
Paper ID #41675

Leveraging Novel Machine Learning in Engineering Education

Dr. JAMES WANLISS, Anderson University

James Wanliss is professor of general engineering at Anderson University. He is a winner of the NSF
CAREER award, and works in experimental and computational plasma fluids, with interests in machine
learning and data analysis.

©American Society for Engineering Education, 2024

Leveraging Novel Machine Learning in Engineering Education

Dr. James Wanliss, Professor
College of Engineering

Anderson University, SC

Abstract

It is vital to guarantee that engineering graduates have learned essential skills required to excel in

a dynamic technological landscape. Today the proliferation of low-cost, high-speed computing

devices offer opportunities for design and control of systems with varying levels of complexity.

What this means in practice is that engineers increasingly need expert knowledge of various

computer systems and software. Computing expertise once considered arcane must now become

commonplace. We develop a novel Machine Learning (ML) course, designed for all

undergraduate engineering majors with appropriate programming and mathematics background,

to take as an elective in their junior or senior year. The course introduces deep learning and

artificial intelligence (AI) as a basic tool engineers need to understand and utilize, even in an

undergraduate engineering setting. Our paper shows how this course can be implemented in a

new College of Engineering. The course uses the PyTorch machine learning framework as focus

to guide students from basic ML concepts to the full deployment of models relevant to different

areas of engineering.

1. Introduction

In the 21st century, a vital role for universities is to guarantee that by the time of graduation

students have learned essential skills required to excel in a dynamic technological landscape.

This is also true in engineering where our incoming students, though they have some

technological experience, lack a specialized understanding of computers and programs relevant

to the industry. Engineering systems feature intricate practical challenges for design and control.

From the time that James Clerk Maxwell and Josiah Gibbs [1][2] elucidated engineering

governors one can see the future introduction of computers into the realm of engineering, by the

solution of mathematical equations, was virtually certain. Today the proliferation of low-cost,

high-speed computing devices offer opportunities for design and control of systems with varying

levels of complexity. What this means in practice is that engineers increasingly need expert

knowledge of various computer systems and software. Computing expertise once considered

arcane must now become commonplace.

Near the end of the 20th century it became the norm for undergraduate students to learn

utilitarian programming software tools in order to accelerate their workflow [3][4]. Now, just in

the past few years, deep learning and artificial intelligence (AI) has come to the place where it is

no longer a wishful dream but a definitively powerful tool for addressing intricate scientific and

engineering challenges. Thus, understanding and utilizing deep learning in undergraduate

engineering education has become increasingly relevant, though still not widely practiced. Since

it has become a core technology of today’s Fourth Industrial Revolution (4IR or Industry 4.0)

[21] it seems inconceivable that knowledge of fundamental deep learning tools should only be

the realm of data science specialists or graduate students [32]. Accordingly, we propose to

develop a course in deep learning suitable for undergraduate engineering majors. Our paper will

show how this might be implemented in a new College of Engineering at Anderson University,

and how other schools may leverage our experiences.

There are many reasons why undergraduates will benefit from meaningful introduction to deep

learning from an engineering perspective. But first it is necessary to define what is meant by

‘deep learning’. In this paper deep learning refers to a subset of machine learning (ML) that

involves using mathematical algorithms, specifically artificial neural networks, to assimilate and

analyze large data sets and complex data patterns.

Given this definition, deep learning offers solutions to complex and intricate problems that may

be challenging for typical algorithms in the traditional engineering curriculum. With the

explosive proliferation of embedded systems, and the IoT, controlling complex actuators and

sensors in real time is increasingly feasible. Many engineering applications generate vast

amounts of data, and deep learning algorithms are effective at recognizing patterns and

extracting meaningful insights from these large datasets [5]. Thus, an appreciation of deep

learning methods will contribute to better engineering decision-making processes [6]. In

addition, deep learning enables better automation, optimization, and control [7]. From design

optimization to production planning, engineers can leverage deep learning to streamline

workflows and enhance efficiency [8]. Fields like computer vision and signal processing benefit

from deep learning with great success in areas as diverse as medical imaging, surveillance, and

communications. In this regard, engineers involved in robotics and automation can benefit from

deep learning in tasks such as object recognition, path planning, and control systems [9]. Given

fragile electrical and industrial systems, an instance of which is the unsustainable US power grid,

deep learning offers a pathway to forecast equipment failures and maintenance needs [10][13]. It

offers a pathway to better optimize energy consumption and resource management in

engineering systems, which can contribute to sustainability efforts and cost savings [11][12].

This is particularly crucial in engineering industries where unplanned downtime can be costly or,

in the case of power grids, deadly [14]. Deep learning also has applications to monitor the

structural health of buildings and infrastructure, thus enhancing safety and preventing

catastrophic failures [15]. Positive examples of deep learning in the context of Natural Language

Processing (NLP) are applications like automated documentation, translation, communication,

facilitating collaboration among engineers across language barriers, and for development of

sematic search engines to understand the context and meaning of user queries [16]. On the other

hand, in the past few years concern has arisen[17] that deep learning techniques in natural

language processing can destabilize political systems through, for example, chatbots on social

networks [22].

In this paper we propose a curriculum for an undergraduate engineering introduction to deep

learning. Our goal is to first apply this in a new course taught in the engineering program at

Anderson University. The College of Engineering was founded in 2021. At present we offer

Electrical, Computer, Mechanical, and General Engineering degrees, and will graduate our first

engineering majors in 2025. It might seem natural to expect only computer or electrical

engineers to take this proposed course, but we argue that the diverse applications of machine

learning make such a course suitable to all engineering majors, so the course should be listed as a

general engineering elective course, and assign ENGR 370: Machine Learning for Engineers as a

possible course code, suitable for junior or senior students. We center the curriculum around the

open-source PyTorch machine learning library for Python as it is used in numerous areas,

including image and speech recognition, natural language processing, computer vision, and

more. Its user-friendly interface and dynamic nature make it an attractive option for both

beginners and experienced practitioners in the field of deep learning [18]. In what follows we

will detail in Section 2 explains course development, goals, and outcomes. Given these goals,

Section 3 explains the necessary student preparation in order to succeed in an undergraduate

general engineering introduction to ML. Section 4 describes the basic components of the course

curriculum. Section 5 explains the course assessment and feedback tools to be used, and Section

6 discusses results and implementation.

2. Course Development, Objectives and Outcomes

As we develop our undergraduate Machine Learning for Engineers course our next goal is to

design learning objectives and outcomes. Learning objectives and outcomes ensure that students

acquire knowledge in deep learning concepts and their practical applications in engineering.

Figure 1, after Reference [26], shows important elements of course design that we employ in this

paper.

Figure 1. Important elements of course design (from Reference [26])

Reference [26] note that creating a course to achieve specified outcomes requires effort in the

domains of “1): planning (identifying course content and defining measurable learning objectives

for it); instruction (selecting and implementing the methods that will be used to deliver the

specified content and facilitate student achievement of the objectives); and assessment and

evaluation (selecting and implementing the methods that will be used to determine whether and

how well the objectives have been achieved and interpreting the results.”

Since course implementation can be hindered when the course does not align with appropriate

accreditation criteria, we therefore seek to create appropriate course objectives and outcomes and

align these with specific goals that meet the Accreditation Board for Engineering and

Technology (ABET) criteria [19]. Since ABET accreditation criteria were introduced in 1996

they have spurred an intense national reassessment of the engineering curriculum. ABET

accreditation and published goals provide a helpful yardstick to ensure that engineering programs

meet certain standards [20], and that our new course fits these criteria. Table 1 shows how we

propose to align our goals under the umbrella of the ABET criteria.

Table 1. Alignment between ABET criteria and the course learning objectives and

outcomes.

ABET Criteria Specific Goals

1. identify, formulate, and solve complex

engineering problems by applying principles

of engineering, science, and mathematics

Students acquire knowledge to identify how

ML may be useful in technology; they master

deep learning concepts and their practical

applications in engineering.

2. apply engineering design to produce

solutions that meet specified needs with

consideration of public health, safety, and

welfare, as well as global, cultural, social,

environmental, and economic factors

Students analyze engineering problems and

apply suitable deep learning models to

address them.

3. communicate effectively with a range of

audiences

Students develop collaboration and

communication skills through group projects

and presentations

4. recognize ethical and professional

responsibilities in engineering situations and

make informed judgments, which must

consider the impact of engineering solutions

in global, economic, environmental, and

societal contexts

Through hands-on projects, students

investigate and solve complex engineering

problems using PyTorch and explore ethical

impacts of the technology

5. function effectively on a team whose

members together provide leadership, create

a collaborative and inclusive environment,

establish goals, plan tasks, and meet

objectives.

Students engage in collaborative and

professional coding practices and project

work, aligning with ABET's emphasis on

professionalism

6. develop and conduct appropriate

experimentation, analyze and interpret data,

and use engineering judgment to draw

conclusions

Students master the use of PyTorch, a modern

and widely adopted tool in the field of deep

learning

7. acquire and apply new knowledge as

needed, using appropriate learning

strategies.

Students explore advanced topics to stay

current with rapidly developing deep learning

technologies

In 2024 our College of Engineering established an Advisory Board consisting of representatives

from academia, government and industry, and held our first Advisory Board meeting on the

university campus. At the meeting we reviewed the undergraduate engineering curriculum in

electrical and computer engineering, mechanical engineering, and general engineering in order to

learn about emerging needs that the board observes in their areas of expertise. After consultation

with these stakeholders, we made the following list, given in Table 2, of learning objectives and

outcomes aligned with ABET criteria. These serve as a guide for those who wish to implement a

PyTorch rich ML course in their undergraduate curriculum.

Table 2. Course Learning Objectives.

Learning Objective Specific Goals

1. Master Fundamental

Deep Learning Concepts

Define and explain key deep learning concepts, including neural

networks, activation functions, loss functions, and optimization

algorithms.

2. Understand PyTorch

Basics

Demonstrate proficiency in using PyTorch, including creating

and manipulating tensors, understanding autograd, and working

with computation graphs.

3. Build and Train

Neural Networks

Develop the ability to design, train, and evaluate neural networks

using PyTorch, emphasizing the importance of datasets and

dataloaders.

3. Engage in Hands-On

Projects

Apply PyTorch in practical projects to solve real-world

engineering problems, demonstrating the ability to translate

theoretical knowledge into practical applications.

4. Debugging and

Troubleshooting in

PyTorch

Develop effective debugging and troubleshooting skills for

PyTorch models, showcasing the ability to identify and rectify

common errors.

5. Explore Model

Deployment

Understand the basics of deploying PyTorch models, considering

deployment options, considerations, and demonstrating the

deployment process.

6. Collaboration and

Code Management

Work collaboratively on projects using version control systems

like Git, emphasizing the importance of clean and modular code.

Upon completion of the PyTorch course, students should be able to demonstrate particular

learning outcomes. Table 3 shows a list of possible outcomes which we have created that are in

alignment with ABET standards.

Table 3. Course Learning Outcomes.

Learning Outcomes Specific Goals

1. Demonstrate

Proficiency in PyTorch

Independently use PyTorch to implement and analyze various

deep learning models.

2. Apply Deep Learning

to Engineering Problems

Apply deep learning techniques to solve engineering problems;

demonstrate the ability to choose appropriate models for specific

tasks.

3. Evaluate Model

Performance

Evaluate the performance of deep learning models using relevant

metrics and make informed decisions based on the results.

4. Collaborate

Effectively

Collaborate with peers on coding projects, demonstrating

effective communication, dissemination of code, and teamwork.

5. Demonstrate Critical

Thinking in Model

Design

Critically analyze engineering problems, choosing and justifying

appropriate deep learning approaches for solving them.

3. Student Preparation for Machine Learning

Before our undergraduate engineering students can effectively master machine learning (ML) via

PyTorch, it is essential for them to have a solid foundation in certain prerequisites. To ensure

adequate preparation only students who have taken an introductory Python course, and

completed mathematics courses up to Calculus IV, may enroll to take what we will call ENGR

370: Machine Learning for Engineers.

The key prerequisite skill that students should initially possess is proficiency in Python

programming. At present this introductory Python course is taught in the second semester of the

engineering program. Since students will already have had one intensive Python introductory

course, they will have mastered syntax and string manipulation, data types and structures (lists,

dictionaries, etc.), functions, and control structures, and the mathematics fundamentals necessary

to understand ML concepts [23]. They will already be familiar with Python libraries like NumPy

and Matplotlib, which are often used alongside PyTorch for numerical computations and data

visualization [24], along with a basic understanding of linear algebra, calculus, and statistics.

These courses will have prepared students for concepts like matrix multiplication, derivatives,

and probability which are frequently used in deep learning and PyTorch operations. In addition,

at the start of the course students will be introduced to fundamental PyTorch concepts such as

tensors, and autograd (automatic differentiation) since it is essential that they should understand

how to create and manipulate tensors.

The start of the course will introduce core principles of deep learning, such as supervised

learning, unsupervised learning, classification, regression, and the basics of model training and

evaluation [25]. Students will also need to develop a basic knowledge of neural networks,

including the structure of computational neurons, layers, activation functions, and the concept of

feedforward propagation. Although proficiency in data handling is crucial in ML, we will not

take much time dealing with data preprocessing and subsequent data processing. Instead, we will

simplify the learning flow by providing prepared datasets and simple, directed introduction to

using and manipulating these data, an example of which will be demonstrated below.

In order to utilize PyTorch students will need to refresh basic command-line skills, and it will be

helpful to create a familiarity with version control systems like Git, which is also valuable for

collaborative coding projects that are common for engineering applications.

Once these various prerequisites are attained, our undergraduate engineering students will have a

solid foundation to enable them to dive into PyTorch effectively and make the most out of their

learning experience in deep learning and neural networks.

4. Curriculum Structure

By following the engineering criteria developed and listed above we can create a unifying

framework for the development of the undergraduate Machine Learning for Engineers course

and curriculum. This allows faculty who teach the course to have a coherent curriculum in which

harmony is achieved for all aspects of course goals and objectives, design, syllabus, as well as

methods of teaching and assessment [28][29]. We have identified five distinct concept areas,

which can be taught as course modules.

4.1 Introduction to Deep Learning Concepts

At the very beginning of the course it is necessary, so to speak, to set the table on behalf of the

students since they will have heard about ML, and even used it as a technology, but without an

understanding of the limitations and concepts crucial to understanding ML. Thus, we will begin

with definitions and key characteristics of ML and deep learning. In the era of intense student

use of ChatGPT it is easy to see how students may think they understand so-called artificial

intelligence, so it should be important to illustrate strengths, weaknesses, and limitations of what

has been referred to as fake or ‘Potemkin AI’ [31].

Students will learn about the biological analogy of neurons with so-called artificial neurons,

structured in neural network nodes and layers on a computational device. They will have an

introduction to mathematical representations of feedforward processes, and the weights and

biases which comprise such neural networks.

Following this relatively simple mathematical introduction, students will learn about staples of

ML, including the backpropagation algorithm and the related mathematical details of chain rule

and gradients, which are leveraged to explain ML gradient descent for weight optimization in the

neural network. They will review some basic optimization processes which they already covered

in pre-requisite courses, for example least-squares, and learn about other popular ML loss

functions and how to choose the appropriate loss function in a given task environment.

Next, we introduce the basics of training and evaluation, including the concepts of splitting data

into training and testing sets, model training, and the various problems that can arise, such as

model overfitting and underfitting [25].

4.2 Basics of PyTorch

With this strong foundation laid, in Module 2 it is time to introduce students to PyTorch, and to

do so by first showing examples of its use in industry and society, and its origin as a leading

open-source deep learning framework. We can compare PyTorch to other leading frameworks,

such as TensorFlow, and simpler ones like Scikit-Learn.

Once preliminaries are dispensed with we turn to learning about the important idea of tensors.

We will demonstrate basic tensor operations like tensor creation, manipulation, slicing, and how

to convert between PyTorch tensors and the well-known NumPy arrays. Prior to deploying

models we will add on to mathematics with which students are already familiar by introducing

automatic differentiation, and the PyTorch `autograd` module for computing gradients.

Numerous demonstrations of simple examples will showcase the automatic gradient computation

feature.

In PyTorch, computation graphs are a fundamental concept used to represent the flow of data and

operations within a neural network or any other computational process. They can take two forms

in PyTorch: static and dynamic, which will be demonstrated to students.

At this point students will be ready to train a first simple model by building a basic neural

network in PyTorch using the ‘torch.nn’ module. We give students the opportunity by a step-by-

step approach to train the model with real-world time-series data, and using PyTorch's

optimization algorithms (e.g., SGD) for training the model. Data will come from several areas of

departmental research, including chronobiology [33], mechanical jitter, space engineering [34]

[35], earthquakes [36], and signal processing [37]. Throughout this Module students will

perform various data processing tasks such as splitting data into training, validation, and test sets,

evaluating model performance on the validation and test sets, and exploring overfitting and

underfitting issues as they employ common loss functions available in PyTorch (e.g.,

`nn.CrossEntropyLoss`, `nn.MSELoss`). We will explore how to select appropriate loss

functions for different tasks.

In the previous required Python course (coded as ENGR 130 at Anderson University) students

have performed extensive coding with NumPy and Matplotlib. Utilizing this knowledge is

important for visualization of results of training progress and model outputs, and to interpret the

visualizations to gain insights into model behavior.

As they engage with PyTorch there will be ample opportunities for debugging and so at this

juncture we will introduce common debugging techniques for PyTorch code.

4.3 Different Types of Neural Networks

Each week during the course includes lab exercises and this is how we will interact with different

types of neural networks. Students will first learn about convolutional neural networks (CNNs)

and then recurrent neural networks (RNNs), and will explore simple examples through guided

coding exercises. They will have assignments to build and train simple neural networks, and

lecturers will practice a structured approach to teaching the creation, training, and evaluation of

basic neural networks.

4.4 Collaboration and Code Management

Since working in teams requires careful management we will discuss strategies collaboration

using version control systems and maintaining clean code, with tools like Git.

4.5 Ethical Considerations

Anderson University is a Christian educational institution deeply concerned with the ethical

consideration of technology. Because we have a vested interest in considering the impacts of ML

on individuals, societies, and the world at large.

ML Models can perpetuate and exacerbate biases or preferential treatments, based on the data

they are trained on. Therefore we will need to discuss and explore algorithmic decision-making

and how bias migrates in data and in code. Given the vast volume of data that is available we

will also need to discuss privacy and data protection concerns. Questions will be raised in a

group setting to explore accountability and responsibility for the decisions suggested by ML

systems.

5. Course Assessment and Feedback

Course assessment is essential so that students and other stakeholders have the opportunity to

measure their progress with the learning expectations. To assess students' achievement of the

learning goals and outcomes in the PyTorch course, a variety of assessments can be

implemented. These assessments should cover theoretical understanding, practical application,

and collaboration skills [26][29]. Table 4 lists the course assessments.

Table 4. Course assessments.

Assessment type Description

1. Formative and

Foundational
• In-class active Quizzes on ML Concepts: Assess understanding

of fundamental deep learning concepts covered in lectures.

• Exam on PyTorch Basics: Test knowledge of PyTorch basics,

including tensors, autograd, and computation graphs through two

written and computational tests.

2. Practical Application • Neural Network Implementation Assignment: Students must

correctly implement and train a basic neural network using

PyTorch to demonstrate their understanding of model building

and training.

• CNN Image Classification Project: This will evaluate students'

ability to apply Convolutional Neural Networks for image

classification tasks.

3. Project-Based • Hands-On Projects: We will assign real-world engineering

projects that require the application of PyTorch. We will evaluate

the quality of their solutions, the appropriateness of the chosen

model, and the ability to analyze results.

• Temporal Convolutional Neural Network (TCN) Project: Task

students with implementing a TCN for a temporal sequence

problem, assessing their understanding of advanced concepts.

4. Debugging and

Troubleshooting
• Debugging Challenge: During in-class laboratory exercieses we

will present students with a faulty PyTorch code and assess their

ability to identify and fix errors, and allow them showcase their

debugging skills.

5. Model Evaluation and

Interpretation
• Model Evaluation Report: This will require students to evaluate

the performance of a trained model, discuss metrics such as

accuracy, precision, recall, and F1 score. Emphasize the

interpretation of results.

6. Collaboration and

Code Management
• Group Project Assessment: Students will be assigned a group

projects; evaluation will be based on collaboration, effective use

of version control (e.g., Git), and the quality of modular and well-

documented code. Students will also perform group peer-

evaluations to document their perceptions of professionalism and

teamwork.

• Code Review Assignment: Students will review and provide

feedback on their peers' PyTorch code, assessing their ability to

analyze and improve code quality.

7. Presentation and

Communication
• Final Project Presentation: This is attached to the Group Project

Assessment (#6 above). It will require students to present their

final projects in a written and oral format, in which they explain

their approach, results, and insights. This will evaluate their

ability to communicate technical concepts effectively.

8. Exams • Comprehensive Final Exam: This will test overall knowledge

and understanding of the entire PyTorch course content, covering

both theoretical and practical aspects.

9. Self-Assessment and

Reflection
• Learning Journal: Throughout the course students will maintain

a learning journal in which they reflect on their progress,

challenges, and areas for improvement. This encourages self-

assessment and continuous learning.

10. Problem-Solving

Challenges
• Model Optimization Challenge: During several labs students

will receive suboptimal PyTorch model code and will work in

groups to optimize it, assessing their problem-solving skills.

11. Real-World

Application Report
• Engineering Application Report: Students are tasked with

identifying a specific engineering problem amenable to ML

application. They will write a report on how they would apply

PyTorch to solve this specific engineering problem and

emphasize practical applications.

Although assessments are usually done for the benefit primarily of academic institutions and

accrediting agencies, we will also provide constructive feedback to our undergraduate students

throughout the course, via required open office-hours, in order to give them specific information

about their performance, and so to help them understand what they did well and where they can

improve. This will help develop the continuous improvement and future learning ethos that we

strive to inculcate in engineers. As we offer positive and constructive feedback this should

motivate students as the efforts are recognized, and this will help build their confidence and

positive attitude towards learning. It will also help students to identify weaknesses and areas that

they can target for improvement. As they reflect on this feedback, they will gain insights into

their personal learning process and style, learn to ask questions that lead to a deeper

understanding of ML, and show them areas where they can implement continuous improvement.

Requiring students, as groups and individuals, to attend open office hours not only provides

feedback to them but also fosters a supportive learning environment where students feel that their

efforts are valued, and they are supported in their academic journey.

6. Results and Discussion

Universities face challenges in demonstrating to key stakeholders, such as students, accreditors,

employers, and government, that their engineering programs equip graduates with the required

level of computational skills requisite to excel in a dynamic technological landscape. To that end

we have developed a course to enable undergraduate engineering students to effectively master

machine learning (ML) via a widely-used, modern open-source framework like PyTorch. Other

educators may consider different tools. We call this course ENGR 370: Machine Learning for

Engineers. Our study addresses the design and delivery of this course for all engineering majors

and considered not only learning requirements, objectives, and assessments but also the concerns

of various stakeholders for validating technological innovation.

We focused on the use of PyTorch since it is rapidly becoming important in numerous areas of

practice [38]. Although it is a high-performance framework capable of advanced and complex

uses, it is also sufficiently accessible and flexible via its modules [40] so that it advanced

undergraduates (juniors or seniors in engineering) can learn fungible ML skills.

In Table 6, in the appendix, we provide a model 16-week course schedule. The schedule aims to

cover a comprehensive range of topics, providing students with both theoretical knowledge and

practical skills. Adjustments can be made based on the progress of the class, the level of

engagement, and emerging trends in deep learning. The inclusion of guest lectures, case studies,

and hands-on labs enhances the overall learning experience.

In summary, the course will equip our engineering students with a comprehensive skill set in

deep learning using PyTorch. We emphasize practical applications, collaboration, and adherence

to best practices. The combination of hands-on projects, collaborative learning, and a focus on

real-world applications should prove effective in fostering a deep understanding of the subject

matter. This will prepare students to apply their knowledge in both academic and industry

settings, with a strong foundation for continuous learning in the rapidly evolving field of deep

learning. It is likely that the integration of deep learning courses into undergraduate engineering

programs will be a growing trend in response to the increasing importance of AI and ML in

diverse engineering disciplines.

Acknowledgment

This research was partially funded by National Science Foundation Award AGS-2414513 and the
NIH R-25 Program.

References

[1] J. Clerk Maxwell, “On governors,” Proceedings of the Royal Society of London, Vol. 16

(1867-1868), pp. 270-283.

[2] Mayr, O., 1971. “Victorian physicists and speed regulation: An encounter between science and

technology.” Notes and records of the Royal Society of London, 26(2), pp.205-228.

[3] Edwards, P. A.; McKay, B. J.; Sink, C. W. First year chemistry laboratory calculations on a

spreadsheet. J. Chem. Educ. 1992, 69, 648−650.

[4] Bell, P. C. Teaching Business Statistics with Microsoft Excel. INFORMS Trans. Ed. 2000, 1,

18−26.

[5] Jan, Bilal, Haleem Farman, Murad Khan, Muhammad Imran, Ihtesham Ul Islam, Awais

Ahmad, Shaukat Ali, and Gwanggil Jeon. "Deep learning in big data analytics: a comparative

study." Computers & Electrical Engineering 75 (2019): 275-287.

[6] Arpteg, Anders, Björn Brinne, Luka Crnkovic-Friis, and Jan Bosch. "Software engineering

challenges of deep learning." In 2018 44th euromicro conference on software engineering and

advanced applications (SEAA), pp. 50-59. IEEE, 2018.

[7] Kouhalvandi, Lida, Osman Ceylan, and Serdar Ozoguz. "Automated deep neural learning-

based optimization for high performance high power amplifier designs." IEEE Transactions on

Circuits and Systems I: Regular Papers 67, no. 12 (2020): 4420-4433.

[8] Regenwetter, Lyle, Amin Heyrani Nobari, and Faez Ahmed. "Deep generative models in

engineering design: A review." Journal of Mechanical Design 144, no. 7 (2022): 071704.

[9] Patel, Priyanka, and Amit Thakkar. "The upsurge of deep learning for computer vision

applications." International Journal of Electrical and Computer Engineering 10, no. 1 (2020):

538.

[10] Khodayar, Mahdi, Guangyi Liu, Jianhui Wang, and Mohammad E. Khodayar. "Deep learning

in power systems research: A review." CSEE Journal of Power and Energy Systems 7, no. 2

(2020): 209-220.

[11] Runze, W. U., Bao Zhengrui, Song Xueying, and D. E. N. G. Wei. "Research on short-term

load forecasting method of power grid based on deep learning." Modern electric power 35, no.

2 (2018): 43-48.

[12] Shuvro, Rezoan A., Pankaz Das, Majeed M. Hayat, and Mitun Talukder. "Predicting cascading

failures in power grids using machine learning algorithms." In 2019 North American Power

Symposium (NAPS), pp. 1-6. IEEE, 2019.

[13] Wanliss, J. A., and L. A. G. Antoine. "Geomagnetic micropulsations: Implications for high

resolution aeromagnetic surveys." Exploration Geophysics 26, no. 4 (1995): 535-538.

https://doi.org/10.1071/EG995535

[14] Busby, Joshua W., Kyri Baker, Morgan D. Bazilian, Alex Q. Gilbert, Emily Grubert, Varun

Rai, Joshua D. Rhodes, Sarang Shidore, Caitlin A. Smith, and Michael E. Webber. "Cascading

risks: Understanding the 2021 winter blackout in Texas." Energy Research & Social Science

77 (2021): 102106.

[15] Yuan, Fuh-Gwo, Sakib Ashraf Zargar, Qiuyi Chen, and Shaohan Wang. "Machine learning for

structural health monitoring: challenges and opportunities." Sensors and smart structures

technologies for civil, mechanical, and aerospace systems 2020 11379 (2020): 1137903.

[16] Zhang, Wei Emma, Quan Z. Sheng, Ahoud Alhazmi, and Chenliang Li. "Adversarial attacks

on deep-learning models in natural language processing: A survey." ACM Transactions on

Intelligent Systems and Technology (TIST) 11, no. 3 (2020): 1-41.

[17] Ibrishimova, Marina Danchovsky, and Kin Fun Li. "A machine learning approach to fake news

detection using knowledge verification and natural language processing." In Advances in

Intelligent Networking and Collaborative Systems: The 11th International Conference on

Intelligent Networking and Collaborative Systems (INCoS-2019), pp. 223-234. Springer

International Publishing, 2020.

[18] Doleck, Tenzin, David John Lemay, Ram B. Basnet, and Paul Bazelais. "Predictive analytics

in education: a comparison of deep learning frameworks." Education and Information

Technologies 25 (2020): 1951-1963.

[19] Alarifi, Ibrahim M. "Comparative Analysis on Regional (NCAAA) and International (ABET)

Accreditation for Mechanical Engineering Program." Eng. Technol. Open Access J 3 (2021):

119-134.

[20] Alhorani, Rana AM, Wejdan Abu Elhaija, Subhi M. Bazlamit, and Hesham S. Ahmad. "ABET

accreditation requirements and preparation: Lessons learned from a case study of Civil

Engineering Program." Cogent Engineering 8, no. 1 (2021): 1995109.

[21] Sarker, Iqbal H. "Deep learning: a comprehensive overview on techniques, taxonomy,

applications and research directions." SN Computer Science 2, no. 6 (2021): 420.

[22] Pashentsev, Evgeny. "The malicious use of artificial intelligence through agenda setting:

Challenges to political stability." In Proceedings of the 3rd European Conference on the Impact

of Artificial Intelligence and Robotics ECIAIR, pp. 138-144. 2021.

[23] Prokopiev, Mikhail Semenovich, Elena Zotikovna Vlasova, Tatiana N. Tretiakova, Maxim

Anatolyevich Sorochinsky, and Rimma Alekseevna Soloveva. "Development of a

https://doi.org/10.1071/EG995535

programming course for students of a teacher training higher education institution using the

programming language Python." Propositos y representaciones 8, no. 3 (2020): 33.

[24] Ranjani, J., A. Sheela, and K. Pandi Meena. "Combination of NumPy, SciPy and

Matplotlib/Pylab-a good alternative methodology to MATLAB-A Comparative analysis." In

2019 1st international conference on innovations in information and communication

technology (ICIICT), pp. 1-5. IEEE, 2019.

[25] Raschka, Sebastian, Joshua Patterson, and Corey Nolet. "Machine learning in python: Main

developments and technology trends in data science, machine learning, and artificial

intelligence." Information 11, no. 4 (2020): 193.

[26] Felder, Richard M., and Rebecca Brent. "Designing and teaching courses to satisfy the ABET

engineering criteria." Journal of Engineering education 92, no. 1 (2003): 7-25.

[27] Anwar, Arif A., and David J. Richards. "A comparison of EC and ABET accreditation criteria."

Journal of Professional Issues in Engineering Education and Practice (2018).

[28] Subic, Aleksandar, and Don Maconachie. "Strategic curriculum design: An engineering case

study." European journal of engineering education 22, no. 1 (1997): 19-33.

[29] Boev, Oleg V., Norbert Gruenwald, and Guenter Heitmann. Engineering curriculum design

aligned with accreditation standards. Scholars' Press, 2014.

[30] Qadir, Junaid. "Engineering education in the era of ChatGPT: Promise and pitfalls of

generative AI for education." In 2023 IEEE Global Engineering Education Conference

(EDUCON), pp. 1-9. IEEE, 2023.

[31] Sadowski J (2018) Potemkin AI: many instances of ‘artifcial intelligence’ are artificial displays

of its power and potential. https://reallifemag.com/potemkin-ai; accessed 5 Feb. 2024

[32] Hu, Han, and Connor Heo. "Integration of Data Science Into Thermal-Fluids Engineering

Education." In ASME International Mechanical Engineering Congress and Exposition, vol.

86694, p. V007T09A023. American Society of Mechanical Engineers, 2022.

[33] Wanliss J, Cornélissen G, Halberg F, Brown D, Washington B (2018) Superposed epoch

analysis of physiological fluctuations: possible space weather connections. Int J Biometeorol

62:449–457. https://doi.org/10.1007/s00484-017-1453-7

[34] Cersosimo, D.O., Wanliss, J.A. “Initial studies of high latitude magnetic field data during

different magnetospheric conditions.” Earth Planet Sp 59, 39–43 (2007).

https://doi.org/10.1186/BF03352020

[35] Wanliss, J. A., K. Shiokawa, and K. Yumoto. "Latitudinal variation of stochastic properties of

the geomagnetic field." Nonlinear Processes in Geophysics 21, no. 2 (2014): 347-356.

https://doi.org/10.5194/npg-21-347-2014

[36] Wanliss, James, Víctor Muñoz, Denisse Pastén, Benjamín Toledo, and Juan Alejandro

Valdivia. "Critical behavior in earthquake energy dissipation." The European Physical Journal

B 90 (2017): 1-8. https://doi.org/10.1140/epjb/e2017-70657-y

[37] Wanliss, J. A., and Grace E. Wanliss. "Efficient calculation of fractal properties via the Higuchi

method." Nonlinear Dynamics 109, no. 4 (2022): 2893-2904. https://doi.org/10.1007/s11071-

022-07353-2

[38] Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen et al. "Pytorch: An imperative style, high-performance deep learning library."

Advances in neural information processing systems 32 (2019).

https://reallifemag.com/potemkin-ai
https://doi.org/10.1007/s00484-017-1453-7
https://doi.org/10.1186/BF03352020
https://doi.org/10.5194/npg-21-347-2014
https://doi.org/10.1140/epjb/e2017-70657-
https://doi.org/10.1007/s11071-022-07353-2
https://doi.org/10.1007/s11071-022-07353-2

[39] Ketkar, Nikhil, Jojo Moolayil, Nikhil Ketkar, and Jojo Moolayil. "Introduction to pytorch."

Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch

(2021): 27-91.

[40] Chaudhary, Anmol, Kuldeep Singh Chouhan, Jyoti Gajrani, and Bhavna Sharma. "Deep

learning with PyTorch." In Machine learning and deep learning in real-time applications, pp.

61-95. IGI Global, 2020.

Appendix

Table 5 shows a proposed 16-week schedule for the deep learning with PyTorch course, ENGR

370: Machine Learning for Engineers. Our study addresses the design and delivery of this course.

The course will be 4 credit hours (CR). Each week consists of three lectures and one laboratory

session. Please note that the schedule is flexible and can be adjusted based on the pace and needs

of the students.

Table 5. Proposed course schedule.

Week Specifications

Week 1: Introduction to Mathematical Tools for Deep Learning

Week 1 • Lecture 1: Linear Algebra for Deep Learning

o Basic concepts such as vectors, matrices, operations

o Linear algebra

• Lecture 2: Calculus for Deep Learning

o Derivatives, gradients, optimization

• Lab 1: Practice

o Python exercises and problem solving related to linear algebra and

calculus

• Assignment

o Problem set to reinforce understanding of mathematical concepts

Week 2: Basics of Neural Networks

Week 2 • Lecture 3: Overview of Neural Networks

o History and important applications

o Structure and functioning of artificial neurons

o Introduction to perceptrons and feedforward networks

o Activation functions and their role in neural networks

• Lecture 4: Backpropagation and Training Neural Networks

o Basics of backpropagation algorithm

o Training process and loss functions

• Lab 2: Neural Networks from Scratch

o Hands-on exercises on building and training basic neural networks

using Python and numpy

• Assignment

o Implementing backpropagation algorithm for training a simple

neural network

Week 3: Introduction to PyTorch and Tensors

Week 3 • Lecture 5: Introduction to PyTorch Framework

o Overview of PyTorch features and advantages

• Lecture 6: Tensors and Operations in PyTorch

o Generalizing vectors and matrices

o Tensors and basic tensor operations

• Lab 3: Working with Tensors in PyTorch

o Practical exercises on creating and manipulating tensors

• Assignment

o Implementing tensor operations and visualizations in PyTorch

Week 4: Building Neural Networks with PyTorch

Week 4 • Lecture 7: Building Blocks of Neural Networks

o Understanding layers

• Lecture 8: Further Building Blocks

o Activation functions and loss functions

• Lab 4: Building Neural Networks in PyTorch

o Practical exercises on building and training simple neural networks

• Assignment

o Train a neural network on a real dataset and evaluate performance

Week 5: Training Neural Networks

Week 5 • Lecture 9: How to Train your Neural Network

o Overview

o Forward and backward propagation

• Lecture 10: More Training

o Forward and backward propagation

o Optimization algorithms

• Lab 5: Training Neural Networks in PyTorch

o Guided, hands-on training of neural networks using PyTorch

• Assignment

o Fine-tuning a pre-trained CNN model on a custom dataset

Week 6: Introduction to Convolutional Neural Networks (CNNs)

Week 6 • Lecture 11: Basics of Convolutional Neural Networks

o Overview and examples

• Lecture 12: CNNs (II)

o Convolutional layers, pooling layers, and their applications.

• Lab 6: Implementing CNNs in PyTorch

o Practical exercises on building and training CNNs for image

classification tasks

• Assignment

o Implement a CNN architecture for image classification using

PyTorch.

Week 7: CNN Architectures (III)

Week 7 • Lecture 13: Advanced CNN Architectures

o Understanding principles of CNN architecture design

• Lecture 14: Transfer Learning with Pre-trained Models

o How to fine-tune pre-trained CNN models for specific tasks

• Lab 7: Transfer Learning with Pre-trained Models

o Hands-on exercises on fine-tuning pre-trained CNN models for

specific tasks

• Assignment

o Implement transfer learning on a pre-trained CNN model for a

custom task

Week 8: Recurrent Neural Networks (RNNs)

Week 8 • Lecture 15: Basics of Recurrent Neural Networks

o Overview

o Understanding RNN architecture

• Lecture 16: RNNs and Sequence Modeling

o Applications in sequence modeling

• Lab 8: Implementing RNNs in PyTorch

o Guided coding exercises on building and training RNNs for

sequence prediction tasks

• Assignment

o Implement an RNN model for sequence prediction using PyTorch

Week 9: Long Short-Term Memory (LSTM) Networks

Week 9 • Lecture 17: Introduction to LSTM Networks

o Understanding the architecture and advantages of LSTM networks

• Lecture 18: Implementing LSTM Networks

o Details of operation of LSTM networks

• Lab 9: n PyTorch

o Hands-on exercises on building and training LSTM models for

sequence modeling

• Assignment

o Implement an LSTM model for time series prediction using

PyTorch

Week 10: Model Evaluation and Validation

Week 10 • Lecture 19: Model Evaluation Metrics

o Overview of evaluation metrics

o Understanding metrics like accuracy, precision, recall, and F1-

score

• Lecture 20: Use of metrics

o Demonstrating use of metrics in models already used in the course

• Lab 10: Model Evaluation in PyTorch

o Practical exercises on evaluating and validating deep learning

models using PyTorch.

• Assignment

o Evaluate the performance of trained models on different datasets

Week 11: Hyperparameter Tuning and Optimization Techniques

Week 11 • Lecture 21: What are Hyperparameters

o Overview

• Lecture 22: Hyperparameter Tuning

o Techniques for optimizing model performance through

hyperparameter tuning

o Introduction to NNI

• Lab 11: Hyperparameter Tuning in PyTorch

o Hands-on exercises on optimizing model hyperparameters using

PyTorch.

• Assignment

o Optimizing the performance of a deep learning model through

hyperparameter tuning

Week 12: Introduction to Generative Adversarial Networks (GANs)

Week 12 • Lecture 23: Basics of Generative Adversarial Networks

o Overview and History

o Examples and use cases

• Lecture 24: GAN Architecture

o Understanding the concept and architecture of GANs

• Lab 12: Implementing GANs in PyTorch

o Hands-on exercises on building and training GAN models for

generating synthetic data

• Assignment

o Implement a GAN model for generating synthetic images using

PyTorch

Week 13: Model Deployment and Real-World Applications

Week 13 • Lecture 25: Model Deployment Strategies

o Understanding different deployment options for deploying deep

learning models in real-world applications

• Lab 13: Model Deployment in PyTorch

o Practical exercises on sharing and deploying trained models using

Git, and PyTorch Serve or Flask tensors

• Assignment

o Deploy a trained deep learning model as a web service using

PyTorch

Week 14: Ethics and Bias in Deep Learning

Week 14 • Lecture 25: Ethical Considerations in Deep Learning

o Anderson University: The Christian Context

o Exploring the ethical implications and biases associated with deep

learning models

• Lecture 26: Ethical Considerations (II)

o Exploring the ethical implications and biases associated with deep

learning models

o Guest lecture and group discussions

• Lab 15: Addressing Bias in Deep Learning Models

o Hands-on exercises on identifying and mitigating bias in deep

learning models

• Assignment

o Analyze and mitigate bias in a trained deep learning model on the

basis of a Christian moral framework

Week 15: Advanced Topics and Project Work

Week 15 • Lecture 26: Advanced Deep Learning Topic

o Overview of advanced topics such as attention mechanisms,

reinforcement learning, and self-supervised learning

• Lab 15: Project Work and Consultation

o tensors

• Assignment

o Dedicated time for students to work on their final projects with

guidance from instructors

Week 16: Final Project Presentations and Course Conclusion

Week 16 • Final Project Presentations: Students present their final projects to the

class

o Oral and written submissions in groups

o Group and individual student assessments and feedback

• Course Conclusion

o Reflection on the course content, discussion on future directions in

deep learning, and course evaluation

