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Students’ Difficulties in Understanding the Fundamental Concepts 

and Limitation of Application of Appropriate Equations in Solving 

Heat Transfer Problems  
 

Abstract  

 

A significant number of undergraduate students have challenges when trying to understand the 

derivation and application limits of the thermal resistance concept, as well as recognizing the 

reasons why dimensionless parameters are used in many of formulas presented in the heat transfer 

textbooks. This paper provides an examination of the underlying causes of student 

misunderstandings and the instructional strategies used to improve student learning.  The concept 

of thermal resistance is defined for flat walls, cylindrical shells, and spherical shells, under the 

assumption of one-dimensional, steady-state heat transmission in materials with uniform thermal 

conductivity and no heat generation. Therefore, the thermal resistance calculations have 

limitations, particularly in situations when there is heat generation.  Dimensional analysis is 

frequently simplified, causing students to disregard the theoretical foundation for establishing 

dimensionless parameters. The paper summarizes the areas in which students encounter challenges 

and provides examples that can be employed to aid students in establishing a more comprehensive 

concept of the theoretical derivations and grasp of the limitations in solving heat transfer problems.   

 

Introduction 

 

Almost all undergraduate mechanical engineering degree programs require a semester-long course 

in heat transfer. Some programs might combine it with fluid mechanics or thermodynamics. In our 

institution, the undergraduate mechanical engineering program mandates a three-semester credit-

hour course in heat transfer, typically taken by students in their junior year. This introductory 

course covers the three fundamental modes of heat transfer: conduction, convection, and radiation. 

Topics include the derivation of the transient multi-dimensional heat conduction equation, 

analytical solutions to steady-state one-dimensional heat conduction, dimensional analysis, 

solutions to steady-state two-dimensional heat conduction problems, transient heat conduction 

problems, numerical solutions, forced and free (natural) convection, radiation exchange between 

surfaces, and heat exchangers. 

 

Students enrolled in the heat transfer course are required to possess foundational knowledge in 

several prerequisite topics, including: differential and integral calculus, ordinary differential 

equations (ODEs), partial differential equations (PDEs), the first and second laws of 

thermodynamics, evaluation of thermodynamic properties, viscosity and boundary layer concepts, 

laminar and turbulent flows, dimensional analysis and dimensionless parameters, integral and 

differential fluid momentum equations, friction and pressure drag forces, major/minor head loss 

and friction factor, Bernoulli’s equation, and basic numerical methods. 

 

A prerequisite quiz is administered during the first week of the semester to assess students' 

understanding of key prerequisite topics. This quiz covers various concepts, including basic 

differentiation and integration, distinguishing the differences between ODEs and PDEs, solving 

second-order ODEs, applying boundary conditions to general solutions of second-order ODEs, 

using separation of variables method to simplify PDEs into ODEs, simplifying mass balance, 



energy balance, and entropy balance equations for closed and open system thermodynamics 

problems, understanding the relationship between the average velocity of fully developed laminar 

fluid flow in a pipe and the velocity at the center of the pipe, and conducting dimensional analysis. 

An example of the prerequisite quiz is provided in the Appendix of this paper for reference. 

 

Results of the prerequisite quiz often show some students have difficulty with differentiation. 

Some students have errors is solving indefinite integrals, by not including the constant in the 

integration result.  More students have difficulty to solve the problems related to differential 

equations.  Not all students were able to solve numerical methods or thermodynamics problems 

correctly. Most students cannot explain the reason why the Moody diagram for friction factors is 

express in terms of dimensionless parameters.    
 

There has been a gradual decline in students’ grasp of course material, attributed to several factors, 

including: 1) easy access to solution manuals, 2) online tutoring services, 3) neglect of reading the 

textbook, 4) increased absence from lectures, 5) decreased attention to homework, 6) grade 

inflation in prerequisite courses, and 7) increased class sizes [1] - [5]. Most of these factors are 

beyond the instructor’s control. Efforts have been made to address some of these challenges, which 

have been reported in engineering educational conferences [1] - [5]. 

 

During the COVID-19 pandemic, all classes were conducted online from March 2020 through 

August 2021. Teaching the heat transfer course in fall 2021 and spring 2022 revealed that many 

students lacked commitment to attending lectures or diligently solving homework assignments. 

Additionally, it was observed that many students lacked the prerequisite knowledge acquired 

during the pandemic period. Consequently, in two sections of the heat transfer course taught in fall 

2021, over half of the students were failing after the first two mid-term exams, whereas typically 

only around 15% would fail before the pandemic [6], [7]. 

 

From spring 2020 through summer 2021, some instructors appeared to have been lenient in 

assessing student knowledge due to the COVID-19 pandemic. During this period, students took 

many exams online, leading to concerns about widespread cheating compared to face-to-face 

exams. Maintaining the academic integrity of courses became challenging for instructors [8], [9]. 

 

To enhance student performance, quizzes were introduced as an active learning tool starting in fall 

2021 [10]. These quizzes carried a weight of 2% bonus points added to the final exam grade to 

incentivize student participation in class activities. Most quizzes were short, taking less than 10 

minutes, with an emphasis on students demonstrating the solution process. Solutions were 

collected, and instructors immediately reviewed them, addressing any student questions. For 

longer problems requiring 10 to 20 minutes, quizzes were administered near the end of class, 

allowing sufficient time for students to submit their solutions and leave the class. The solutions 

were then posted online after the class and briefly discussed at the beginning of the following class.  

 

To address attendance issues, the University’s “Instructor Initiated Drop policy” [11] was adapted 

for the heat transfer course in fall 2022. This policy empowered instructors to drop any student 

who exceeded either the absence (4 times) or missed assignment (3 sets) limits, as outlined in the 

course syllabus. The implementation of this policy led to improved class attendance and students 

completing their homework assignments. Consequently, student learning improved, and pass rates 

increased [11]. 



 

Student difficulties with heat transfer topics and concepts 

 

While teaching an undergraduate heat transfer course for many years, it has been noticed that more 

students have difficulties in the following areas: 

• Misapplying thermal resistance relations 

• Solving differential equations associated with steady-state, one-dimensional heat 

conduction problems in rectangular, cylindrical, and spherical coordinates 

• Properly applying boundary conditions 

• Grasping the limitations of heat conduction solutions 

• Understanding the fundamental principles of dimensional analysis widely used in fluid 

mechanics and heat transfer 

• Comprehending the utilization of empirical equations for forced convection problems, 

where the Nusselt number is expressed as a function of Reynolds and Prandtl numbers, Nu 

= fn (Re, Pr) 

• Verifying the applicability ranges before employing empirical relationships in solving 

convection heat transfer problems 

 

This paper provides a few examples related to student difficulties used in a heat transfer class. 

 

Example 1 

Thermal resistance relations are bases on one-dimensional steady-state heat conduction in a 

medium involving no heat generation.  For a plane wall, the temperature profile is linear and 

thermal resistance is expresses as Rth = L/k, where L is the wall thickness, and k is the thermal 

conductivity of the wall.  The following problem has been used to help clarify these concepts. 

 

Consider a plane wall, 30 cm thick, having a thermal conductivity, k = 20 

W/m.oC. The following expression is given for the temperature profile in 

the wall.   

 

T (x) = 225 -2500 x2 +20 

 

where, T is in measured in oC, and x in m.  Considering a steady state 

process with uniform volumetric heat generation in the wall, determine; 

(a) The temperatures at x = 0 and x=L, in oC. 

 
(b) The temperatures at x = 0 and x=L, in oC. 

(c) The rate of heat flux at x = L 

(d) The rate of volumetric heat generation in the wall.   

 

Almost all students evaluated T (0) = 245 oC and T (L) = 20 oC, by inserting the values of x in the 

temperature profile equation.  However, many students used the following equation to evaluate the 

heat flux incorrectly. 

 

𝑞′ =
𝑇(0) − 𝑇(𝐿)

𝑅𝑡ℎ 
=  

𝑇(0) − 𝑇(𝐿)

𝐿/𝑘
 = 15,000 𝑊/𝑚2 



 

One way to evaluate the heat flux at x = L is to use the following relationship.  

 

𝑞′ =  −𝑘 [
𝑑𝑇

𝑑𝑥
]

𝑥=𝐿 
=  −𝑘 (−5000 𝐿) = 30,000 𝑊/𝑚2  

 

Most students did not know how to approach solving the part (c) of the pop quiz problem. Since 

the pop quiz was a part of class learning activity, the instructor was able to point out the students’ 

misunderstanding on misuse of thermal resistance and provide the solution procedure for part (c) 

of the problem the following way. If one simplifies the general heat conduction equation assuming 

on dimensional steady-stated heat conduction, constant k, and uniform volumetric heat generation, 

it reduces the following relationship: 

 

𝑑2𝑇

𝑑𝑥2
+  

�̇�

𝑘
= 0 = (−5000) 𝐾/𝑚2 +

�̇�

20 𝑊 𝑚. 𝐾⁄ .
 

 

Solving for �̇�, it yields �̇� = 100,000 𝑊/𝑚3. If this problem was assigned as a homework 

assignment, some students submit wrong solution and would not check the correct solution. We 

found the pop quizzes as a part of class active learning are effective in improving student learning.  

 

Example 2 

Many students have difficulty deriving a general solution for the temperature distribution in radial 

direction for cylinders and spheres, considering one-dimensional heat conduction with or without 

heat generation. The following is an example of a quiz problem assigned in the heat transfer course. 

 

Consider steady-state, one-dimensional heat conduction in the radial 

direction in a solid sphere having constant thermal conductivity and 

uniform volumetric heat generation, �̇�. 

a) Simplify the general heat conduction for this problem, 

b) Solve the resulting differential equation to obtain a general 

solution for temperature distribution in the sphere 

 
 

Most student solved the part (a) of the problem correctly and presented the following expression 

as the answer  

 
1

𝑟2
 

𝑑

𝑑𝑟
(𝑟2

𝑑𝑇

𝑑𝑟
) =  − 

�̇�

𝑘
 

 

The solution to part (b) should have been very easy, since the second order ordinary differential 

equation could have been solved simply by integration. Unfortunately, many students cancelled 

the two r2 appearing on the left-hand side of the equation and presented it as:  
𝑑2𝑇

𝑑𝑟2 =  − 
�̇�

𝑘
  , before 

starting the process for deriving a general solution. In order to improve students’ mathematical 

skills, the following question was posed as a pop quiz, allowing students to brain storm with 

immediate neighbors, if they wished:  Take the derivative of the terms appears in the parenthesis 



of   
𝑑

𝑑𝑟
(𝑟2 𝑑𝑇

𝑑𝑟
)  and explain if the two r2 terms appearing in the following expression can cancel 

each other. 
1

𝑟2  
𝑑

𝑑𝑟
(𝑟2 𝑑𝑇

𝑑𝑟
)? 

 

Example 3 

The following is a problem concerning boundary conditions.  

 

Consider steady-state, one dimensional heat conduction in a 

plain wall having constant thermal conductivity and uniform 

volumetric heat generation, �̇�. The surface at x = 0 is 

insulated and the surface at x = L is exposes to convective 

fluid flow where the heat transfer coefficient h and the fluid 

temperature T∞ are known. 

a) Simplify the general heat conduction for this 

problem,  

b) Solve the resulting differential equation to obtain a general solution for temperature 

distribution in the wall,  

c) State the appropriate boundary conditions at x =0 and x = L in order to evaluate the 

constants in the general solution for this problem.  

 

Most students were able to modify the general heat conduction equation as applied to this problem 

and presented the following expression: 

 
𝑑2𝑇

𝑑𝑥2
+  

�̇�

𝑘 
= 0  

 

Most derived a correct expression for general solution of the differential equation and presented 

it as:  

 

𝑇 (𝑥) =  −
�̇�

2𝑘
𝑥2 + 𝐶1𝑥 + 𝐶2 

 

However, many students expressed the two boundary conditions as T (0) = T1 and T(L) = T2 instead 

of expressing them correctly as: 
𝑑𝑇(0)

𝑑𝑥
= 0 𝑎𝑛𝑑 − 𝑘

𝑑𝑇(𝐿)

𝑑𝑥
= ℎ[𝑇(𝐿) − 𝑇∞], respectively.  In more 

recent semesters we have used these kinds of examples as a part of active learning activities during 

the lecture period and observed student learning has improved.  

 

Why heat transfers relations are presented as dimensionless parameter  

 

A course in fluid mechanics is typically a prerequisite for a course in heat transfer. In the fluid 

mechanics course, students are introduced to Buckingham’s Pi theorem and the concept of 

dimensional analysis. Since it is expected that students are exposed to dimensional analysis when 

they have taken a course in fluid mechanics, the topic is not included in some popular heat transfer 

textbooks [12], [13], but it is still covered in other textbooks [14] - [17]. 

 

  



Example 4 

Dimensional parameters are used throughout heat transfer textbooks; hence it is helpful to explain 

and motivate the use of dimensional analysis with the following example. 

 

For one dimensional steady-state heat conduction in a plain wall 

with no volumetric heat generation T (x) can be expressed as: 

 

       𝑇(𝑥) =  𝑇1 +  (𝑇2 −  𝑇1)(𝑥 𝐿⁄ ) 

 

Can you plot T(x) vs. x on a single graph for all possible values 

of T1, T2, and L?   
 

If that is not possible, the above temperature profile can be presented in dimensionless form as: 

 
𝑇(𝑥) − 𝑇1

𝑇2 − 𝑇1
=  𝜃 =  

𝑥

𝐿
=  𝜂 

 

It is easy to plot θ vs  since at x = 0,  = 0 and θ = 0. At x = L,  = 1 and θ =1.  

 

Dimensional Analysis 

Buckingham’s Pi theorem states that if there are n variables in a physical problem and these 

variables contain j primary dimensions.  The equation relating all the variables can be rearranged 

into k = (n - j) dimensionless parameters. The primary dimensions in heat transfer problems are 

typically mass represented by m, length represented by L, time represented by t, and temperature 

represented by T.  There are several methods available to convert the dimensional parameters in a 

physical problem into dimensionless group. The most common method introduced is the method 

of repeating variables. The process of developing dimensionless π groups is describe in the 

following example.  

 

Example 5 

For fully developed flow in a pipe, the friction factor, f (a dimensionless parameter), is a function 

of , V, D, ,  where  is the density of fluid, V is the average velocity, D is the diameter of 

pipe,  is viscosity, and  is the wall roughness:  f = fn (, V, D, , )  Using dimensional 

analysis, show that the f is a function of Reynolds number (Re) and /D.   

 
1. List the dimensional parameters involved in the problem. Since f is a dimensionless 

parameter, there are n =5 dimensional parameters (, V, D, , ) involved in this problem. 

2. The primary dimensions in each parameter are:  ( m. L-3), V (L t-1), D (L),  (m L-1t-1), 

 (L).  

3. The primary dimensions in this problem are m, L, and t (j =3 dimensions). Therefore, based 

on Buckingham’s Pi theorem, the equation relating all the variables can be rearranged into 

k = (n-j) = (5-2) = 2 dimensionless parameters (π groups).   

4. , V, D contain all primary dimensions m, L, and t.  Therefore, they can be used as 

repeating parameters to determine the remaining two π groups (f is already a dimensionless 

parameter in this problem).  



5. The primary dimensions contained in viscosity,  along with the those for the repeating 

parameters , D and V are used first to obtain the first dimensionless parameter 

m0 L0 t 0 =  a Db Vc = (m L-1 t-1) (m L-3)a (L)b (L t-1)c  

6. Equating the exponents of m, L, and t on both side of equation results in three simultaneous 

equations in term of three unknown a, b, c 

m : 0 = 1+a +0+0   yields    a = -1   

L: 0 = -1-3a+b+c  yields     b + c = -2  

t:  0 = -1+0 +0 -c  yields     c = -1 and b = -1 

 

Therefore 

 𝜋1 =  𝜇 𝜌−1 𝐷−1 𝑉−1 =  
𝜇

𝜌𝑉𝐷
=

1

𝑅𝑒
    or     

𝜌𝑉𝐷

𝜇
 = Re 

 

7. The primary dimensions contained in surface roughness,  along with the those for the 

repeating parameters , V and D are used first to obtain the second dimensionless 

parameter 

m0 L0 t 0 =  a’ Db’ Vc’ = (L) (m L-3)a’ (L)b’ (L t-1)c’   

8. Equating the exponents of m, L, and t on both side of equation results in three simultaneous 

equations in term of three unknown a’, b’, c’ 

m : 0 = 0+a’ +0+0   yields    a’ = 0  

L: 0 = 1-3 a’+b’+c’   yields    b’+c’ = -1   

t:  0 = 0+0 +0 – c’   yields     c’ = 0 and  b’ = -1 

 

Therefore 

 𝜋2 =  𝜇 𝜌0 𝐷−1 𝑉0 =  
ε

𝐷
 

𝑓 = 𝑓𝑛 (𝑅𝑒,
𝜀

𝐷
) 

 

For some problems, the repeating variables method is cumbersome and Lienhard et.al have 

developed an alternative method, presented in their Heat Transfer textbook [14].  The alternative 

approach is called the method of functional replacement. The following describes the procedure 

used functional replacement method in developing dimensionless parameters.  

1. List the parameters in the problem and count their total number, n 

2. List the units for of each of the n parameters.  

3. Identify the units appears in the list of parameters and count the number of such units, j. 

Each unit must appear at least twice in the list of parameters. If one of units appears only 

once, then reduce it to a more basic unit. For example, W = J/s. 

4. Calculate the number of expected dimensionless parameters (π groups), in the problem: k = 

(n - j) 

5. Identify the repeating parameters that has one of the units.  Avoid choosing dependent or 

independent variables as repeating parameters (such as x, r, t, etc, in heat transfer problems).  

6. At each step choose one of the repeating parameters to eliminate one of the units. 

 

The following shows the steps taken in obtaining the dimensionless parameters for Example 6, 

using the functional replacement method. 

 



1. Listing the parameters in the problem and counting their total number, n 

 

𝑓 = 𝑓𝑛 [ρ (
𝑘𝑔

𝑚3⁄ ) , V (𝑚
𝑠⁄ ), D (𝑚), μ (

𝑘𝑔
𝑚. 𝑠⁄ ) , ε (𝑚) ] ,   n = 6 

 

2. The units associated in this problem are m, kg, an s ,  j =3 

3. K = n -j = 6 -3 = 3. Therefor applying the functional replacement method should produce 

three (3) dimensionless.  

4. In the following procedure, at each step one of the parameters are used to eliminate one of 

the units. 

 

Step 1: D is used to eliminate m  

𝑓 = 𝑓𝑛 [ρ 𝐷3 (𝑘𝑔),  V
𝐷⁄  (1

𝑠⁄ ),   μ D (
𝑘𝑔

𝑠⁄ ) ,  ε
𝐷⁄  (1) ] 

Unit (1) is used to identify a dimensionless parameter. 

 

Step 2:  V/D (1/s) is used to eliminate s 

𝑓 = 𝑓𝑛 [ρ 𝐷3 (𝑘𝑔), μ 𝐷2/V (kg),  ε
𝐷⁄  (1) ] 

 

Step 3: Use μ 𝐷2/V to eliminate kg 

𝑓 = 𝑓𝑛 [
ρVD

μ⁄ = 𝑅𝑒𝐷(1),  ε
𝐷⁄  (1) ] 

𝜋1 = 𝑓  𝜋2 = 𝑅𝑒𝐷  𝜋3 =  𝜖
𝐷⁄  

 

Dimensional analysis serves as an invaluable tool for identifying dimensionless parameters that 

aid in the development of empirical relations for problems where obtaining analytical solutions 

proves challenging. Throughout the course, we incorporated short quizzes as learning activities, 

requiring students to employ the functional replacement method to derive dimensionless 

parameters for various problems. The functional replacement method was favored due to its 

efficiency in quickly identifying dimensionless parameters. Few example problems are presented 

below. 

 

Example 6 

Consider steady-state, one dimensional heat conduction in the radial 

direction in a long pipe. The inner surface at r = ri is maintained at 

a constant temperature Ti and the outer surface at r = ro is exposes 

to convective fluid flow where the heat transfer coefficient h and 

the fluid temperature T∞ are known. 

a) Identify appropriate parameters describing temperature 

distribution in the pipe for this problem 
  

b) Assuming that an analytical solution cannot be obtained to express temperature distribution 

in the pipe, obtain the dimensionless functional equation for temperature distribution in the 

pipe 

 

The governing differential equation for this problem is expressed as 

  



1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑇

𝑑𝑟
) = 0 

 

The two boundary conditions are: 

 

𝑇(𝑟𝑖) =  𝑇𝑖, and 

 

−𝑘
𝑑𝑇(𝑟0)

𝑑𝑟
= ℎ[𝑇(𝑟𝑜) − 𝑇∞] 

 

Considering the parameters in the governing equation and the boundary conditions, the functional 

relationship for the temperature distribution, including the units can be presented as  

 

(T – T∞) (K) = fn [r(m), ri(m), ro (m), (Ti- T∞)(K), k (W/m.K), h (W/m2.k)] 

 

where T∞ is used as a reference temperature. There are seven parameters, including the dependent 

variable (T – T∞) (n =7). There are three units associated with the seven parameters, m, K, and W 

(j = 3). Therefore, the dimensional analysis steps should yield (7-3) = 4 dimensionless parameters. 

Using the steps described earlier for functional replacement method the following dimensionless 

functional relationship is developed for the temperature distribution in the pipe. 

 
𝑇 − 𝑇∞

𝑇𝑖 − 𝑇∞
= 𝑓𝑛 ⌊

𝑟

𝑟𝑜
,
𝑟𝑖

𝑟𝑜
,
ℎ𝑟𝑜

𝑘
= 𝐵𝑖⌋ 

 

where Bi is the Biot number based on outer diameter. 

 

Example 7 

Another dimensional analysis example considers a plate of 

thickness L (L<< the height and width of the plate) initially 

at a temperature Ti. One side of plate (x=0) is insulated. The 

other side of plate is suddenly exposed to a convection 

environment at T∞ and h, Write down the governing heat 

conduction equation, initial condition and boundary 

conditions for this problem Develop a dimensionless 

functional equation for the temperature distribution in the 

wall.   

 

 

Do not solve the differential equation, use dimensional analysis to identify the dimensionless Pi 

groups. 

 

The governing differential equation for this problem is expressed as 

 
𝜕2𝑇

𝜕𝑥2
=  

1

𝛼

𝜕𝑇

𝜕𝑡
   

 

The initial and boundary conditions are expressed as: 

 



𝑇(𝑥, 0) =  𝑇𝑖 

 
𝜕𝑇(𝑥, 0)

𝜕𝑥
= 0 

 

−𝑘
𝜕𝑇(𝐿, 𝑡)

𝜕𝑥
= ℎ[𝑇(𝐿, 𝑡) − 𝑇∞] 

 

Considering the parameters in the governing equation, initial condition and the boundary 

conditions, the functional relationship for the temperature distribution, including the units can be 

presented as:  

 

(T – T∞) (K) = fn [x(m),t (s), α (m2/s, L(m), (Ti- T∞)(K), k (W/m.K), h (W/m2.k)] 

 

where T∞ is used as a reference temperature. There are eight parameters, including the dependent 

variable (T – T∞) (n =8). There are for units associated with the eight parameters, m, K, s, and W 

(j = 4). Therefore, the dimensional analysis steps should yield (8-4) = 4 dimensionless parameters. 

Again, using the steps described earlier for functional replacement method the following 

dimensionless functional relationship is developed for the temperature distribution in the plate. 

 
𝑇 − 𝑇∞

𝑇𝑖 − 𝑇∞
= 𝑓𝑛 ⌊

𝑥

𝐿
,
𝛼𝑡

𝐿2
= 𝐹𝑜,

ℎ𝐿

𝑘
= 𝐵𝑖⌋ 

 

where, Fo and Bi represent Fourier and Biot numbers, respectively.  

 

The approximation method or integral method for boundary layer solution of momentum and 

energy equation for laminar flow over flat plat are no longer presented in the many heat transfer 

textbooks [12, 13].  These methods have proven to be very beneficial for students in gaining a 

deeper understanding of why Nusselt number (Nu) is a function of Reynolds number (Re) and 

Prandtl number (Pr). 

 

Since the textbook we currently use [12] does not cover the approximate method, we have 

incorporated dimensional analysis as part of active learning class activities. This approach helps 

students develop an understanding of why the empirical expressions presented in the textbook for 

forced convection are based on Nu = fn (Re, Pr). 

 

Assessment of the effectiveness of interventions 

 

After 20 months of online instruction during COVID-19 pandemic, the heat transfer course offered 

for the first time in fall 2021 in face-to-face modality again.  After a few weeks into the semester, 

it was noticed that many of students were not attending lectures or solving homework assignments. 

Additionally, it was observed that many students lacked the sufficient knowledge of the topics 

covered in the prerequisite courses taken during the pandemic period. Consequently, in two 

sections of the heat transfer course offered in fall 2021, fifty-two % (52%) of students had average 

scores of less than 70 after the first two mid-term exams [6], [7]. Student attendance and class 

participation was very low prior to second exam, even though students could receive up to 2% 



bonus points added to their semester grade, based on the total points earned for the pop quizzes 

given in class.  

 

In order to improve attendance and engage student in class activities, the instructor met with those 

students who received average scores of less than 70 in the first two exams. Students were advised 

that they need to put more effort in the course in order to pass the course. The frequency of pop 

quizzes given during the lectures was increased after the second midterm exam. Doing poorly in 

one exam did not doom the semester for many students. Based on the grade policy, the lowest 

midterm exam was being replaced by the average of the other three exams, including the final 

exam. The instructor also provided an additional incentive to encourage students to put more effort 

in studying for the course.  Five points were added to second lowest midterm exam of any student 

who scored more than 70 points in the remaining two exams.  The same incentive was granted to 

student taking the course in fall 2022. [11]  

 

Table 1 presents the grade distributions for all the exams given in the heat transfer courses offered 

in fall 2021 and fall 2022.  The table displays improved student exam performances in fall 2022, 

when the Instructor Initiated drop policy was in effect, as compared to those in fall 2021, when 

such policy was not enforced. In all exams, much higher percentage of students received grades of 

over 90 in fall 2022 as compared to those in fall 2021.  Similarly, lower percentages of students 

received grades of below 70 in fall 2022 as compared to those in fall 2021. For the first exam, 42% 

of students received grades of over 90 in fall 2022 as compared to only 10% in fall 2021, and 19% 

of students received grades of below 70 in fall 2022 as compared to 29% in fall 2021.  For the 

second exam, 12% of students received grades of over 90 in fall 2022 as compared to 5% in fall 

2021, and 52% of students received grades of below 70 in fall 2022 as compared to 70% in fall 

2021. For the third exam, 34% of students received grades of over 90 in fall 2022 as compared to 

24% in fall 2021, and 28% of students received grades of below 70 in fall 2022 as compared to 

31% in fall 2021. For the final exam, 13% of students received grades of over 90 in fall 2022 as 

compared to 13% in fall 2021, and 20% of students received grades of below 70 in fall 2022 as 

compared to 45% in fall 2021.   

 

Table 1 also shows that both in fall 2021 and fall 2022 much lower percentages of students received 

grades of over 70 or 90 and much higher percentage of students received grades below 70 in the 

second exam as compared with other exams. The reason for that is that the second exams were 

related to heat conduction problems, which required students’ mathematical skills developed in 

such courses covering integral calculus and ordinary differential equations.  In both fall 2021 and 

fall 2022, it was clear that most students had weak background in solving problems that required 

mathematical skills. The data in Table 1 also shows improved students exam performance in fall 

2021 after the second exam, resulting from the instructor’s individual meetings with the students 

receiving low grades in the first two exams.  For visual comparison, Fig. 1 presents the percentage 

of students receiving scores in grade ranges of < 70, 70-89, and > 90 for each exam given in fall 

2021 and fall 2022, respectively.     

 

  



Table 1.  Comparison of exam performance by students enrolled in Heat Transfer courses in fall 

semesters of 2021 and 2022  

 

Exams Semester # of exams < 70 70-89 > 90 Ave Std-Dev. 

Exam 1 
Fall 21 83 29% 61% 10% 73.99 13.45 

Fall 22 69 19% 39% 42% 83.35 16.17 

Exam 2 
Fall 21 84 70% 25% 5% 60.16 17.70 

Fall 22 68 52% 36% 12% 62.89 17.03 

Exam 3 
Fall 21 82 31% 45% 24% 73.51 18.93 

Fall 22 65 28% 38% 34% 74.01 18.96 

Final Ex 
Fall 21 78 45% 42% 13% 70.95 17.59 

Fall 22 66 20% 47% 33% 78.14 17.29 

 

 

Fig. 1   Percentage of students receiving scores within each grade range of < 60, 70-89, and >90 

for each exam given in fall 2021 and fall 2022, respectively.   

 

 
 

Summary and conclusion 

 

Some of the areas that undergraduate mechanical engineering students frequently struggle in a heat 

transfer course are identified in this paper.  A significant number of undergraduate students have 

challenges when trying to understand the derivation and application limits of the thermal resistance 

concept, as well as recognizing the reasons why dimensionless parameters are used in many of 
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formulas presented in the heat transfer textbooks. The underlying causes of student 

misunderstandings were examined in this paper and instructional strategies utilized to improve 

student learning were described. To address student difficulties in understand heat transfer 

concepts, example problems used to facilitate a deeper understanding of fundamental principles, 

aiming to prevent mistakes that stem from flawed conceptual understanding. By incorporating 

example problems shared in this paper, student comprehension of fundamental concepts and 

limitations of empirical correlations has improved. Since the resumption of face-to-face classes in 

the fall of 2021 following the COVID-19 pandemic, student exam grades have seen significant 

improvements.  
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Appendix 

Heat Transfer Prerequisite Quiz 

 

Solve the following math problems: 
 

1. (3 points) 

=+++−−= −−

dx

dy
exxxxy x                             6312355 2212  

 

2. (3 points) 

( ) =−−++
− dxexxx x  63214 22  

 

3. (3 points) 

( ) =−−++
− dxexxx

x

x

x2

1

 63214 22  

 

4. (3 points) 

( ) =−−++
− dxexxx x

2 

1 

22  63214  

 

5.  (3 points) 

What is the difference between an ordinary differential equation and a partial differential 

equation?  

 

6. (4 points) 

Find a general solution for   04
2

2

=− y
dx

yd  

 

7. (4 points) 

Find a general solution for   04
2

2

=+ y
dx

yd  

 

8. (5 points) 

Find a general solution for   254
2

2

+=− xy
dx

yd
 and show that your solution satisfies the differential 

equation 

 

9. (5 points) 

The general solution for a second order differential equation is given as  

y = C1 x2 + C2 x + 5 

Given the boundary conditions: 

2=
dx

dy  @  x=0 

y = 4 @ x=1 

evaluate C1 and C2 

 



 

10.  (5 points) 

Use the separation of variables method to reduce the following second order partial differential 

equation to two ordinary differential equations. 

04
2

2
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t

z

x

z  

 

11.  (3 points) 

Can separation of variables method be used to reduce the following second order partial 

differential equation to two ordinary differential equations?  Give the reasoning. 
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12. (5 points) 

Use the Newton-Raphson numerical method to estimate a root of 22 3255)( xxxxf ++−= − . Use x= 

0.5 as a first estimate. 

 

13. (5 points) 

Use centered difference approximation to estimate first and second derivatives of y=e2x at x=0.5, 

numerically.  Use a step size of 0.1 (h=0.1).  

 

14. (5 points) 

Integrate the following function both analytically and using numerical method using Simpson’s 

1/3 rule, with n=4.  

( ) =− dxx
4 

0 

2
 4  

 

The following relations are equations for mass rate balance, 1st law of thermodynamics and 

second law of thermodynamics for control volumes.  Please use these equations to answer 

questions 15 through 20.  
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15.  (5 points) 

Consider the schematic drawing of a general control volume shown bellow.  Place mcv, Ecv, Scv, 

eieicvcvei sshhWQmm ,,,,,,,   in appropriate locations on the diagram 

 

 

 

 



 

 

 

  Fig A 

 

16. (6 points) 

Consider the control volume in Fig. A (question 15) and equations A through C.  Assuming a 

steady state process, simplify equations for mass rate balance, 1st law of thermodynamics and 

second law of thermodynamics for control volumes. 

 

17. (6 points) 

Consider equations A through C. Write down the general equations for mass balance, 1st law of 

thermodynamics and second law of thermodynamics for a closed system. 

 

 

18. (4 points) 

What is the purpose of second law of thermodynamics? 

 

 

19. (3 points) 

For fully developed laminar flow in a pipe how does the average velocity compare to the velocity 

at the center of the pipe.  

 

20 ( 3points) 

Explain why the Moody diagram for friction factor of fully developed flow in circular pipes are 

presented in dimensionless parameters. 

 

 

21. (10 points) 

For fully developed flow in a pipe, the friction factor, f (a dimensionless parameter), is a function 

of , V, D, ,  where  is the density of fluid, V is the average velocity, D is the diameter of 

pipe,  is viscosity, and  is the wall roughness:  f = fn  (, V, D, , )  Using dimensional 

analysis, show that the f is a function of Reynolds number (Re) and /D.  What do f, and Re 

number represent?   

 
 

 


