 
that utilizes computer vision techniques to identify mistakes in drawings. Such mistakes include 
missing structural features and incorrect use of drawing properties such as section crosshatching, 
colors, and line types. Their results show 100% success and less than 1 minute to grade 500 
submissions. However, they admit that greater complexity in the drawings limit its effectiveness. 
Their system utilizes a target solution created by the instructor for comparison. Khaleel et al. [5] 
propose the use of a deep convolution neural network (DCNN) implemented using the Cloud to 



provide Software as a Service (SaaS) to grade 2D CAD drawings. They generate images for deep 
learning by combining an RGB export of an Autodesk DXF drawing files submitted by a student 
with the instructor’s solution key. Training of the neural network utilizes 1500 such images. 
Their solution implemented using a Cloud-based SaaS yielded an average 91% average accuracy 
in assigning a grade of A to E to a student’s work. The author’s use this success as motivation for 
applying their method to larger datasets. 

The need to automate assessment of 3D parametric CAD has long been recognized as 
important and a more difficult undertaking than assessing 2D drawings. Early work by Baxter et 
al. [6] discuss the importance of this automation in the context of a CAD course where a large 
number of students and challenges finding instructional staff is a major motivation. They 
highlight the basic mechanisms for developing such tools using the API programming interface 
and Visual Basic that come with SolidWorks®. However, they do not present a final 
implementation only a strategy for developing the system. Branoff et al. [7] in a similar fashion 
highlight a range of grading strategies that can be applied to constraint-based CAD activities but 
do not get into the question of automation of these. Renu et al. [8] describe the use of a shape 
similarity algorithm based on a tessellated representations of a solid model and its mass 
properties to assess the similarity of a student’s submission and the correct result. Use of a 
tessellation makes their method CAD system independent. Their approach of performing a shape 
similarity analysis and using mass properties seems to be the norm for what is available in 
practice.  

Graderworks® [9] a product of Garland Industries is one such commercially available 
solution for the SolidWorks® CAD application that compares a student’s model to a solution 
using volume, material and center of mass together with confirmation of the presence of fully 
constrained sketches. It also generates what is referred to as a Composite Shape Score using a 
stochastic process to account for variability when determining a match. Garland et al.[10] used 
this system to perform a statistical analysis on over 5200 models from different assignments to 
compare its capabilities to that of a human grader. Their results showed that the automatic grader 
was more accurate and repeatable when compared to teaching assistants using the four metrics 
mentioned previously. They conclude that this is because of the large amount of information 
present given the quantity of models. A human grader cannot grade this bulk of work as reliably 
as automation. Graders can also be found embedded within training LMSs. Ault et al. 
[11]describe their experiences using the grading engine within the Precision LMS® developed 
by PTC for instructors to assess proficiency in CAD modeling skills. According to the authors 
“The automatic grading algorithm can be based on the presence or absence of various feature 
types, feature count, dimensional values within specified features, order of feature creation, 
global part properties such as mass, volume, or location of the center of gravity”.  They were 
unable to accomplish their original goal of comparing its capabilities to a human grader due to 
unplanned differences in the grading criteria. However, their overall experience was that “the 
system is capable of assessing strategic knowledge as well as procedural CAD “skills”, 
depending on the specific criteria selected by the instructor for assessment.” SolidProfessor® 
[12] also provides an LMS which has the capability to confirm and document completion of 
exercises in training classes. These mostly use comparisons of stored solution values for mass 



properties or key dimensions to determine correctness. Their main limitation of these types of 
comparisons is that they can return false negatives with small numerical differences. Their use is 
limited to assignments that are guided where a student is expected to follow a set of instructions 
to arrive at a result. Their reliability falls off for more complex modeling assignments where a 
student maybe asked to reproduce a component from a drawing with more general guidelines to 
follow. 

Challenges with Automating Approaches 

Automating the assessment of modeling skills parallels the level of complexity incorporated 
into the model. This starts with just capturing a desired geometry in the shape that is modeled. 
Typically, this is not enough to support engineering product development functions where 
changes to the model are mandatory and best practices that support downstream uses of the 
model must be incorporated. Assessing the model at each level of complexity presents different 
challenges and the opportunity to use different automation techniques. To better understand these 
difficulties a capstone modeling assignment from an introduction to CAD class was evaluated. 
Figure 1 shows the overall assignment, a bicycle crank assembly, the right crank which is the 
component evaluated, and a table summarizing its structure and mass. 23 student submissions 
were used in the study. The component was modeled using Solidworks® 2022. 

 

Figure 1. Capstone Modeling Assignment Component 

Model Shape and Mass Properties: As discussed in the review of reported research, the use of 
a model’s shape and mass properties is one of the most common forms of modeling 
assessment. Volume, surface area, mass and center of gravity measures are easily extracted 
by CAD systems and these values can be compared with the expected results taken from the 
desired solution. Figure 2 clearly shows the difficulty that can be encountered in using this 
approach for assessment. The results from the capstone assignment showed significant 
divergence from the solution that the instructor used to generate the drawings (red marker 
and line) that were given to the students as guidance for the assignment. A more careful 
examination of the work submitted during grading showed that many of the reasons for 
differences could be accounted for by errors from misinterpreting the drawing due to inherent 
ambiguities that are difficult to prevent in 2D views of more complex shapes. This includes 



subtle differences that can occur based on how cosmetic features such as fillets and chamfers 
are interpreted and applied. Differences in interpreting and reproducing the shape of the 
spline interface used to connect the pedal to the bottom bracket bearing also contributed to 
differences in the final mass. Even if a student were to perfectly duplicate the instructor’s 
modeling strategy, numerical errors when comparing floating point numbers makes it 
impossible to guarantee a correct comparison with an expected value. So, mass (volume, 
surface area) comparison approaches can generate false negatives when there is no 
discernible discrepancy in the result much to the frustration of a student who ends up wasting 
valuable time trying to correct a mistake that does not exist. 

 
Figure 2. Mass Variation in Capstone Modeling Assignment 

• Modeling History and Complexity: The modeling history is captured using a feature tree in 
modern parametric, feature-based CAD systems. It encapsulates a process used by the 
designer to create a model and so adds more information to an assessment beyond just the 
final shape. The challenge with these methods is that unless a modeling problem is highly 
constrained the process of arriving at a solution can be highly varied. Different choices of 
features and their order can yield the same final shape. However, they can be useful in 
verifying that specific modeling decisions have been made. For example, confirming if a 
particular type of feature is used in the model and are they added at a suitable stage in the 
modeling process. These would have to be stated requirements that a designer would need to 
meet in the modeling activity. Even with these guidelines there remain numerous modeling 
strategies that can be followed to arrive at a solution. Using the same crank arm capstone 
example, Figure 3 illustrates this using the strategies taken by three of the student designers. 
Designers ‘A’ and ‘B’ start by modeling the chainring end of the crank, though using 
different strategies themselves. ‘A’ takes an approach that strongly favors the use of additive 
features throughout, while ‘B’ includes the use of subtractive features to produce the shape of 
the five arms. Neither approach is wrong, and they both use around the same number of 
features (8 versus 9) to arrive at approximately the same shape. Most of the student 
designers’ strategies aligned more with that of ‘C’ which starts with the crank arm before 
moving onto the chainring end. To demonstrate the variation that occurred across the entire 
class, automation was developed using the Visual Basic for Applications macro interface to 
Solidworks® to roll back the design history to each step where a feature was added, and the 



mass of the in-work model measured. The plots in the figure illustrate the results with the one 
on the left tracking the change in mass of each of the 23 models, and on the right a second 
representation showing the variation in mass that occurred at each modeling step. It’s clear 
that over the first 12 steps there is significant variability in the masses accounted for by 
different modeling strategies. The convergence after the 12th step around a final mass value 
(0.3423 kg in the instructor’s model) indicates the point at which all students have 
transitioned to adding cosmetic features such as fillets and chamfers which have a smaller 
impact on the mass. It is possible to use this in-process mass history by comparing it to that 
of the instructor’s solution to determine how closely a student’s strategy matches. In addition 
to the magnitudes, increases in mass indicate the use of additive features, and decreases 
subtractive. However, the question of whether such an assessment is valuable is predicated 
on whether the instructor can provide the student with enough guidelines so that they can be 
expected to closely match a desired solution. Unfortunately, this would defeat the purpose of 
a capstone assignment where students are assessed partly on their ability to develop their own 
effective strategy.  

 

Figure 3. Tracking the Incremental Mass of a Component for Assessing Modeling Proficiency 

In order to track complexity in modeling, the same automation also extracted from sketches 
the number of pieces of geometry and constraints used in building sketches. The results for 



the 23 students are summarized in Figure 4 sorted from the fewest to the most with the 
averages indicated by the horizontal lines. Also superimposed are the number of features and 
sketches used in the model. When compared to the instructor’s solution (see table in Figure 
1) almost all the students used more geometry and constraints when building sketches, and 
many significantly more. Since sketching is considered the most challenging skill to develop 
for modeling, this is probably not surprising. The trend also indicates that students who used 
more pieces of geometry also used more constraints which is again not surprising. The 
overlay of feature and sketch use was to observe whether there was any correlation between 
more complex sketches and fewer sketches and features. Except for the extreme cases (1 for 
fewest, 22 and 23 for most) none is obvious. This information might prompt the instructor to 
pay more attention to those students with above average use of geometry and constraints on 
their sketches (i.e. 15 to 23).  

 
Figure 4. Sketch Constraint and Geometry Count as a Measure of Modeling Complexity 

 
• Using Design Intent: This level of assessment evaluates whether a designer has created a 

model that can be parametrically modified. As with the previous shape and mass property 
methods it is an assessment of the final model and not the process used to create it. The 
automation of this assessment can be accomplished through the use of global or user 
parameters that the designer must incorporate into their model. These can be used to drive 
parameters on sketches or in defining features. Assessment automation can vary these global 
parameters and evaluate the impact on the final model. The simplest of these evaluations 
would be whether the model breaks within a stipulated range of values. Beyond this, testing 
the result goes back to using a shape and mass property method that performs a comparison 
with values from the desired solution, and faces the same challenges described previously. 
Without constraints on the modeling process design intent can be satisfied while using very 
different modeling strategies.  



 

Figure 5. Challenges Satisfying Design Intent with Different Strategies 

Figure 5 shows different modeling strategies applied by 3 students in creating the capstone 
right crank model which present different levels of difficulty in capturing the design intent of 
controlling the length of the crank arm. (a) shows the most efficient approach used in the 
desired solution where the dimension between the center of the pedal and bearing holes (170 
mm) is controlled on a sketch. That sketch dimension can be linked directly to a global 
parameter that can be varied with automation to confirm the design intent is present. In (b) 
the designer chose to create the rounded ends using fillets after creating a base feature using a 
sketch extruded from the side. To capture the design intent, the length dimension must be 
defined using a relation that adds the end diameter to the global variable. The same is true in 
(c) with the added complication of ensuring that the two features over which the design intent 
must now be managed remain in contact with matching width and diameter dimensions. The 
example in (d) requires managing the design intent over three features. As with the modeling 
strategies none of these approaches is technically wrong if the length of the arm changes 
without breaking the model assuming the assignment did not explicitly require that the most 
efficient approach be the solution. Experience has shown that it’s important to teach students 
the importance of paying attention to design intent as they develop their modeling strategy 
and not trying to add it as an afterthought. 

• Using Best Practices: The final level of assessment is determining whether best practices 
have been incorporated into a model. This raises the question of what are considered “best 
practices” and are these universally agreed upon as such. What is clear from practice is that 
CAD systems provide the flexibility for end-users to enforce rules in how a model is created 
by their modelers and engineers to support their product development needs and that these 
can vary across disciplines. For example, the way a model is created for a component that is 
machined would apply a different modeling strategy to a similar shape that might be cast or 
forged. For certain manufacturing domains, CAD systems have encapsulated best practices 
by providing the designer with application specific features to model with. Examples of these 
include sheet metal, composites, weldment and mold design. Assessment of models created 
using such applications is typically easier since the constraints enforced using these features 
lead to expected manufacturable shapes and parametric characteristics in the final model. 
Examples of these would be the presence of a draft feature on the side walls of a molded 
component, or the bend radius between two walls in a sheet metal part. CAD systems that 



implement application specific modeling add-ins typically include analysis tools that can be 
used to assess these features in a final model. These can be appropriately tied to assessment 
automation. Outside of these application areas there are some broadly accepted generic best 
modeling practices that a designer can be expected to use. These include but are not limited 
to the following: 
1. Use a hole feature for circular pockets under 1” in diameter (machinability). 
2. Use a hole feature instead of circle on a sketch for a through hole. 
3. Use a hole feature when a thread is included. 
4. Use a hole feature when a counterbore or countersink is included. 
5. Pattern large arrays using features rather than with geometry on a sketch. 
6. Use a mirror feature for symmetrical parts. 
7. Use the fillet and chamfer features on 3D model edges over sketch fillets and chamfers. 
8. Include fillets and chamfers before shelling. 
9. Draft before shelling. 
10. Fillet and chamfer as late as possible. 

Assessing the use of best practices is again a process of comparing with an expected 
result where they have been correctly applied. Best practice usage rates for the capstone right 
crank modeling assignment were assessed and are summarized in Figure 6. This shows that a 
significant number of the 23 students (almost 40%) did not correctly follow the best practices 
they were taught in earlier assignments about how and when to use the hole feature. Almost 
all avoided using feature patterning for the five arms and the teeth in the spline connector in 
favor of building more complicated sketches. All correctly applied the fillet feature over 
sketch filleting for the arm edges though about 25% did so at an early stage when the net 
shape of the model was yet to be completed. Experience has shown that students tend to be 
biased towards using modeling skills they learn earlier in a course when their enthusiasm 
maybe higher and the amount of time they can put into learning that skill greater. This tends 
to favor use of sketching skills and can bias their judgement on applying a best practice such 
as mirroring or patterning features. The ability to judge when a best practice is needed 
without it been explicitly required by the instructor in an assignment is an advanced skill that 
takes time and practice to develop. 

 
Figure 6. Best Practice Usage in Capstone Right Crank Modeling Assignment 



Using Complete Modeling Activity Data 

One obvious distinction in the metrics that can be used for assessment is whether they are 
extracted from the final result, or the process used to arrive at the result. The latter information is 
considered to reside in the design history of the model captured in a feature tree. However, this is 
an incomplete picture of the process followed to arrive at a result. It’s a snapshot of a strategy to 
build the component, but not a full picture of the steps taken by the designer. Missing are any 
changes in strategy that may have occurred along the way and information about how much time 
was spent on different modeling activities. This missing information is valuable in assessing how 
efficiently a student designer may have completed a modeling task and in identifying activities 
where the effort was unexpectedly high. This would help differentiate between those cases where 
two students might arrive at the same result using the same recorded strategy but where one 
spent significantly more time and rework to get there. Identifying those students and tracking 
these metrics over time is potentially a useful guide for instructors to assist those struggling in 
acquiring modeling skills. A major question to using this information is whether it can even be 
extracted from a modeling session. 

• Overview of Implementation: To examine this question, the authors investigated the 
CATIA® V5R18 software by Dassault Systemes. CATIA® contains several features for 
recording session data that generates log files, the most important being the Statistics feature 
that is enabled in the Options menu. As shown in Figure 7, the system logs statistics for the 
time spent in workbenches (e.g. Sketcher, Part Design, Assembly Design), time spent using 
specific commands (e.g. feature definition, sketch constraints/geometry/operations) in those 
workbenches, and the session statistics [13]. 

 

Figure 7. Statistics that Can be Generated during a CATIA Session 

Statistics are saved to three log files: 

• Command log – contains entries for the workbench and specific commands used as well as 
the elapsed time. 

• Session log – contains entries for the total elapsed time and computational usage for the 
entire CATIA session. 

• Workbench log – contains entries for the elapsed time in each workbench. 



The most important log is the Command log. This contains the granular information about 
each command executed during a modeling session including a time stamp.  

It was discovered that important information needed to properly parse the log could not 
be generated given the options available in the Statistics dialog. Surprisingly this included the 
model’s name in which a command was executed (file name), the in-work object (a feature or 
sketch), or even what was selected. So, a user could move back and forth between models 
that were open in a CATIA® session and the Command log would not identify in which 
model the command was executed. As such, there was no way to unambiguously identify 
what a user was working on using just the CATIA® log files. 

As a work around, the authors developed an additional Working log that gathered data 
simultaneously with the system log files while CATIA® is running. This working log was 
designed to specifically track the file name of the active model where a command is executed 
and the in-work object. The log was created by running a background process that watches 
for the CATIA® startup process and then logs the in-work object and its filename 
approximately every 2 seconds. The Python packages WMI, win32com, and pyvba were used 
for watching the startup process and for interacting with CATIA®. Table 1 summarizes the 
schema of the Command and Working log files with the critical data that can be used to 
interpret a designer’s actions highlighted. The time entry (highlighted in green) is used to 
synchronize the information in both files. 

Table 1. Header descriptions for the command and working log files. 

Header In Command 
log? 

In Working 
log? 

Description 

them X X Theme (COMMAND or WORKING) 
time X X Time of the action 
elps X  Elapsed time spent in the command 
rtim X  Response time (elapsed time minus user wait time) 
cpus X  CPU time spent in the command 
user X X Username associated with the computer profile 
host X X Host machine name 
upid X  Universal program identification number 
Session X  Session status (Start or End) 
Command X  Internal command name 
NLS X  External command name 
Origin_Header X  Origin header 
mode X  Command mode (Foreground or Background) 
CurrentWorkbench X  Internal current workbench name 
NLS_CurrentWorkbench X  External current workbench name 
CurrentWorkshop X  Internal current workshop name 
NLS_CurrentWorkshop X  External current workshop name 
filename  X Name of the file 
inwork  X Current in-work object name 
inworktype  X Current in-work object type 
sel  X Currently selected object name 
seltype  X Currently selected object type 

 



The CATIA® log files are all stored in one location determined by each user’s settings. 
There are also options for each CATIA® session to generate its own file or to aggregate the 
information in a single file. The latter option was used to avoid the challenge of having to 
parse and synchronize multiple log files. However, there is a file size limit that needs to be 
appropriately set which if exceeded will lead to a copy being created and the log file being 
reset. Though not included in the current implementation it would be a simple solution to 
automate tracking the Command log file size and extracting information before a reset 
occurs. 

From the two log files, time-based modeling performance metrics can be determined. A 
full list of such metrics that can be tracked is given in Table 2. These include efficiency 
metrics such as the Sketching Efficiency and Modeling Efficiency which can be used to 
determine whether a particular student designer is within the expected norms for a modeling 
assignment. 

Table 2. Modeling Performance Metrics 

Metric Name Variable Description Filters (If Applicable) and 
Calculation 

Start Date  𝐷𝐷𝑠𝑠 When the model is first opened Minimum of datetime 

End Date  𝐷𝐷𝑒𝑒 When the model is last closed Maximum of datetime 

Duration of 
Modeling Effort 

𝑑𝑑𝑚𝑚 Time spent working on model  𝐷𝐷𝑒𝑒 − 𝐷𝐷𝑠𝑠  

Total Modeling 
Time  

𝑇𝑇𝑚𝑚 Cumulative time while model was open in 
CATIA 

Maximum of time_passed 

Effective Modeling 
Time  

𝑇𝑇𝑒𝑒𝑚𝑚 Time while sketcher workbench is open, or a 
feature is being created. 

∑elps 

Modeling 
Efficiency  

𝜀𝜀𝑀𝑀 Percentage Ratio of Effective Modeling time 
to Total Modeling Time  

𝑇𝑇𝑒𝑒𝑚𝑚/𝑇𝑇𝑚𝑚 ∗ 100  

Total Sketching 
Time  

𝑇𝑇𝑠𝑠 Time during which the Sketcher Workbench 
is open. 

∑elps | NLS_CurrentWorkbench 
== Sketcher 

Total Feature 
Creation Time  

𝑇𝑇𝑓𝑓 Time during which a feature (Pad, Pocket, 
Shaft, Groove etc.) is being created 

∑elps | Origin_Header == PrtCfg 

Sketcher Effort  𝑒𝑒𝑠𝑠 Percentage ratio of the Total Sketching Time 
to the Effective Modeling Tim  

𝑇𝑇𝑠𝑠/𝑇𝑇𝑒𝑒𝑚𝑚 ∗ 100  

Effective Sketching 
Time  

𝑇𝑇𝑒𝑒𝑠𝑠 Time during which Sketching commands are 
being executed 

Origin_Header == CS0WKS 
 

Sketching 
Efficiency  

𝜀𝜀𝑆𝑆 Percentage Ratio of Effective Sketching time 
to Total Sketching Time  

𝑇𝑇𝑒𝑒𝑠𝑠/𝑇𝑇𝑠𝑠 ∗ 100  

Sketcher Geometry 
Time  

𝑇𝑇𝑠𝑠𝑠𝑠 Effective sketching time devoted to creating 
geometry 

∑elps | Origin_Header == 
CS0WKS & 
NLS != Constraint 

Sketcher Geometry 
Effort  

𝑒𝑒𝑠𝑠𝑠𝑠 Percentage ratio of Sketcher Geometry Time 
to the Effective Sketching Time  

𝑇𝑇𝑠𝑠𝑠𝑠/𝑇𝑇𝑒𝑒𝑠𝑠 ∗ 100  

Sketcher Constraint 
Time  

𝑇𝑇𝑠𝑠𝑠𝑠 Effective sketching time devoted to creating 
constraints 

∑elps | Origin_Header == 
CS0WKS & 
NLS == Constraint 

Sketcher Constraint 
Effort  

𝑒𝑒𝑠𝑠𝑠𝑠 Percentage ratio of Sketcher Constraint Time 
to the Effective Sketching Time  

𝑇𝑇𝑠𝑠𝑠𝑠/𝑇𝑇𝑒𝑒𝑠𝑠 ∗ 100  

Sketch Geometric 
Elements  

𝑁𝑁𝑠𝑠𝑠𝑠 Number of geometric elements created in 
sketches 

∑i | Origin_Header == CS0WKS & 
NLS != Constraint 

Sketch Constraint 
Elements  

𝑁𝑁𝑠𝑠𝑠𝑠 Number of constraint elements created in 
sketches 

∑i | Origin_Header == CS0WKS & 
NLS == Constraint 

Sketch Elements  𝑁𝑁𝑒𝑒 Total number of elements created in sketches  𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑠𝑠𝑠𝑠  



Sketch Deletions  𝑁𝑁𝑑𝑑 Number of deletions performed during 
sketching. 

∑i | NLS_CurrentWorkbench == 
Sketcher & NLS == Delete 

Sketch Percentage 
Deletion Rate  

𝑅𝑅𝑑𝑑 Percentage ratio of deletions to the number of 
sketcher elements created  

𝑁𝑁𝑑𝑑/(𝑁𝑁𝑠𝑠𝑠𝑠 + 𝑁𝑁𝑠𝑠𝑠𝑠)  ∗ 100  

Feature Creation 
Effort  

𝑒𝑒𝑓𝑓 Percentage ratio of the Total Feature Creation 
Time to the Effective Modeling Time  

𝑇𝑇𝑓𝑓/𝑇𝑇𝑚𝑚 ∗  100  

 

• Case Study: A pilot study was conducted to evaluate the potential capability to collect 
and parse the information collected using the previously described methodology. Three 
desingers were given two entry-level models to create in CATIA®. These models shown 
in Figure 8 were selected for their different use of modeling features. The strategy for the 
Transition Base component favors use of prismatic extruded features such as Pads and 
Pockets. The V-Pulley strategy favors use of rotational features such as shafts and 
grooves.  The data for each was collected using the implementation previously described.  

                    

Figure 8. The Transition Base (left) and V-Pulley (right) part models used in the study. 

The final values for variables are calculated from the resulting data according to the 
filters and calculations listed in Table 2. For example, to evaluate the total sketching time 
(𝑇𝑇𝑠𝑠), the filter (NLS_CurrentWorkbench == Sketcher) should be applied to the entries, 
with the sum of the elapsed time (elps) of the filter’s result yielding the desired value. To 
evaluate specific files or users, the appropriate grouping constraints should be applied. 
From further inspection of Table 2 the metrics can be largely divided into two groups. 
These groups impact: 

• Modeling time and efficiency – These metrics can be used to observe the holistic 
objectives of the modeling process. 

• Sketching metrics – These metrics are used to investigate the sketching efficacy and 
efficiency. The final model should be very dependent on the sketch geometry, as it 
defines the foundational structure of the object. 



Table 3. Results for some of the modeling time and efficiency metrics. 

Designer File 
Total Modeling 

Time 
(hh:mm:ss) 

Effective Modeling 
Time 

(hh:mm:ss) 

Modeling 
Efficiency 

(%) 

1 
Transition 
Base 

00:15:54 00:14:30 91.19 

V-Pulley 00:26:00 00:19:26 74.77 

2 
Transition 
Base 

00:09:40 00:08:02 82.99 

V-Pulley 00:11:40 00:10:56 93.69 

3 
Transition 
Base 

00:28:18 00:19:46 69.83 

V-Pulley 00:18:26 00:16:41 90.49 
 

Using the data collected from the three designers engaged in the case study, the modeling 
time and efficiency were calculated and are shown in Table 3. From this limited test data, it 
is possible to observe how these metrics might be used to identify a novice designer who may 
be struggling. For example, the lowest efficiency was 69.83% by Designer 3 for the 
Transition Base. Repeated instances of lower efficiency across modeling assignments can be 
used to alert an instructor to a student who might be struggling with acquiring a modeling 
skill.  

Table 4. Results for some of the sketching metrics. 

Designer File 

Sketcher 
Geometry 

Time 

Sketcher 
Geometry 

Effort 

Sketcher 
Constraint 

Time 

Sketcher 
Constraint 

Effort 

Combined 
Time 

(hh:mm:ss) (%) (hh:mm:ss) (%) (hh:mm:ss) 

1 
Transition 
Base 0:01:40 24.39 0:05:10 75.61 0:06:50 

V-Pulley 0:01:54 20.27 0:07:29 79.73 0:09:23 

2 
Transition 
Base 0:01:35 32.93 0:03:47 67.07 0:05:22 

V-Pulley 0:02:26 35.26 0:04:29 64.74 0:06:55 

3 
Transition 
Base 0:03:56 86.72 0:00:36 13.28 0:04:32 

V-Pulley 0:03:05 82.35 0:00:40 17.65 0:03:45 
 

In a similar fashion looking at the sketching metrics summarized in Table 4, an 
interesting difference can be observed in the relative time spent by Designer 3 in creating 
sketch geometry versus creating sketch constraints when compared to the other two. Unlike 



Designers 1 and 2, a significant amount of time is spent creating sketcher geometry in 
comparison to adding constraints. Examination of the models show different strategies with 
Design 3 favoring simpler sketches spread over more features. This is illustrated in Figure 9. 
More complex sketches would require significantly more time to fully constrain particularly 
for a novice. Interestingly, this potential advantage in more efficient sketching did not yield 
the best overall modeling time for Designer 3 as can be seen from the Total Modeling Time 
in Table 3. This time includes the effort taken to first develop a modeling strategy i.e. the 
features that will be used and the sequencing. It may be that Designer 3 took more time to 
develop this when planning their strategy with the goal of using simpler sketches before 
starting to model them. 

 

Figure 9. Modeling Strategies with Different Sketch Complexities 

Discussion 

Current automated tools for CAD modeling skill assessment have limitations. They work 
best when the modeling assignment is highly constrained by the instructor which limits the range 
of modeling strategies a student can use to arrive at the answer. This typically means simpler 
assignments which is what any training pedagogy starts with to develop a novice’s skill. In this 
sense they are valuable particular in environments where large numbers of students need to be 
assessed. However, consideration must be given to the limitations of these tools particularly 
those that directly compare a metric such as mass or volume extracted from a student’s work to 
that of the expected solution. Experience in using such graders built into SolidProfessor® [12] 
and StudyCAD® [14], [15] by the authors have shown that students need a backup mechanism 
when auto-grading is used to assist them in correcting their work before a final solution is 
submitted. False negatives can be generated due to reasons that are not relevant to the modeling 
skill being assessed. Use of a teaching assistant or a peer-review are potential approaches to 



provide this safety net though timeliness of feedback becomes an issue. Another approach that 
has been adopted by the authors is to provide a defeatured part body of the solution within a 
starter file that is used by the student to model their answer in an overlapping part body. Missing 
or dimensionally incorrect features can be visualized to prompt self-correction. It’s also easier 
for the instructor to hone in on errors when providing help. One drawback of this approach is that 
it limits the practice of reading and interpreting views in drawings which can be a secondary 
learning outcome in a CAD class as is the case for the capstone example discussed earlier. 

As illustrated earlier, more complex assignments where students are expected to do more independent 
thinking on their modeling strategy, capture design intent, and use appropriate best practices are much 
more challenging to automate their assessment. It might even be true that because more complex 
assignments such as a capstone project are meant to evaluate overall mastery rather than a specific skill, 
that automation is not appropriate to use in these cases. Regardless looking at how a student approaches a 
more complex modeling assignment where they are expected to independently apply what they have 
previously practiced raises some intriguing questions. For example, why did the three student designers 
decide on the strategy they followed in Figure 3? There was a split decision where two designers chose to 
model the chain ring end (more complex) first and the other the pedal end which was indicative of the 
majority. Are there other not so obvious modeling decision points across the many different strategies 
followed? With a larger sample of student solutions, can patterns of decision-making be identified that 
lead to categories that group students based on how they approach a modeling problem? This type of 
information might be useful to an instructor in recognizing the tendencies of each student as they 
approach a modeling problem. 

There is of course the question of whether a tendency in of itself is a poor modeling practice that 
needs to be corrected. For example, Figure 9 illustrates two tendencies that students might present if 
asked to model this shape. The solution on the left might suggest a tendency to jump into the sketcher to 
try and accomplish as much as possible as quickly as possible. While the solution on the right might 
suggest a student who does more planning by visualizing different feature decomposition strategies before 
starting the modeling activity. As mentioned earlier, there is also a tendency for some students to lock 
into modeling skills they learn earlier in a course which might bias those students who have fallen behind 
towards overusing the sketching tool. As an assignment neither solution would be wrong unless the 
instructor gave guidance that would influence use of one over the other e.g. using the simplest sketches 
possible favoring Designer 3’s solution or using the fewest features possible favoring Designer 2's 
solution. However, there is value to developing within engineers the skill of planning as opposed to 
jumping into in a problem without much forethought. Understanding of how these tendencies might play 
out in a modeling assignment can help instructors provide better instructions that emphasize a preferred 
tendency. 

On the question of using more complete modeling activity data, the case study presented 
shows the feasibility of obtaining this data using a leading CAD system. Some of the automation 
for doing this developed in Python can potentially be adapted for use with other CAD systems. 
However, this would depend on whether those systems generated log files with detailed 
command instructions tagged with a time stamp. For example, the Solidworks Rx® app allows 
users to generate log data from sessions that captures the session duration and user interface 
command sequence in a performance log file. This is typically used to report crashes of the 
system during modeling. Further investigation of this is needed to determine if it contains the 
desired data to replicate the automation developed for CATIA®. Although generalized 



conclusions are difficult to draw from the simple case study presented, it does show that a 
mechanism for capturing information that more completely tracks a designer’s activities is 
possible. This can be used as another tool for extracting information about the modeling process 
to monitor and assess modeling skills development. For instance, one might expect the sketcher 
effort to correlate closely with modeling efficiency if the model is heavily sketch dependent. A 
heatmap, like the one shown in Figure 10, can be used to reveal tendencies in a particular 
modeling exercise. Although not conclusive due to the limited data, one might question why 
sketcher effort and sketcher geometry effort have a low correlation. This might be the case as 
discussed earlier if more of the designers favored use of complex sketches over user of simpler 
features, as two of the three designers did in this particular case. Finally, getting feedback from 
students on the collection of this additional data, and whether its analysis helps them perform 
better by them taking corrective action during the modeling process, is critical to the 
development and acceptance of grading automation. Due to the transition from away from 
CATIA® this will have to wait until the automation described is redeveloped using the 
Solidworks® platform. 

 

Figure 10. A heatmap of all the captured metrics listed in Table 2. 

Conclusion 

Automated assessment of CAD modeling student activities is an indisputable efficiency benefit 
for instructors. Methods are available and some implemented in available tools including CAD 
training LMSs to do this, but are limited in their effectiveness. Challenges exist in reliability 
particularly if applied to more complex models and in extending the assessment beyond a 



student’s ability to arrive at a final shape that matches a solution. Automation becomes much 
more challenging when the process by which a student arrives at a solution is to be evaluated. 
This is even more so when limited instructions are provided as in a capstone modeling 
assignment when what is being partly assessed is the ability of the student to independently make 
decisions about modeling strategies that include capturing design intent and use of modeling best 
practices. A case study has been used in this paper to highlight some of these challenges. This 
shows that for a complex model many strategies are possible and that in the absence of 
guidelines, which is typical of a capstone assignment, an instructor may find it difficult to justify 
penalizing a strategy that does not match what they might have generated as their preferred 
solution. This case study and some exploratory work on extracting a more complete set of 
performance metrics that considers time spent on activities, can be useful in identifying 
tendencies amongst students on a particular assignment and in general. Knowing such modeling 
tendencies and whether they should be reinforced or discouraged, has the potential to be an 
additional tool for an instructor to use to help students develop better CAD skills. This broadens 
the role of assessment automation beyond what an instructor currently does when grading 
assignments, to extracting new insights into the processes that students use when modeling 
which can impact the way instructors approach assessment. 
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