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Teaching artificial intelligence and machine learning to materials 
engineering students through plastic 3D printing 

 

Abstract 

Computational tools in conjunction with Artificial Intelligence (AI) and Machine Learning (ML) 
have the potential to play significant roles in the future of Materials Science and Engineering 
(MS&E). These concepts need to be introduced to students throughout existing MS&E curricula. 
There is currently a lack of datasets and tools that are appropriate for introducing the complex 
topics of AI and ML to engineering students with little to no knowledge of computer science or 
programming. In this paper, we report on the background, development, and application of a new 
3D printed plastic dataset and related active learning exercise. This exercise was performed on a 
relatively new “no-code” software platform (developed by Citrine Informatics) that uses AI and 
ML to solve real-world materials engineering problems. Our approach places an emphasis on the 
importance of materials engineering domain knowledge and structured material data for the 
successful application of AI and ML in solving materials engineering problems. Student 
perceptions of the approach and its outcomes were shown to be largely positive. In particular, the 
exercise was shown to enable students to understand the role of AI and ML in MS&E problem 
solving. The implications of this work are to share our efforts and findings with educators, to get 
feedback and to inspire ideas for teaching AI and ML to engineering students without a 
programming background. 

Introduction 

Many new and existing companies are starting to adopt AI and ML software that users with 
variable computer programming competency can apply to gain a better understanding of their 
engineering problems and potential solutions [1,2]. This speaks to the increasing recognition that 
ML functions, algorithms, and software packages should not be restricted to only those who 
understand the advanced mathematics and programming involved in creating AI and ML tools. 
MS&E graduates may encounter these tools in their career in the same way that they could 
expect to encounter physics-based simulation tools, such as finite element modelling software 
packages. 

There has been some work done to assess AI literacy independent of programming fluency. 
Adoption of AI and ML resources have been created in many fields where programming fluency 
is not typically associated, such as medicine [3,4] and business [5]. There is even some work 
exploring early adoption in precollege education such as the AI4K12 initiative that promotes AI 
literacy for students before they enter higher education. Specifically, Laupichler et al. and 
Hornberger et al. [6-8] developed assessments that include questions ranging from ‘Name 
examples of technical applications that are supported by artificial intelligence’ to ‘Give a short 
overview about the history of artificial intelligence’.  

In this work we describe an active learning framework where students design, manufacture, and 
test to create robust process-structure-properties linkages of 3D printed materials. We aim to 



explore these aspects using a novel ‘design-driven’ approach (Figure 1) that emphasizes the use 
of software interfaces that do not require computer programming skills to solve engineering 
problems with AI and ML. This approach is in contrast to existing approaches which emphasize 
computer science and programming through pre-requisite classes throughout the curriculum. 

 

Figure 1: Approaches to AI and ML teaching in the context of materials engineering. 

Curricula 

This exercise is developed for a relatively new core course (MATE 245) in the MS&E program 
at California Polytechnic (Cal Poly) State University, San Luis Obispo. The objective of the 
course is to introduce sophomore students to quantitative and qualitative analysis methods and 
tools used in Materials Engineering. For example, MATE 245 students are introduced to statistics 
for experiments, data mining, data visualization, regression analysis, numerical integration, 
Weibull analysis, quantitative image analysis and ML. In alignment with Cal Poly’s Learn by 
Doing philosophy, a strong emphasis of the course has been placed on real-world engineering 
problems using materials data. A significant part of the raison d'être of this course was an avenue 
to integrate the emerging topics of AI and ML into the MS&E curriculum at Cal Poly. The 
majority of the students taking this course have little to no knowledge of computer science, 
computer programming (e.g., Matlab or Python), or algorithm development. This presents an 
opportunity to be innovative in the approach taken to introduce the topics of AI and ML. 

At present, one week (3 hours lab time) is devoted to exploring the concepts of AI and ML. Cal 
Poly transitioning from quarters to semesters will expand this approach in the future to two – 
three weeks (6-9 hours lab time), allowing for more meaningful exploration of these topics. 



Methods 

Overview  

The aim of the exercise is to expose MATE 245 students to AI and ML through an iterative 
activity that involves development and curation of a material and process property dataset of 
3D printed plastics. An overview of the process is shown in Figure 2. Students begin by 
collecting and organizing plastic filament data from published literature and from an existing 
dataset provided by the instructor. After data structuring and curation, the data can then be 
ingested to train a ML model. Next, the ML model is used to perform Design of Experiments 
(DoE), generating  new possible experiments (material and 3D printing process 
combinations) based on a specified design space. Students apply their MS&E domain 
knowledge when defining the design space of the new possible experiments and when they 
prioritize candidates for further exploration. The newly generated data can be fed back into 
the AI model, allowing students to ‘close-the-loop’ on the material design and process 
optimization procedure. The key steps of this iterative process are further described in the 
subsequent sections of this paper. 

 

Figure 2: An overview of material and process optimization exercise for 3D printed 
plastic. The closed-loop nature of the exercise allows students to thoroughly investigate 
the application of ML to MS&E and its potential benefits and shortcomings. 

 



ABS Plastic 3D printed dataset and material characterization  

Students explore the optimization of ABS (Acrylonitrile Butadiene Styrene) 3D printing 
filament, which is a popular choice for 3D printing due to its temperature resistance, strength, 
and processability. The two areas of investigation for optimization include the ABS 
formulation and various 3D printing process parameters (Table 1). In the material 
formulation, different types of reinforcing fibers (carbon, glass, aramid) at different fiber 
volume fractions are considered. The 3D printing process variables under investigation 
include nozzle temperature, print speed, and layer height thickness (also known as z-offset). 
This initial dataset is currently being expanded to include a wider variety of popular off-the-
shelf plastic 3D printing filaments (presented in Appendix 1). There are a variety of process 
parameters listed in Appendix 2 that are kept constant in the creation of the dataset. Future 
iterations of this approach could include an optimization of the process parameters that have 
been kept constant, such as print infill geometry and print infill density. To date, students 
have worked with off-the-shelf filaments. Additional access to a filament extrusion system 
would allow students to synthesize new candidate materials (with new fiber volume 
fractions) proposed by the ML model. After printing, mechanical properties (such as tensile 
strength and modulus), thermal properties (such as glass transition temperature) and physical 
properties (density) are subsequently characterized in a materials lab class by the students.  

Table 1: ABS material formulations and 3D printing processing parameters used in the 
creation of the dataset from off-the-shelf 3D printing filaments.  

Polymer Fiber 
Type 

Fiber 
vf (%) 

Bulk/Infill 
Print Speed 

(mm/s) 

Layer Height 
or Z-offset 

(mm) 

Nozzle Temp. 
(°C) 

Bed 
Temp. 
(°C) 

ABS None N/A 90, 105, 120 0.1, 0.2, 0.3 210, 230, 250 100 

ABS CF 10, 20 90, 105, 120 0.1, 0.2, 0.3 220, 240, 260 110 

ABS GF 10, 20 90, 105, 120 0.1, 0.2, 0.3 220, 240, 260 105 

ABS Aramid 10, 20 90, 105, 120 0.1, 0.2, 0.3 240, 260, 280 100 
 

Implementation of AI and ML in “no-code” software platform 

The emerging prevalence of the Citrine Informatics [9] software tools in the materials 
engineering industry demonstrates its relevance to current undergraduate students who may 
encounter it or similar software tools in their careers. In particular, the cloud-based, 
enterprise-level Citrine Platform provides the capability to assess complex materials data, 
build machine learning (ML) models, and design experiments, all with a user-friendly “no-
code” graphical user interface (GUI) accessible via any web browser. The software has been 
successfully applied to a variety of materials and chemicals development problems including 
superconductors, thermoelectrics, metal alloys, organic conductors, and colloids [10-14]. 

The workflow of the Citrine Platform GUI is based off a ‘branch’ workflow shown in Figure 
3. The platform allows students to tweak ML parameters and see the effects of these changes 



in real time, making it an ideal tool for enhancing classroom interactivity and developing an 
intuition for how the ML “black box” functions, without in depth programming knowledge. 
The Citrine Platform’s unique ML-driven DoE capability provides a real-world application 
of ML to industry, which can enable students to understand and identify the characteristics of 
successful AI-driven product development projects. The ability for students to learn and 
perform an end-to-end data science workflow without writing a single line of code, all within 
the context of materials design, has the potential to enhance their educational experience but 
will also improve their employability in a rapidly advancing field.  

 

Figure 3: Citrine Platform ‘branched’ workflow for investigating materials development 
using AI/ML without the need for computer programming. 

Following 3D printing and material characterization, students curate the material property 
dataset so that it can be ingested in the Citrine Platform to train a ML model. The output of 
this data curation step is a structured data table that has been organized in a predefined 
format (Table 2). This is a crucial step of the exercise as it exposes students to material 
property data curation, which is an essential part of creating meaningful ML models. After 
the curated dataset is ingested into the Citrine Platform, a ML model (random forest 
regression model) is generated by the platform. The AI model can be visualized in the Citrine 
Platform as a branched tree (Figure 4), which aids students understanding of the links within 
the model. 

Table 2: A snapshot of a structured data table used to train a ML model in the Citrine 
Platform. 

 



 

Figure 4: Citrine Platform AI model tree automatically generated after data ingestion. 

The next step is to define a search space within the bounds of the 3D printing exercise on 
realistic new candidate materials for the ML model to generate. The bounds allow restrictions on 
ingredients and processing parameters in the form of real, integer, and categorical values. For the 
ABS 3D printing filaments, ranges for ingredients (such as fiber reinforcement) can be assigned 
(Figure 5a) in defining the search space. Reasonable ranges of process parameters can also be 
defined to ensure accurate candidates. This includes setting processing limitations of the 
available 3D printing equipment. Objectives for candidate materials, such as maximizing a 
particular material property, can also be defined in the Citrine Platform (Figure 5b). 



 

(a) 

 

 

(b) 

Figure 5: (a) Material formulation constraints and (b) candidate material objectives being 
applied in the Citrine Platform. 

The Citrine Platform GUI allows students to tweak ML parameters and see the effects in real 
time through data visualization (Figure 6). The generated candidate materials show model 
predictions of how varied compositions and processing parameters might affect a given 
filament’s properties and performance. A process known as ranking is performed to compare 
candidates in which the model quantifies the performance of each candidate under a certain 
criterion. The two main scoring criteria include exploitation (highest performance) and 
exploration (highest uncertainty). The exploration criteria is useful in creating a more holistic 
dataset to improve the fit of the ML model. The third scoring criterion combines exploitation 
and exploration in a balanced ranking of candidates. After the ranking and prioritization of 
newly generated candidate materials, specific candidates can be explored further. The 
compositions and processing parameters for candidates of interest can be documented, 3D 
printed, and subsequently characterized. The newly obtained data can then be combined with 
the existing dataset and the loop of ML-driven DoE can be closed and repeated. 



 

Figure 6: Visualization and prioritization of candidate materials generated by ML in the 
Citrine Platform. 

The approach utilized here introduces students to applications of machine learning in an 
authentic way, connecting AI tools to physical samples and literature based as well as student-
generated data. In working to build and analyze the data set, students develop both experimental 
skills and an appreciation for advanced computational methods. 

Pilot Data Collection 

Pilot quantitative and qualitative data have been collected to better understand the impact of the 
described activity on student perceptions of ML. Sections of the MATE 245 class in 2022 and 
2023 were introduced to AI and ML concepts via a similar case study on the Citrine Platform via 
an instructor facilitated interactive demonstration.  

In 2022, the MATE 245 class (~20 second-year students) were introduced to AI and ML concepts 
via a similar case study on the Citrine Platform. The students were surveyed before and after 
class to gauge their general understanding ML as a tool for engineers. The students were asked 
the same set of questions before and after class, responding on a traditional 5-point Likert scale 
ranging from strongly disagree to strongly agree: 

1. I understand what Machine Learning is. 

2. I understand how Machine Learning could be applied to Materials Engineering. 

3. I think Machine Learning can help solve real-world Materials Engineering problems. 

4. I think I will need to use Machine Learning tools at some point in my career. 



In 2023, the MATE 245 class (~20 sophomore students) was again surveyed after being exposed 
to AI and ML on the Citrine Platform. One additional question was added related to ChatGPT, 
which had risen to prevalence in that time. 

5. I think I will need to use ChatGPT at some point in my career. 

In addition to the MATE 245 class, in the summer of 2023, two undergraduate research students 
were employed to aid in the development of the plastic 3D printing dataset and case study. These 
students spent 8 weeks working on developing the 3D printing case study in the Citrine Platform. 
During this time the students gained more in-depth knowledge of AI and ML through guided and 
independent research. The students were invited to provide prompt-based written reflections on 
their understanding and perceptions of ML and how it might be applied to their future careers.  

Preliminary Findings and Discussion 

The student survey results for before class and after class are shown in Figures 7 and 8, 
respectively. The reflections from the summer undergraduate research students are shown in 
Appendix 3.  

 

Figure 7: Students understanding of AI and ML and its relevance to MS&E before class, 
2022 and 2023 surveys combined. 

 



 

Figure 8: Students understanding of AI and ML and its relevance to MS&E after class, 
2022 and 2023 surveys combined. 

It is evident from the survey results in both years that exposure to the in-class case study resulted 
in general shifts in student perceptions about what ML is and how it can be applied to MS&E 
problem solving. Interestingly, the majority of students before class (in both years) indicated that 
they thought that ML could help solve real-world problems in MS&E and that they would need 
to use ML tools at some point in their career. They acknowledged a lack of understanding, 
however, of how ML could be applied to solve problems in MS&E. Following exposure through 
the case study example students reported an increase in both understanding of what ML is and 
how it can be applied to real world engineering problems.  

The summer undergraduate research student reflections reported in Appendix 3 indicate a largely 
positive experience with the development of the 3D printing dataset and case study. Reflections 
indicate not only an improved awareness of the broad benefits of AI and ML in engineering, but 
an increased understanding of the critical steps (e.g. data structuring) of successfully applying 
ML to solve problems in MS&E. The student reflections allude to the students seeing themselves 
as consumers of machine learning tools (rather than developers) and this could have significant 
implications for future curricular developments. Both students shared a belief that they will 
likely need to use ML tools in their engineering and even non-engineering careers. One student 
(Student 1) expanded further to reflect that ML tools are still in their infancy and could become 
as important in engineering problem solving as Microsoft Excel. 

The in-class students were only exposed to one specific engineering problem that could be 
solved with one specific AI and ML tool (i.e. the Citrine Platform). Because of this, their 
perceived benefit of AI and ML may be less than the two undergraduate research students who 



spent significantly longer working with AI and ML by applying a variety of software tools to a 
variety of materials engineering problems. Indeed, Student 1 remarked that “all fields of 
engineering also benefit from the increased abundance of ML, and those educated in how to 
apply it can solve a wide range of problems.” Similarly, the second undergraduate researcher 
(Student 2) remarked that they “believe machine learning will eventually work its way into many 
sectors and industries.” 

Conclusions and Outlook 

Exposing students to AI and ML concepts through a hands-on case study can help them identify 
how these concepts could be useful in MS&E and more broadly in their careers. The application 
of a “no-code” software, such as the cloud-based Citrine Platform, can help enable students 
without a coding background to understand the role of AI and ML in engineering problem 
solving. Student perceptions of the “no-code” software exercise were overwhelmingly positive 
based on responses to survey questions before and after class, which indicated the approach has 
meaningful benefits for student learning.  

A significant portion of the case study exercise utilized in MATE 245 relied on direct instruction. 
Moving forward, we plan to develop guided-teaching resources so students can more easily 
engage with the exercise outside of the classroom. Guided-teaching resources are intended to 
assist in scaling the exercise presented in this paper from a small classroom of approximately 20 
students to larger lecture courses. 

Our preliminary results lead us to the current hypothesis that a “no-code” software exercise may 
prompt students to engage with AI and ML when these concepts were previously inaccessible to 
them. Our future work will aim to improve and refine our data collection methods to advance the 
validity and reliability of our results. These results will be used in conjunction with careful 
attention and consideration to the course intervention, so that students do not simply see ML 
tools as a ‘black box’. This remains a significant challenge to the approach described in this 
paper. 
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Appendices 

Appendix 1 

Table 3: Material formulations and 3D printing processing parameters used in the 
creation of a complete dataset from popular off-the-shelf 3D printing filaments.  

Polymer Fiber 
Type 

Fiber 
vf  (%) 

Bulk/Infill 
Print Speed 

(mm/s) 

Layer height 
(mm) 

Nozzle temp. 
(°C) 

Bed 
temp. 
(°C) 

ABS None 0 90, 105, 120 0.1, 0.2, 0.3 210, 230, 250 100 

ABS CF 10, 20 90, 105, 120 0.1, 0.2, 0.3 220, 240, 260 110 

ABS GF 10, 20 90, 105, 120 0.1, 0.2, 0.3 220, 240, 260 105 

ABS Aramid 10, 20 90, 105, 120 0.1, 0.2, 0.3 240, 260, 280 100 

Nylon None N/A 90, 105, 120 0.1, 0.2, 0.3 245, 265, 285 65 

Nylon CF 10, 20 90, 105, 120 0.1, 0.2, 0.3 235, 255, 275 95 

Nylon GF 10, 20 90, 105, 120 0.1, 0.2, 0.3 250, 270, 290 65 

Nylon Aramid 10, 20 90, 105, 120 0.1, 0.2, 0.3 235, 255, 275 70 

PLA None 0 90, 105, 120 0.1, 0.2, 0.3 180, 200, 220 60 

PLA CF 10, 20 90, 105, 120 0.1, 0.2, 0.3 190, 210, 230 60 

PLA GF 10, 20 90, 105, 120 0.1, 0.2, 0.3 180, 200, 220 40 

PP None 0 90, 105, 120 0.1, 0.2, 0.3 190, 210, 230 90 

PP CF 10, 20 90, 105, 120 0.1, 0.2, 0.3 215, 235, 255 60 

PP GF 10, 20 90, 105, 120 0.1, 0.2, 0.3 235, 255, 275 90 

ASA None 0 90, 105, 120 0.1, 0.2, 0.3 225, 245, 265 100 

ASA CF 10, 20 90, 105, 120 0.1, 0.2, 0.3 225, 245, 265 100 

ASA GF 10, 20 90, 105, 120 0.1, 0.2, 0.3 240, 260, 280 105 

ASA Aramid 10, 20 90, 105, 120 0.1, 0.2, 0.3 235, 255, 275 90 

PETG None 0 90, 105, 120 0.1, 0.2, 0.3 225, 245, 265 75 

PETG CF 10, 20 90, 105, 120 0.1, 0.2, 0.3 225, 245, 265 80 

PETG GF 10, 20 90, 105, 120 0.1, 0.2, 0.3 210, 230, 250 85 

PETG Aramid 10, 20 90, 105, 120 0.1, 0.2, 0.3 200, 220, 240 90 

PC None 0 40, 55, 70 0.1, 0.2, 0.3 275, 295, 315 115 

PC CF 10, 20 40, 55, 70 0.1, 0.2, 0.3 275, 295, 315 115 

PC GF 10, 20 40, 55, 70 0.1, 0.2, 0.3 285, 305, 325 90 



Appendix 2 

Table 4: 3D printing process parameters kept constant during the creation of the dataset.  
Control Variable Value 

Raste Angle (°) ± 45 

Build Orientation XY 

Infill Geometry Rectilinear XY ± 45° 

Infill Density (%) 100 

Contour/Wall/Perimeter/(Vertical Shell) Count 2 

Top Solid Layer (Horizontal Shell) Count 4 

Bottom Solid Layer (Horizontal Shell) Count 4 

Top/Bottom Solid Layer (Horizontal Shell) Pattern Monotonic 

Support N/A 

Filament Diameter (mm) 1.75 

Nozzle Diameter (mm) 0.4 
 

  



Appendix 3 

Table 5: Summer undergraduate research student reflections. 
Reflection topic Student 1 Student 2 
Reflect on your 
understanding of 
machine learning 
and how it has 
changed (if at 
all) through your 
experience on 
the project. 

“One of the most important lessons I 
learned was the importance of proper 
exploratory data analysis (EDA) and 
how obtaining, formatting, and 
cleaning a dataset is critical to 
successfully train a ML model.” 
 
“I have thoroughly familiarized 
myself with the essential uses, 
concepts, and steps to successfully 
apply AI and ML tools in my field.” 

“Coming from a materials 
engineering background, I had to 
learn concepts that someone of a 
computer science background may 
have had more familiarity with.” 
 
“Learning about such a topic 
through research is no substitute 
for working directly with a 
platform that incorporates machine 
learning.” 

Reflect on your 
understanding of 
how machine 
learning could 
be applied to 
materials 
engineering 
problems. 

“Anywhere an engineer or scientist 
has to interpret an aspect of materials 
to make educated decisions, ML tools 
can most likely achieve similar 
results.” 
 
“Materials informatics is still in its 
infancy. Many new approaches are 
currently being researched and should 
yield intriguing advancements in the 
field.” 

“Good datasets will enable 
machine learning models to predict 
a plethora of outcomes. More 
specifically, machine learning 
models can come in handy when 
trying to develop multidimensional 
Ashby diagrams past the 
comparison between just two 
material properties.” 

In what ways do 
you think 
machine learning 
can be used to 
help solve real-
world 
engineering 
problems? 

“All fields of engineering also benefit 
from the increased abundance of ML, 
and those educated in how to apply it 
can solve a wide range of problems.” 
 
“A comparison I like to go back to 
when explaining the usefulness of 
ML in real-world problems is the 
advent of Microsoft Excel.” 

“Machine learning can be used to 
help solve real-world engineering 
problems, especially when it 
comes to optimization. Being able 
to identify the best and/or worse 
case scenarios based off numerous 
factors is becoming something that 
is more and more difficult in 
engineering.” 

Do you think 
you will need to 
use machine 
learning tools at 
some point in 
your career? 
Why/why not. 

“I definitely know that I will need to 
use ML tools and approaches in my 
future career(s).” 
 
“I see it as critical to my success to 
try to employ such problem-solving 
approaches to better understand 
problems at a deeper level and solve 
them in less obvious ways.” 

“Yes, I believe I will need to use 
machine learning tools at many 
points in my career.” 
 
“I believe machine learning will 
eventually work its way into many 
sectors and industries.” 
 

 


