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Abstract

In this paper, we first describe the Optimal Learning Outcomes Assignment (OLOA) problem,
which involves assigning learning outcomes to courses during the backwards curriculum design
process in ways that minimize the complexity of the resulting curriculum. An approximation algo-
rithm for the OLOA problem is then described that yields novel solutions to important engineering
curricular design challenges. Reducing curricular complexity, while maintaining effective learn-
ing outcomes attainment, increases the likelihood students will complete a curriculum and earn a
degree. The rationale for the approach taken here follows from the fact that by rearranging the
learning outcomes among the courses in a curriculum, the overall structure of a curriculum can
be changed. Thus, the OLOA problem provides a criterion for finding curricular structures that
enhance student success. The OLOA problem is shown to be strongly NP-complete; however,
an integer quadratic programming approximation algorithm is described that effectively produces
practical, efficient, and novel solutions for attaining the most important leaning outcomes in an
undergraduate engineering curriculum.

Introduction

The use of learning outcomes in higher education is now a ubiquitous part of continuous quality
improvement efforts. Learning outcomes are statements of what a learner is expected to know, un-
derstand and be able to demonstrate at the end of some learning experience. For instance, ABET
stipulates a minimal set of student learning outcomes that describe what learners should know
and be able to by the time they graduate from an ABET-accredited engineering program.1 It is
also now common practice to articulate course-level learning outcomes for each of the courses
offered by a college or university; these indicate what a learner is expected to know and be able
to do after successfully completing a course. A common approach used by curriculum design-
ers, known as backwards design, involves designing a curriculum from the bottom up by starting
from the program learning outcomes, and then creating course-level objectives that would allow
the program-level learning outcomes to be attained, i.e., a curriculum map. Finally, specific learn-
ing modules are created to allow the course objectives to be achieved. In this paper, backwards
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Figure 1: A dag representation of an electrical engineering curriculum

design techniques are considered that involve optimizing the arrangement of course-level learning
outcomes within engineering curricula in ways that lead to improved student success outcomes.2, 3

Specifically, engineering programs offer some of the most complex curricula in higher education,
and this complexity negatively impacts various student success metrics, including time-to-degree
and graduation rates. Thus, the ability to reduce curricular complexity through backwards de-
sign is a significant consideration for engineering programs, and that should inform the work of
curriculum committees.

1 Background

A curricular analytics framework was developed in order to quantify the various components that
contribute to the complexity of a curriculum.4 Broadly, this framework partitions these compo-
nents into two categories, those that are based on how a curriculum is structured, and those that are
based on how instruction is offered and supported within the curriculum. The former category is
referred to as the structural complexity, and the latter as the instructional complexity of the curricu-
lum. For computing structural complexity, a useful representation of a curriculum is as a directed
acyclic graph (dag), where the vertices of the graph represent the courses in the curriculum, and
the directed correspond to the prerequisites relationships among the courses in the curriculum. An
example degree plan for an electrical engineering program, created using this dag representation
is shown in FIgure 1. The structural complexity measure we will use is based upon the proper-
ties of this dag, and it has been shown that it directly relates to a student ability to complete the
curriculum.4 Specifically, two important graph properties determine the structural complexity of
a course in the curriculum. The first is the longest path that goes through a course, which defines
the delay factor of that course in the curriculum. The second is the number of other courses that
are reachable from a given course, which defines the blocking factor the course. The, the sum of
delay blocking factors, across all courses in a curriculum, defines the structural complexity of that
curriculum.

It is important to recognize the critical role course prerequisites play in determining the structural



Figure 2: Two different curricula organized around the attainment of four course-level learning
outcomes, l1, l2, l3, and l4, where attainment of l3 requires a learner to first attain l2. (a) If l1 and
l2 are placed in one course, and l3 and l4 in the other, a prerequisite constraint is created between
courses v1 and v2, and the structural complexity of the pattern is 5. (b) If l2 and l3 are placed in one
course, and l1 and l4 in the other, then all prior required learning is contained within course v1, no
course-level prerequisites are required, and the structural complexity of the pattern is 2.

complexity of a curriculum. Furthermore, if we consider the same engineering program at differ-
ent institutions, we will find there is often significant variation among the structural complexities
of the curricula offered by these programs. As mentioned previously, those with lower structural
complexity will have higher completion rates, assuming all other factors, e.g., instructional com-
plexity and student preparation, are held constant. Somewhat counterintuitively, it has also been
shown that in addition to improving graduation rates, in some disciplines, engineering programs
with lower structural complexity are also judged to have higher quality.5

This leads us to consider the rationale for prerequisites in a curriculum. Presumably, a prerequisite
from course A to course B in a curriculum is stipulated if there is some learning outcome in course
A that must be attained prior to attempting course B. That is, prior knowledge obtained in course
A is necessary for a student to succeed in course B. In other words, it is actually the relationships
between the underlying course-level learning outcomes that creates the necessity for a prerequi-
site between two courses. To better understand this point; that is, how a learning outcomes dag
impacts a curriculum dag, consider a simple case involving only four learning outcomes, denoted
l1, l2, l3, and l4, where attainment of l3 requires a learner to first attain l2. In Figure 2, we show
two possible arrangements of these learning outcomes into courses that lead to two different cur-
ricula. The arrangement in Figure 2 (a) leads to the creation of a course-level prerequisite in the
curriculum, while in the case shown in Figure 2 (b), no course-level prerequisites are required.
Thus, the curriculum in Figure 2 (b) has lower structural complexity than the one in Figure 2 (a),
while attaining the same learning outcomes. An important point to note is that as the size of a
learning outcome dag grows larger, say in a linear fashion, the number of curricula that can be
created from the learning outcome dag grows exponentially, quickly overwhelming our ability to
manually construct and consider alternative curricula for a single learning outcome dag. However,
this is precisely what we need to do as a part of backward curriculum design. A key concept that
will be utilized in this work is the fact that course-level prerequisites are dictated by the prereq-
uisites in the underlying learning outcomes graph. Thus, the judicious arrangement of learning
outcomes within courses may allow one to arrange the prerequisites in a curriculum in a way that
reduces curricular complexity. Below, methods for automating this process in an optimal fashion
are considered.

In order to better understand how the backwards design process can be automated, it is important to
consider the solution space in more detail. In Figure 3 (a) we show an example learning outcomes
graph. In order to construct a curriculum, we must assign learning outcomes to courses in the
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Figure 3: (a) A learning outcomes directed acyclic graph (dag), followed by (b) a mapping of these
learning outcomes to courses, and finally (c) the curriculum dag imposed by the mapping.

curriculum, as shown in Figure 3 (b). Notice that the dashed edges in this figure actually constitute
another dag, one that maps learning outcomes to courses. In the lower portion of Figure 3 (c),
we show how this mapping serves to cluster learning outcomes together, and in upper part of this
figure we show how this clustering imposes course-level prerequisites that lead to a curriculum
dag. Thus, the solution space can be represented using three connected dags, one for the learning
outcomes, one for the curriculum, and one that maps between the two. The goal in this work is
to search over all possible mappings of learning outcomes to courses, in order to find ones that
minimize the structural complexity of the resulting curriculum. Note that simply minimizing the
total number of prerequisites in a curriculum does not necessarily produce a curriculum with the
lowest structural complexity.

In order to demonstrate the usefulness of this work, consider the curricular design pattern shown
in Figure 4 (a), commonly employed in electrical engineering programs for non-calculus-ready
students. Notice the Circuits I course, a highly critical course in any electrical engineering curricu-
lum, cannot be attempted, due to prerequisite constraints, until the fourth term in this curriculum.
The structural complexity of this curricular design pattern is 71. An alternative curricular design
pattern, shown in Figure 4 (b), can be created by the judicious rearrangement of a few learning
outcomes among the courses in the design pattern, and it has show to more effectively serve non-
calculus-ready students.6 The work of finding a more effective curricular design pattern, in this
case, was through the trail and error efforts of faculty over time. The goal here it to provide tools
that would assist faculty in this work.

Optimal Learning Outcomes Assignment Problem

In the Optimal Learning Outcomes Assignment (OLOA) problem, the input is the collection of all
course-level learning outcomes that must be attained by the learners in an academic program, or in
some portion of the academic program, along with the prerequisite constraints among these learn-
ing outcomes (i.e., the order in which learning must occur). The goal is to assign these learning
outcomes to the courses where they will be taught in such a way that the structural complexity of
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Figure 4: (a) A common curricular design patterns for attaining digital and analog circuit design
learning outcomes in electrical engineering programs, assuming non-calculus-ready students. The
solid directed edges denote prerequisites, and the dashed edges represent co-requisites. The struc-
tural complexity of each course is shown inside the vertex associated with that course. The total
curricular complexity is 71. (b) A redesigned curricular design pattern involving the same learning
outcomes, but with a lower curricular structural complexity of 64.



the resulting curriculum is minimized.

More formally, a learning outcomes graph can be represented as a dag Gl = (Vl, El), where the
vertices vl1 , . . . , vlm ∈ Vl in this case denote m course-level learning outcomes, and the directed
edges (vli , vlj) ∈ El correspond to the prerequisite arrangements between these learning outcomes.
The assignment of learning outcomes to courses induces a curriculum graph Gc = (Vc, Ec), where
each vertex vc1 , . . . , vcn ∈ Vc represents a course in curriculum c. For each edge (vli , vlj) ∈ El, if
learning outcome li is assigned to course cp (denoted li → cp) and lj → cq, then a directed edge
(vcp , vcq) must be added to edge set Ec. That is, a prerequisite must be added to the curriculum
graph.

Note that some learning outcomes-to-courses assignments can produce invalid curricula. In order
for an assignment to be valid, it must be consistent. Specifically, if (vli , vlj) ∈ El, li → cp,
and lj → cq, then for any other edge (vlk , vlt) ∈ El, if lk → cq, then lt 6→ cp (lt cannot be
assigned to cp). In other words, all of the directed learning outcomes edges between any two
courses must “point” in the same direction. Violating this condition will produce a cycle in the
induced curriculum graph, leading to a curriculum that is impossible to complete. More generally,
learning outcomes assignments that produce a cycle among any number of courses in the induced
curriculum graph must be avoided.

By treating the assignment of a learning outcome to a course as a graph edge, an outcomes map-
ping graph can be constructed that shows how learning outcomes are mapped to the courses in a
curriculum. Specifically, let G = (V,E) denote a dag that contains Gc and Gl as subgraphs; that
is, the vertex set V = {Vc ∪ Vl}. The edges in G contain all edges in the two subgraphs, as well
as an additional set of edges that specify how learning outcomes are mapped to courses; that is,
E = {Ec ∪ El ∪ Ep}, where each edge (vli , vcj) ∈ Ep satisfies vli ∈ Vl and vcj ∈ Vc. That is, the
mapping specified by Ep corresponds to the aforementioned curriculum map.

Now, consider a curriculum with m course-level learning outcomes, denoted l1, . . . , lm, and let
h(li) denote the number of course contact hours required to attain learning outcome li. The ob-
jective, then, in the OLOA problem is to rearrange the m course-level learning outcomes among
the n courses in a curriculum, so as to minimize the complexity of the resulting curriculum, while
keeping the course contact hours in all courses within specified bounds. A formal definition of the
OLOA problem is as follows:

Instance: A collection of learning outcomes L = {l1, . . . , lm} organized as a dag Gl = (Vl, El),
with vl1 , . . . , vlm ∈ Vl and (li, lj) ∈ El if learning outcome lj requires learning outcome li as
prerequisite knowledge.
Question: Can L be partitioned into disjoint sets C = c1, . . . , cn such that α ≤

∑
li∈cj h(li) ≤ β,

for j = 1, . . . , n, the curriculum graph induced by C is consistent, acyclic, and has minimal
curricular complexity?

Theorem. The decision version of the OLOA Problem is strongly NP-complete.

Proof: In the decision version of the OLOA problem, the question is whether or not a partition
exists that yields a valid curriculum, where the number of hours in each course is in the range
[α, β], and with curricular complexity at most k? Because it is possible to check in polynomial



time whether a given partition is consistent, acyclic, within the range of allowable hours, and has
curricular complexity at most k, OLOA is inNP . The OLOA problem can be shown to be strongly
NP-hard through a reduction from the strongly NP-complete 3-Partition problem (see7). Given
an instance of the 3-Partition problem, consisting of 3t + 1 positive integers x1, . . . , x3t, and B,
such that B

4
< xj <

B
2

and
∑3t

j=1 xj = tB, an instance of OLOA can be constructed in polynomial
time as follows. The number of learning outcomes is set equal to 3t, namely l1, . . . , l3t, and the
number of courses to t. Next, set the number of hours required for each learning outcome equal to
h(l1) = x1, . . . , h(l3t) = x3t, set El = ∅, and set α = β = B. Then, any solution to the OLOA
problem using these instances exists only if the integers x1, . . . , x3t can be partitioned into disjoint
sets, each containing three elements, such that each set sums to B.

Given that the OLOA problem is strongly NP-complete, the focus in the remainder of the pa-
per will be on algorithms that yield good approximate solutions. However, one consequence of
strong NP-completeness is that unless P = NP , there is no fully polynomial-time approxima-
tion scheme for the OLOA problem (see7).

Integer Programming Algorithm

In this section, an approximation algorithm is proposed to address the OLOA problem. This ap-
proach uses 0-1 quadratic programming to create an assignment of m learning outcomes to n
courses. That is, for a given outcomes mapping graph G = ({Vc ∪ Vl}, {Ec ∪ El ∪ Ep}), the
edges in Ep are mapped to a m×n binary-valued learning outcomes-to-courses assignment matrix
as follows,

aij =

{
1; if (vli , vcj) ∈ Ep,
0; otherwise.

The requisite edges in the resulting curriculum are specified using an n×n binary-valued requisite
assignment matrix,

xij =

{
1; if course i is a prerequisite for course j,
0; otherwise.

This is the adjacency matrix for the curriculum graph.

In addition, a n×k binary-valued courses-to-layers assignment matrix is defined as follows,

eij =

{
1; if course i is located in layer j,
0; otherwise,

It is useful to recognize that any valid curriculum graph can be organized into layers (see8). A valid
curriculum graph can be partitioned into k disjoint sets(or layers), labelled as 1, 2 . . . k. In such
graph, no course prerequisite edges would appear within the same layer, while edges emanating
from any layer terminate to its latter layer only.

Based on our studies of the characteristics of the structural complexities of curricula, we propose
an objective function for the integer programming algorithm as followed.

min

(
ζ

n∑
j=1

n∑
i=j

xij +
n∑

j=2

j−1∑
i=1

(xij · i) + γ

n∑
i=1

k∑
j=1

(eij · j)

)
, (1)



for constants ζ and γ, with ζ � n.

Note that xij , the adjacency matrix for the curriculum graph, is constrained by the assignment
matrix aij and the adjacency matrix for the learning outcomes graph. While the courses-to-layers
assignment matrix eij is constrained by xij . To better understand the optimization problem speci-
fied by Equations (1), consider first the objective function given in Equation (1), which consists of
three terms. Considering these terms from left to right, the first term forces the curriculum graph
adjacency matrix to be upper triangular, thereby ensuring an acyclic graph, and therefore a valid
curriculum. The second term tends to bias the non-zero entries in the curriculum graph adjacency
matrix towards lower-valued i indices. This leads to connected components in the curriculum
graph that are more compact. The third term in the objective function considers the impact to cur-
ricular complexity from the perspective of layers, as it is used to constrain the curriculum graph
to span a smaller number of layers. As the number of layers is correlated with the maximal delay
factor of curricular complexity, given a fixed number of courses, increasing the number of layers
for a curriculum is likely to increase its value for curricular complexity. A reasonable value for
k, the maximum number of allowable layers in the curriculum graph, can be determined a priori
by inspecting the longest paths in the learning outcomes graph, as these dictate the minimum path
lengths in the curriculum graph.

Results and Conclusions

An experiment was conducted to demonstrate the efficacy of the approximation algorithm de-
scribed in the previous section. The integer programming algorithm is applied to the learning
outcome graph underlying the electrical engineering curriculum shown in Figure 4 that starts with
Precalculus. Figure 5 (a) shows this design pattern again, but with the courses relabeled as vertices
v1, . . . , v8. Figure 5 (b) shows the redesigned curriculum by running the approximation algo-
rithm.

Comparing the two curricula in Figure 5, the complexity of the original curriculum is reduced from
71 to 42, by rearranging the learning outcomes. The new curriculum is about 41% less complex
than the original curriculum pattern. Through the analysis of the longest path, it can be observed
that the length of that path is 6 in the original curriculum, while in the redesigned pattern it is
reduced to 4. This reduction in length indicates that students will require fewer terms to obtain
the same set of learning outcomes in the redesigned curriculum pattern compared to the original
pattern. Thus, the redesigned pattern provides more flexibility to students’ study plans, which can
potentially increase their graduation rates. In addition, the redesign process reduced the number
of prerequisites and co-requisites from 10 to 8. A more compact curriculum allows the important
learning outcomes to be taught in a timely manner, which could increase the efficiency of students’
learning process.

Given the high complexity nature of engineering programs, it is important to explore various meth-
ods to help students with their studies. In this paper, we proposed a way from the perspective of
rearranging the program-level learning outcomes from a curriculum, to reduce curricular complex-
ity in the curricula design process. To assess the efficacy of this method, we formally defined the
OLOA problem and proved the problem to be strongly NP-complete. The proof indicates the
direction of future research in this field. And our studies on the OLOA problem provide criteria to



Figure 5: (a) The curricular design pattern from Figure 4, referred to as C1 in this figure. The total
curricular complexity of this design pattern is 71. (b) The curricular design pattern, referred to as
C2, found by rearranging the learning outcomes using the approximation algorithm described in
this paper. The total curricular complexity of this design pattern is 42; that is, 41% less complex
than the original design pattern shown in (a).



evaluate the performance of algorithms which aim at addressing this problem.

We proposed an approximation algorithm using integer programming techniques, which has demon-
strated its efficacy on an electrical engineering curriculum. This algorithm can be applied to other
disciplines as well. For future research, it is advisable to examine and incorporate other characteris-
tics related to learning outcomes. For instance, in addition to the structure of the learning outcome
graph, evaluating the difficulty level in teaching each learning outcome in a program can yield
new metrics. By incorporating constraints on these metrics, a more balanced curriculum can be
created. There could be various arrangements of learning outcomes that result in the same optimal
curricular complexity. Given the diverse background information of students, further exploring the
pool of optimal solutions could be another direction for future research.
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