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Abstract 

It is vital to guarantee that engineering graduates have learned essential skills required to excel in 

a dynamic technological landscape. Today the proliferation of low-cost, high-speed computing 

devices offer opportunities for design and control of systems with varying levels of complexity. 

What this means in practice is that engineers increasingly need expert knowledge of various 

computer systems and software. Computing expertise once considered arcane must now become 

commonplace. We develop a novel Machine Learning (ML) course, designed for all 

undergraduate engineering majors with appropriate programming and mathematics background, 

to take as an elective in their junior or senior year. The course introduces deep learning and 

artificial intelligence (AI) as a basic tool engineers need to understand and utilize, even in an 

undergraduate engineering setting. Our paper shows how this course can be implemented in a 

new College of Engineering. The course uses the PyTorch machine learning framework as focus 

to guide students from basic ML concepts to the full deployment of models relevant to different 

areas of engineering. 

 

1. Introduction 

 

In the 21st century, a vital role for universities is to guarantee that by the time of graduation 

students have learned essential skills required to excel in a dynamic technological landscape. 

This is also true in engineering where our incoming students, though they have some 

technological experience, lack a specialized understanding of computers and programs relevant 

to the industry. Engineering systems feature intricate practical challenges for design and control. 

From the time that James Clerk Maxwell and Josiah Gibbs [1][2] elucidated engineering 

governors one can see the future introduction of computers into the realm of engineering, by the 

solution of mathematical equations, was virtually certain. Today the proliferation of low-cost, 

high-speed computing devices offer opportunities for design and control of systems with varying 

levels of complexity. What this means in practice is that engineers increasingly need expert 

knowledge of various computer systems and software. Computing expertise once considered 

arcane must now become commonplace.  

 

Near the end of the 20th century it became the norm for undergraduate students to learn 

utilitarian programming software tools in order to accelerate their workflow [3][4]. Now, just in 

the past few years, deep learning and artificial intelligence (AI) has come to the place where it is 

no longer a wishful dream but a definitively powerful tool for addressing intricate scientific and 

engineering challenges. Thus, understanding and utilizing deep learning in undergraduate 

engineering education has become increasingly relevant, though still not widely practiced. Since 

it has become a core technology of today’s Fourth Industrial Revolution (4IR or Industry 4.0) 

[21] it seems inconceivable that knowledge of fundamental deep learning tools should only be 

the realm of data science specialists or graduate students [32]. Accordingly, we propose to 



 

develop a course in deep learning suitable for undergraduate engineering majors. Our paper will 

show how this might be implemented in a new College of Engineering at Anderson University, 

and how other schools may leverage our experiences. 

 

There are many reasons why undergraduates will benefit from meaningful introduction to deep 

learning from an engineering perspective. But first it is necessary to define what is meant by 

‘deep learning’. In this paper deep learning refers to a subset of machine learning (ML) that 

involves using mathematical algorithms, specifically artificial neural networks, to assimilate and 

analyze large data sets and complex data patterns.  

 

Given this definition, deep learning offers solutions to complex and intricate problems that may 

be challenging for typical algorithms in the traditional engineering curriculum. With the 

explosive proliferation of embedded systems, and the IoT, controlling complex actuators and 

sensors in real time is increasingly feasible. Many engineering applications generate vast 

amounts of data, and deep learning algorithms are effective at recognizing patterns and 

extracting meaningful insights from these large datasets [5]. Thus, an appreciation of deep 

learning methods will contribute to better engineering decision-making processes [6]. In 

addition, deep learning enables better automation, optimization, and control [7]. From design 

optimization to production planning, engineers can leverage deep learning to streamline 

workflows and enhance efficiency [8]. Fields like computer vision and signal processing benefit 

from deep learning with great success in areas as diverse as medical imaging, surveillance, and 

communications. In this regard, engineers involved in robotics and automation can benefit from 

deep learning in tasks such as object recognition, path planning, and control systems [9]. Given 

fragile electrical and industrial systems, an instance of which is the unsustainable US power grid, 

deep learning offers a pathway to forecast equipment failures and maintenance needs [10][13]. It 

offers a pathway to better optimize energy consumption and resource management in 

engineering systems, which can contribute to sustainability efforts and cost savings [11][12]. 

This is particularly crucial in engineering industries where unplanned downtime can be costly or, 

in the case of power grids, deadly [14]. Deep learning also has applications to monitor the 

structural health of buildings and infrastructure, thus enhancing safety and preventing 

catastrophic failures [15]. Positive examples of deep learning in the context of Natural Language 

Processing (NLP) are applications like automated documentation, translation, communication, 

facilitating collaboration among engineers across language barriers, and for development of 

sematic search engines to understand the context and meaning of user queries [16]. On the other 

hand, in the past few years concern has arisen[17] that deep learning techniques in natural 

language processing can destabilize political systems through, for example, chatbots on social 

networks [22]. 

 

In this paper we propose a curriculum for an undergraduate engineering introduction to deep 

learning. Our goal is to first apply this in a new course taught in the engineering program at 

Anderson University. The College of Engineering was founded in 2021. At present we offer 

Electrical, Computer, Mechanical, and General Engineering degrees, and will graduate our first 

engineering majors in 2025. It might seem natural to expect only computer or electrical 

engineers to take this proposed course, but we argue that the diverse applications of machine 

learning make such a course suitable to all engineering majors, so the course should be listed as a 



 

general engineering elective course, and assign ENGR 370: Machine Learning for Engineers as a 

possible course code, suitable for junior or senior students. We center the curriculum around the 

open-source PyTorch machine learning library for Python as it is used in numerous areas, 

including image and speech recognition, natural language processing, computer vision, and 

more. Its user-friendly interface and dynamic nature make it an attractive option for both 

beginners and experienced practitioners in the field of deep learning [18]. In what follows we 

will detail in Section 2 explains course development, goals, and outcomes. Given these goals, 

Section 3  explains the necessary student preparation in order to succeed in an undergraduate 

general engineering introduction to ML. Section 4 describes the basic components of the course 

curriculum. Section 5 explains the course assessment and feedback tools to be used, and Section 

6 discusses results and implementation. 

 

 

2. Course Development, Objectives and Outcomes 

 

As we develop our undergraduate Machine Learning for Engineers course our next goal is to 

design learning objectives and outcomes. Learning objectives and outcomes ensure that students 

acquire knowledge in deep learning concepts and their practical applications in engineering. 

Figure 1, after Reference [26], shows important elements of course design that we employ in this 

paper. 

 

 

 
Figure 1. Important elements of course design (from Reference [26]) 

 

 



 

Reference [26] note that creating a course to achieve specified outcomes requires effort in the 

domains of “1): planning (identifying course content and defining measurable learning objectives 

for it); instruction (selecting and implementing the methods that will be used to deliver the 

specified content and facilitate student achievement of the objectives); and assessment and 

evaluation (selecting and implementing the methods that will be used to determine whether and 

how well the objectives have been achieved and interpreting the results.” 

 

Since course implementation can be hindered when the course does not align with appropriate 

accreditation criteria, we therefore seek to create appropriate course objectives and outcomes and 

align these with specific goals that meet the Accreditation Board for Engineering and 

Technology (ABET) criteria [19]. Since ABET accreditation criteria were introduced in 1996 

they have spurred an intense national reassessment of the engineering curriculum. ABET 

accreditation and published goals provide a helpful yardstick to ensure that engineering programs 

meet certain standards [20], and that our new course fits these criteria. Table 1 shows how we 

propose to align our goals under the umbrella of the ABET criteria. 

 

Table 1. Alignment between ABET criteria and the course learning objectives and 

outcomes.  

 

ABET Criteria Specific Goals 

1. identify, formulate, and solve complex 

engineering problems by applying principles 

of engineering, science, and mathematics 

Students acquire knowledge to identify how 

ML may be useful in technology; they master 

deep learning concepts and their practical 

applications in engineering. 

2. apply engineering design to produce 

solutions that meet specified needs with 

consideration of public health, safety, and 

welfare, as well as global, cultural, social, 

environmental, and economic factors 

Students analyze engineering problems and 

apply suitable deep learning models to 

address them. 

3. communicate effectively with a range of 

audiences 

Students develop collaboration and 

communication skills through group projects 

and presentations 

4. recognize ethical and professional 

responsibilities in engineering situations and 

make informed judgments, which must 

consider the impact of engineering solutions 

in global, economic, environmental, and 

societal contexts 

Through hands-on projects, students 

investigate and solve complex engineering 

problems using PyTorch and explore ethical 

impacts of the technology 

5. function effectively on a team whose 

members together provide leadership, create 

a collaborative and inclusive environment, 

establish goals, plan tasks, and meet 

objectives.  

Students engage in collaborative and 

professional coding practices and project 

work, aligning with ABET's emphasis on 

professionalism 



 

6. develop and conduct appropriate 

experimentation, analyze and interpret data, 

and use engineering judgment to draw 

conclusions  

Students master the use of PyTorch, a modern 

and widely adopted tool in the field of deep 

learning 

7. acquire and apply new knowledge as 

needed, using appropriate learning 

strategies.  

Students  explore advanced topics to stay 

current with rapidly developing deep learning 

technologies  

 

In 2024 our College of Engineering established an Advisory Board consisting of representatives 

from academia, government and industry, and held our first Advisory Board meeting on the 

university campus. At the meeting we reviewed the undergraduate engineering curriculum in 

electrical and computer engineering, mechanical engineering, and general engineering in order to 

learn about emerging needs that the board observes in their areas of expertise. After consultation 

with these stakeholders, we made the following list, given in Table 2, of learning objectives and 

outcomes aligned with ABET criteria. These serve as a guide for those who wish to implement a 

PyTorch rich ML course in their undergraduate curriculum.  

 

 

Table 2. Course Learning Objectives.  

 

Learning Objective Specific Goals 

1. Master Fundamental 

Deep Learning Concepts 

 

Define and explain key deep learning concepts, including neural 

networks, activation functions, loss functions, and optimization 

algorithms. 

2. Understand PyTorch 

Basics 

Demonstrate proficiency in using PyTorch, including creating 

and manipulating tensors, understanding autograd, and working 

with computation graphs. 

3. Build and Train 

Neural Networks 

 

Develop the ability to design, train, and evaluate neural networks 

using PyTorch, emphasizing the importance of datasets and 

dataloaders. 

3. Engage in Hands-On 

Projects 

 

Apply PyTorch in practical projects to solve real-world 

engineering problems, demonstrating the ability to translate 

theoretical knowledge into practical applications. 

4. Debugging and 

Troubleshooting in 

PyTorch 

Develop effective debugging and troubleshooting skills for 

PyTorch models, showcasing the ability to identify and rectify 

common errors. 

5. Explore Model 

Deployment 

 

Understand the basics of deploying PyTorch models, considering 

deployment options, considerations, and demonstrating the 

deployment process. 

6. Collaboration and 

Code Management 

 

Work collaboratively on projects using version control systems 

like Git, emphasizing the importance of clean and modular code. 

 



 

Upon completion of the PyTorch course, students should be able to demonstrate particular 

learning outcomes. Table 3 shows a list of possible outcomes which we have created that are in 

alignment with ABET standards. 

 

 

Table 3. Course Learning Outcomes.  

 

Learning Outcomes Specific Goals 

1. Demonstrate 

Proficiency in PyTorch 

Independently use PyTorch to implement and analyze various 

deep learning models. 

2. Apply Deep Learning 

to Engineering Problems 

Apply deep learning techniques to solve engineering problems;  

demonstrate the ability to choose appropriate models for specific 

tasks. 

3. Evaluate Model 

Performance 

Evaluate the performance of deep learning models using relevant 

metrics and make informed decisions based on the results. 

4. Collaborate 

Effectively 

Collaborate with peers on coding projects, demonstrating 

effective communication, dissemination of code, and teamwork. 

5. Demonstrate Critical 

Thinking in Model 

Design 

Critically analyze engineering problems, choosing and justifying 

appropriate deep learning approaches for solving them. 

 

 

3. Student Preparation for Machine Learning 

 

Before our undergraduate engineering students can effectively master machine learning (ML) via 

PyTorch, it is essential for them to have a solid foundation in certain prerequisites. To ensure 

adequate preparation only students who have taken an introductory Python course, and 

completed mathematics courses up to Calculus IV, may enroll to take what we will call ENGR 

370: Machine Learning for Engineers.  

 

The key prerequisite skill that students should initially possess is proficiency in Python 

programming. At present this introductory Python course is taught in the second semester of the 

engineering program. Since students will already have had one intensive Python introductory 

course, they will have mastered syntax and string manipulation, data types and structures (lists, 

dictionaries, etc.), functions, and control structures, and the mathematics fundamentals necessary 

to understand ML concepts [23]. They will already be familiar with Python libraries like NumPy 

and Matplotlib, which are often used alongside PyTorch for numerical computations and data 

visualization [24], along with a basic understanding of linear algebra, calculus, and statistics. 

These courses will have prepared students for concepts like matrix multiplication, derivatives, 

and probability which are frequently used in deep learning and PyTorch operations. In addition, 

at the start of the course students will be introduced to fundamental PyTorch concepts such as 

tensors, and autograd (automatic differentiation) since it is essential that they should understand 

how to create and manipulate tensors.  



 

 

The start of the course will introduce core principles of deep learning, such as supervised 

learning, unsupervised learning, classification, regression, and the basics of model training and 

evaluation [25]. Students will also need to develop a basic knowledge of neural networks, 

including the structure of computational neurons, layers, activation functions, and the concept of 

feedforward propagation. Although proficiency in data handling is crucial in ML, we will not 

take much time dealing with data preprocessing and subsequent data processing. Instead, we will 

simplify the learning flow by providing prepared datasets and simple, directed introduction to 

using and manipulating these data, an example of which will be demonstrated below. 

 

In order to utilize PyTorch students will need to refresh basic command-line skills, and it will be 

helpful to create a familiarity with version control systems like Git, which is also valuable for 

collaborative coding projects that are common for engineering applications.  

 

Once these various prerequisites are attained, our undergraduate engineering students will have a 

solid foundation to enable them to dive into PyTorch effectively and make the most out of their 

learning experience in deep learning and neural networks. 

 

 

4. Curriculum Structure 

 

By following the engineering criteria developed and listed above we can create a unifying 

framework for the development of the undergraduate Machine Learning for Engineers course 

and curriculum. This allows faculty who teach the course to have a coherent curriculum in which 

harmony is achieved for all aspects of course goals and objectives, design, syllabus, as well as 

methods of teaching and assessment [28][29]. We have identified five distinct concept areas, 

which can be taught as course modules. 

 

4.1 Introduction to Deep Learning Concepts 

At the very beginning of the course it is necessary, so to speak, to set the table on behalf of the 

students since they will have heard about ML, and even used it as a technology, but without an 

understanding of the limitations and concepts crucial to understanding ML. Thus, we will begin 

with definitions and key characteristics of ML and deep learning. In the era of intense student 

use of ChatGPT it is easy to see how students may think they understand so-called artificial 

intelligence, so it should be important to illustrate strengths, weaknesses, and limitations of what 

has been referred to as fake or ‘Potemkin AI’ [31]. 

 

Students will learn about the biological analogy of neurons with so-called artificial neurons, 

structured in neural network nodes and layers on a computational device. They will have an 

introduction to mathematical representations of feedforward processes, and the weights and 

biases which comprise such neural networks. 

 

Following this relatively simple mathematical introduction, students will learn about staples of 

ML, including the backpropagation algorithm and the related mathematical details of chain rule 

and gradients, which are leveraged to explain ML gradient descent for weight optimization in the 



 

neural network. They will review some basic optimization processes which they already covered 

in pre-requisite courses, for example least-squares, and learn about other popular ML loss 

functions and how to choose the appropriate loss function in a given task environment. 

 

Next, we introduce the basics of training and evaluation, including the concepts of splitting data 

into training and testing sets, model training, and the various problems that can arise, such as 

model overfitting and underfitting [25]. 

 

4.2 Basics of PyTorch 

With this strong foundation laid, in Module 2 it is time to introduce students to PyTorch, and to 

do so by first showing examples of its use in industry and society, and its origin as a leading 

open-source deep learning framework. We can compare PyTorch to other leading frameworks, 

such as TensorFlow, and simpler ones like Scikit-Learn. 

 

Once preliminaries are dispensed with we turn to learning about the important idea of tensors. 

We will demonstrate basic tensor operations like tensor creation, manipulation, slicing, and how 

to convert between PyTorch tensors and the well-known NumPy arrays. Prior to deploying 

models we will add on to mathematics with which students are already familiar by introducing 

automatic differentiation, and the PyTorch `autograd` module for computing gradients. 

Numerous demonstrations of simple examples will showcase the automatic gradient computation 

feature. 

 

In PyTorch, computation graphs are a fundamental concept used to represent the flow of data and 

operations within a neural network or any other computational process. They can take two forms 

in PyTorch: static and dynamic, which will be demonstrated to students. 

 

At this point students will be ready to train a first simple model by building a basic neural 

network in PyTorch using the ‘torch.nn’ module. We give students the opportunity by a step-by-

step approach to train the model with real-world time-series data, and using PyTorch's 

optimization algorithms (e.g., SGD) for training the model. Data will come from several areas of 

departmental research, including chronobiology [33], mechanical jitter, space engineering [34] 

[35], earthquakes [36], and signal processing [37].  Throughout this Module students will 

perform various data processing tasks such as splitting data into training, validation, and test sets, 

evaluating model performance on the validation and test sets, and exploring overfitting and 

underfitting issues as they employ common loss functions available in PyTorch (e.g., 

`nn.CrossEntropyLoss`, `nn.MSELoss`). We will explore how to select appropriate loss 

functions for different tasks. 

 

In the previous required Python course (coded as ENGR 130 at Anderson University) students 

have performed extensive coding with NumPy and Matplotlib. Utilizing this knowledge is 

important for visualization of results of training progress and model outputs, and to interpret the 

visualizations to gain insights into model behavior. 

 

As they engage with PyTorch there will be ample opportunities for debugging and so at this 

juncture we will introduce common debugging techniques for PyTorch code. 



 

 

4.3 Different Types of Neural Networks 

Each week during the course includes lab exercises and this is how we will interact with different 

types of neural networks. Students will first learn about convolutional neural networks (CNNs) 

and then recurrent neural networks (RNNs), and will explore simple examples through guided 

coding exercises. They will have assignments to build and train simple neural networks, and 

lecturers will practice a structured approach to teaching the creation, training, and evaluation of 

basic neural networks.  

  

4.4 Collaboration and Code Management 

Since working in teams requires careful management we will discuss strategies collaboration 

using version control systems and maintaining clean code, with tools like Git. 

 

4.5 Ethical Considerations 

Anderson University is a Christian educational institution deeply concerned with the ethical 

consideration of technology. Because we have a vested interest in considering the impacts of ML 

on individuals, societies, and the world at large. 

 

ML Models can perpetuate and exacerbate biases or preferential treatments, based on the data 

they are trained on. Therefore we will need to discuss and explore algorithmic decision-making 

and how bias migrates in data and in code. Given the vast volume of data that is available we 

will also need to discuss privacy and data protection concerns. Questions will be raised in a 

group setting to explore accountability and responsibility for the decisions suggested by ML 

systems.  

 

 

5. Course Assessment and Feedback 

 

Course assessment is essential so that students and other stakeholders have the opportunity to 

measure their progress with the learning expectations. To assess students' achievement of the 

learning goals and outcomes in the PyTorch course, a variety of assessments can be 

implemented. These assessments should cover theoretical understanding, practical application, 

and collaboration skills [26][29]. Table 4 lists the course assessments. 

 

Table 4. Course assessments.  

 

Assessment type Description 

1. Formative and 

Foundational  
• In-class active Quizzes on ML Concepts: Assess understanding 

of fundamental deep learning concepts covered in lectures. 

• Exam on PyTorch Basics: Test knowledge of PyTorch basics, 

including tensors, autograd, and computation graphs through two 

written and computational tests. 

2. Practical Application • Neural Network Implementation Assignment: Students must 

correctly implement and train a basic neural network using 



 

PyTorch to demonstrate their understanding of model building 

and training. 

• CNN Image Classification Project: This will evaluate students' 

ability to apply Convolutional Neural Networks for image 

classification tasks. 

3. Project-Based • Hands-On Projects: We will assign real-world engineering 

projects that require the application of PyTorch. We will evaluate 

the quality of their solutions, the appropriateness of the chosen 

model, and the ability to analyze results. 

• Temporal Convolutional Neural Network (TCN) Project: Task 

students with implementing a TCN for a temporal sequence 

problem, assessing their understanding of advanced concepts. 

4. Debugging and 

Troubleshooting 
• Debugging Challenge: During in-class laboratory exercieses we 

will present students with a faulty PyTorch code and assess their 

ability to identify and fix errors, and allow them showcase their 

debugging skills. 

5. Model Evaluation and 

Interpretation 
• Model Evaluation Report: This will require students to evaluate 

the performance of a trained model, discuss metrics such as 

accuracy, precision, recall, and F1 score. Emphasize the 

interpretation of results. 

6. Collaboration and 

Code Management 
• Group Project Assessment: Students will be assigned a group 

projects; evaluation will be based on collaboration, effective use 

of version control (e.g., Git), and the quality of modular and well-

documented code. Students will also perform group peer-

evaluations to document their perceptions of professionalism and 

teamwork. 

• Code Review Assignment: Students will review and provide 

feedback on their peers' PyTorch code, assessing their ability to 

analyze and improve code quality. 

7. Presentation and 

Communication 
• Final Project Presentation: This is attached to the Group Project 

Assessment (#6 above). It will require students to present their 

final projects in a written and oral format, in which they explain 

their approach, results, and insights. This will evaluate their 

ability to communicate technical concepts effectively. 

8. Exams • Comprehensive Final Exam: This will test overall knowledge 

and understanding of the entire PyTorch course content, covering 

both theoretical and practical aspects. 

9. Self-Assessment and 

Reflection 
• Learning Journal: Throughout the course students will maintain 

a learning journal in which they reflect on their progress, 

challenges, and areas for improvement. This encourages self-

assessment and continuous learning. 

10. Problem-Solving 

Challenges 
• Model Optimization Challenge: During several labs students 

will receive suboptimal PyTorch model code and will work in 

groups to optimize it, assessing their problem-solving skills. 



 

11. Real-World 

Application Report 
• Engineering Application Report: Students are tasked with 

identifying a specific engineering problem amenable to ML 

application. They will write a report on how they would apply 

PyTorch to solve this specific engineering problem and 

emphasize practical applications. 

 

 

Although assessments are usually done for the benefit primarily of academic institutions and 

accrediting agencies, we will also provide constructive feedback to our undergraduate students 

throughout the course, via required open office-hours, in order to give them specific information 

about their performance, and so to help them understand what they did well and where they can 

improve. This will help develop the continuous improvement and future learning ethos that we 

strive to inculcate in engineers. As we offer positive and constructive feedback this should 

motivate students as the efforts are recognized, and this will help build their confidence and 

positive attitude towards learning. It will also help students to identify weaknesses and areas that 

they can target for improvement. As they reflect on this feedback, they will gain insights into 

their personal learning process and style, learn to ask questions that lead to a deeper 

understanding of ML, and show them areas where they can implement continuous improvement. 

 

Requiring students, as groups and individuals, to attend open office hours not only provides 

feedback to them but also fosters a supportive learning environment where students feel that their 

efforts are valued, and they are supported in their academic journey. 

 

6. Results and Discussion 

 

Universities face challenges in demonstrating to key stakeholders, such as students, accreditors, 

employers, and government, that their engineering programs equip graduates with the required 

level of computational skills requisite to excel in a dynamic technological landscape. To that end 

we have developed a course to enable undergraduate engineering students to effectively master 

machine learning (ML) via a widely-used, modern open-source framework like PyTorch. Other 

educators may consider different tools. We call this course ENGR 370: Machine Learning for 

Engineers. Our study addresses the design and delivery of this course for all engineering majors 

and considered not only learning requirements, objectives, and assessments but also the concerns 

of various stakeholders for validating technological innovation.  

 

We focused on the use of PyTorch since it is rapidly becoming important in numerous areas of 

practice [38]. Although it is a high-performance framework capable of advanced and complex 

uses, it is also sufficiently accessible and flexible via its modules [40] so that it advanced 

undergraduates (juniors or seniors in engineering) can learn fungible ML skills. 

 

In Table 6, in the appendix, we provide a model 16-week course schedule. The schedule aims to 

cover a comprehensive range of topics, providing students with both theoretical knowledge and 

practical skills. Adjustments can be made based on the progress of the class, the level of 

engagement, and emerging trends in deep learning. The inclusion of guest lectures, case studies, 

and hands-on labs enhances the overall learning experience.  



 

 

In summary, the course will equip our engineering students with a comprehensive skill set in 

deep learning using PyTorch. We emphasize practical applications, collaboration, and adherence 

to best practices. The combination of hands-on projects, collaborative learning, and a focus on 

real-world applications should prove effective in fostering a deep understanding of the subject 

matter. This will prepare students to apply their knowledge in both academic and industry 

settings, with a strong foundation for continuous learning in the rapidly evolving field of deep 

learning. It is likely that the integration of deep learning courses into undergraduate engineering 

programs will be a growing trend in response to the increasing importance of AI and ML in 

diverse engineering disciplines. 
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Appendix 

 

Table 5 shows a proposed 16-week schedule for the deep learning with PyTorch course, ENGR 

370: Machine Learning for Engineers. Our study addresses the design and delivery of this course. 

The course will be 4 credit hours (CR). Each week consists of three lectures and one laboratory 

session. Please note that the schedule is flexible and can be adjusted based on the pace and needs 

of the students. 

 

Table 5. Proposed course schedule.  

 

Week Specifications 

Week 1: Introduction to Mathematical Tools for Deep Learning 

Week 1 • Lecture 1: Linear Algebra for Deep Learning 

o Basic concepts such as vectors, matrices, operations 

o Linear algebra 

• Lecture 2: Calculus for Deep Learning 

o Derivatives, gradients, optimization 

• Lab 1: Practice 

o Python exercises and problem solving related to linear algebra and 

calculus 

• Assignment 

o Problem set to reinforce understanding of mathematical concepts 

Week 2: Basics of Neural Networks 

Week 2 • Lecture 3: Overview of Neural Networks 

o History and important applications 

o Structure and functioning of artificial neurons  

o Introduction to perceptrons and feedforward networks  

o Activation functions and their role in neural networks 

• Lecture 4: Backpropagation and Training Neural Networks  

o Basics of backpropagation algorithm 

o Training process and loss functions  

• Lab 2: Neural Networks from Scratch 



 

o Hands-on exercises on building and training basic neural networks 

using Python and numpy 

• Assignment 

o Implementing backpropagation algorithm for training a simple 

neural network 

Week 3: Introduction to PyTorch and Tensors 

Week 3 • Lecture 5: Introduction to PyTorch Framework 

o Overview of PyTorch features and advantages 

• Lecture 6: Tensors and Operations in PyTorch 

o Generalizing vectors and matrices 

o Tensors and basic tensor operations 

• Lab 3: Working with Tensors in PyTorch 

o Practical exercises on creating and manipulating tensors 

• Assignment 

o Implementing tensor operations and visualizations in PyTorch 

Week 4: Building Neural Networks with PyTorch 

Week 4 • Lecture 7: Building Blocks of Neural Networks 

o Understanding layers  

• Lecture 8: Further Building Blocks  

o Activation functions and loss functions 

• Lab 4: Building Neural Networks in PyTorch  

o Practical exercises on building and training simple neural networks 

• Assignment 

o Train a neural network on a real dataset and evaluate performance 

Week 5: Training Neural Networks 

Week 5 • Lecture 9: How to Train your Neural Network  

o Overview 

o Forward and backward propagation 

• Lecture 10: More Training 

o Forward and backward propagation 

o Optimization algorithms 

• Lab 5: Training Neural Networks in PyTorch 

o Guided, hands-on training of neural networks using PyTorch 

• Assignment 

o Fine-tuning a pre-trained CNN model on a custom dataset 

Week 6: Introduction to Convolutional Neural Networks (CNNs) 



 

Week 6 • Lecture 11: Basics of Convolutional Neural Networks  

o Overview and examples  

• Lecture 12: CNNs (II) 

o Convolutional layers, pooling layers, and their applications. 

• Lab 6: Implementing CNNs in PyTorch 

o Practical exercises on building and training CNNs for image 

classification tasks 

• Assignment 

o Implement a CNN architecture for image classification using 

PyTorch. 

Week 7: CNN Architectures (III)  

Week 7 • Lecture 13: Advanced CNN Architectures  

o Understanding principles of CNN architecture design  

• Lecture 14: Transfer Learning with Pre-trained Models 

o How to fine-tune pre-trained CNN models for specific tasks 

• Lab 7: Transfer Learning with Pre-trained Models 

o Hands-on exercises on fine-tuning pre-trained CNN models for 

specific tasks 

• Assignment 

o Implement transfer learning on a pre-trained CNN model for a 

custom task 

Week 8: Recurrent Neural Networks (RNNs) 

Week 8 • Lecture 15: Basics of Recurrent Neural Networks  

o Overview 

o Understanding RNN architecture 

• Lecture 16: RNNs and Sequence Modeling 

o Applications in sequence modeling 

• Lab 8: Implementing RNNs in PyTorch 

o Guided coding exercises on building and training RNNs for 

sequence prediction tasks 

• Assignment 

o Implement an RNN model for sequence prediction using PyTorch  

Week 9: Long Short-Term Memory (LSTM) Networks 

Week 9 • Lecture 17: Introduction to LSTM Networks 

o Understanding the architecture and advantages of LSTM networks  

• Lecture 18: Implementing LSTM Networks 

o Details of operation of LSTM networks 

• Lab 9: n PyTorch 



 

o Hands-on exercises on building and training LSTM models for 

sequence modeling 

• Assignment 

o Implement an LSTM model for time series prediction using 

PyTorch 

Week 10: Model Evaluation and Validation 

Week 10 • Lecture 19: Model Evaluation Metrics 

o Overview of evaluation metrics 

o Understanding metrics like accuracy, precision, recall, and F1-

score 

• Lecture 20: Use of metrics 

o Demonstrating use of metrics in models already used in the course 

• Lab 10: Model Evaluation in PyTorch 

o Practical exercises on evaluating and validating deep learning 

models using PyTorch. 

• Assignment 

o Evaluate the performance of trained models on different datasets 

Week 11: Hyperparameter Tuning and Optimization Techniques 

Week 11 • Lecture 21: What are Hyperparameters  

o Overview  

• Lecture 22: Hyperparameter Tuning 

o Techniques for optimizing model performance through 

hyperparameter tuning 

o Introduction to NNI 

• Lab 11: Hyperparameter Tuning in PyTorch  

o Hands-on exercises on optimizing model hyperparameters using 

PyTorch. 

• Assignment 

o Optimizing the performance of a deep learning model through 

hyperparameter tuning 

Week 12: Introduction to Generative Adversarial Networks (GANs) 

Week 12 • Lecture 23: Basics of Generative Adversarial Networks  

o Overview and History 

o Examples and use cases 

• Lecture 24: GAN Architecture 

o Understanding the concept and architecture of GANs 

• Lab 12: Implementing GANs in PyTorch 

o Hands-on exercises on building and training GAN models for 

generating synthetic data 



 

• Assignment 

o Implement a GAN model for generating synthetic images using 

PyTorch 

Week 13: Model Deployment and Real-World Applications 

Week 13 • Lecture 25: Model Deployment Strategies 

o Understanding different deployment options for deploying deep 

learning models in real-world applications  

• Lab 13: Model Deployment in PyTorch 

o Practical exercises on sharing and deploying trained models using 

Git, and PyTorch Serve or Flask tensors 

• Assignment 

o Deploy a trained deep learning model as a web service using 

PyTorch 

Week 14: Ethics and Bias in Deep Learning 

Week 14 • Lecture 25: Ethical Considerations in Deep Learning  

o Anderson University: The Christian Context 

o Exploring the ethical implications and biases associated with deep 

learning models 

• Lecture 26: Ethical Considerations (II) 

o Exploring the ethical implications and biases associated with deep 

learning models 

o Guest lecture and group discussions 

• Lab 15: Addressing Bias in Deep Learning Models 

o Hands-on exercises on identifying and mitigating bias in deep 

learning models 

• Assignment 

o Analyze and mitigate bias in a trained deep learning model on the 

basis of a Christian moral framework 

Week 15: Advanced Topics and Project Work 

Week 15 • Lecture 26: Advanced Deep Learning Topic  

o Overview of advanced topics such as attention mechanisms, 

reinforcement learning, and self-supervised learning  

• Lab 15: Project Work and Consultation 

o tensors 

• Assignment 

o Dedicated time for students to work on their final projects with 

guidance from instructors 

Week 16: Final Project Presentations and Course Conclusion 



 

Week 16 • Final Project Presentations: Students present their final projects to the 

class  

o Oral and written submissions in groups 

o Group and individual student assessments and feedback  

• Course Conclusion 

o Reflection on the course content, discussion on future directions in 

deep learning, and course evaluation 

 


