
Paper ID #41462

An Interactive Platform for Team-based Learning Using Machine Learning
Approach

Tony Maricic, New York University Tandon School of Engineering
Nisha Ramanna, New York University Tandon School of Engineering

Nisha Ramanna is a student at New York University, pursuing her Bachelor’s and Master’s in Computer
Science with a concentration in Machine Learning and Artificial Intelligence. She is passionate about all
areas of Machine Learning, including Natural Language Processing.

Alison Reed, New York University Tandon School of Engineering
Dr. Rui Li, New York University

Dr. Li earned his master’s degree in Chemical Engineering in 2009 from the Imperial College of London
and his doctoral degree in 2020 from the University of Georgia, College of Engineering.

Jack Yang, New York University Tandon School of Engineering

©American Society for Engineering Education, 2024

 An Interactive Platform for Team-based Learning Using Machine

Learning Approach

Abstract

This complete evidence-based paper explores the feasibility of developing an interactive

platform with chatbot feature to facilitate project-based learning. Teamwork pedagogy is widely

used in engineering courses, particularly in first year (cornerstone) and senior-year (capstone)

design courses, but also across the curriculum. Faculty have several aims for teaching in teams,

one of which is to improve students' collaborative abilities. Engineering expertise, as well as

pedagogical goals such as greater learning and motivation, are under consideration when

building an effective team pedagogy. CATME, and other platforms have long been used to

facilitate the process of monitoring team performance. The comprehensive data that the platform

provided has enabled faculty members to analyze the problems in detail. Also, it is very helpful

when documenting the team performance from year to year. At New York University, 700

students are taking a fundamental engineering course on an annual basis. The students are asked

to form project teams after the first two weeks and work on a semester-long project on a weekly

basis. Overall, there are 50-60 teams each semester. CATME has been implemented to monitor

the team’s progress. It has been reported by the faculty members that it took time to evaluate the

students’ peer comments and ratings as there are 2000 - 3000 comments each semester. Human

errors can also occur when reviewing those comments. To reduce the workload of faculty

members for analyzing the student comments and taking actions accordingly, an interactive

team-monitoring platform is built to serve the purpose. This platform consists of two major

components, which is built on React and Fast API. The platform can potentially be integrated

with CATME or other team-monitoring software. A group of CATME users were asked to try

out the platform and fill in a user experience survey. The survey results gave some constructive

feedback for the developers. Overall, the project can deliver a feasible solution for course

instructors to handle many student project teams. In the future, a generative AI feature -

CHATME will also be available on the front end to help the user check the status of each student

group, which is built using NLTK and TensorFlow. Moreover, if a team issue arises, the

platform will alert the users, and provide constructive suggestions on how to improve the group

performance.

Introduction

In engineering education, fostering collaborative skills [1] among students is crucial, and team-

based learning has become the primary approach. It is an approach particularly prevalent in

foundational courses, such as first-year cornerstone courses and senior-year capstone design

courses, but it also finds application across the entire engineering curriculum. The overarching

goal for implementing team-based learning is to enhance student's abilities to work effectively in

groups[2], aligning both with the demands of their future professional endeavors and broader

educational objectives.

Platforms like (Comprehensive Assessment of Team Member Effectiveness) have played a

significant role in streamlining team performance monitoring [3]. It provides a platform for

students to report team issues, enabling faculty members to understand the team dynamics. This

facilitates the analysis of strengths and areas for improvement. This data also allows faculty to

track team performance trends throughout the academic semester.

A language is a collection of rules and symbols used to convey or broadcast information. Natural

Language Processing (NLP) is ideal for users who lack the time to learn and master machine-

specific languages. NLP is a field of Artificial Intelligence and Linguistics that aims to help

computers understand human language statements and words [4]. Natural Language Processing

(NLP) consists of Natural Language Understanding and Natural Language Generation. Its

purpose is to facilitate user interaction with computers using natural language. Natural language

processing (NLP) has recently gained popularity as a method of computationally interpreting

human language. NLP has a wide range of applications, including translation and answering

questions[5].

Approximately 700 students enroll in a fundamental engineering course annually at New York

University. The cornerstone of this course is a team-based semester-long design project. Each

semester, 50-60 teams are formed, necessitating robust tools for team monitoring. While

CATME has reliably supported the team ratings, the high volume of student comments—ranging

from 2000 to 3000 per semester—has presented challenges for faculty evaluation and introduced

the potential for human errors. To address this issue, a responsive and interactive team-

monitoring platform has been developed. This platform comprises two major components, using

React to develop the front end and Django for the backend. Designed with scalability in mind,

the platform is designed to seamlessly integrate with existing team-monitoring software,

enhancing its versatility.

In essence, this platform represents a dynamic evolution in team-based learning, addressing the

challenges associated with large-scale student collaborations. Through its innovative features and

integration of generative AI, it not only streamlines the evaluation process for faculty but also

empowers students with a tool that enhances their collaborative experience.

Experimental Methods

Front End

In the development of the front-end for the interactive platform, a set of methods were utilized to

ensure a smooth user experience. The core framework for the front-end development was

React.js, chosen for its efficiency in building dynamic user interfaces. To integrate user data

from .xlsx or .csv files , the SheetsAPI from Google was employed, serving as a robust tool for

retrieving raw data from the file. This connection facilitated the real-time synchronization of

team-related information. Using React.js form input box, users could input specific group IDs.

This input was crucial for identifying and retrieving relevant team-related data from sheetsAPI ,

with the potential to post the group ID to the FastAPI backend, enhancing the platform's

interactivity and responsiveness. Visual representation of data was achieved through the

incorporation of Chart.js, a powerful charting library. This enabled the generation of graphs to

provide users with insightful visualizations to comprehend team dynamics and performance

effectively.

Virtual Assistant

To optimize ease of use, we initially decided to create a chatbot user interface. Our goal was to

allow users to prompt the chatbot with a question about a project or student and, in response, the

chatbot would identify and return the relevant information. The chatbot classifies the intent of a

user prompt using a Tensorflow Sequential model. The neural network is composed of one

embedding layer, a global average pooling layer, and 3 dense layers (the first two have 16 nodes

and use Relu as an activation function, the output layer has a node for each possible user intent

and uses a softmax activation function). After intent classification, we use NLTK to perform

Name Entity Recognition, extracting the project id or student name from the user’s query. Now

that we have the intent and subject of the query, we make the appropriate call to the API and

return the results to the user. Ultimately, we hope to provide summaries of student feedback,

flag students who are struggling, recommend students who are performing especially well as

potential project leaders, and offer professors advice on how to advance a given project based on

the student feedback.

Back End

Once classification is complete, we can then provide the necessary information needed for course

and individual analysis. This is fed to the front end via multiple endpoints. For model training,

800 student comments were imported from CATME, then were broken down into sentences, and

fed through a text classifier to build a list of training examples for both the efficiency and

deficiency models. These sentences were then reviewed and correctly classified by a team of

students. The results of our model can be found in the next section.

Figure 1. Workflow for model training and outcomes

Multi-label text classification and sentiment analysis are the methods used in the back end to

analyze the large quantity of student submitted text. First, sentiment analysis is done using the

standard NLTK Sentiment Intensity Analyzer. Upon processing these results, we then send the

text over to one of two classification models depending on sentiment. The multi label text

classifier was trained using Tensorflow’s Keras model[6]. This is a neural network containing 5

layers: Embedding Layer, Convolutional Layer, Global Max Pooling Layer and two dense

layers(one using ReLu as an activation function with the output layer using sigmoid). The

classification labels used in this study: “Contributing to the Team’s Work”, “Interacting with

Teammates”, “Keeping the Team on Track”, “Expecting Quality”, and “Having Relevant

Knowledge, Skills, and Abilities”.

Figure 2. Training models used in this study

One example of the model structure that has been used in this study is shown in Figure 3.

Figure 3. The CNN model structure used in this study

Results

Front End Display

The website successfully retrieved data from a Google Sheet, identified by its unique spreadsheet

ID. Utilizing the fetch API, the application fetched the necessary data and parsed the JSON

response. The data, organized in rows, was then processed to extract relevant information. To

enhance user interaction, the application allowed users to input a project group ID. Subsequently,

the system queried the fetched data to identify and extract raw comments associated with the

provided project group ID. The retrieved and processed data was presented in a tabular format.

The table included three columns: "ID," "Raw Comments," and "Processed Results." The "ID"

column displayed the project group ID entered by the user, providing context for the subsequent

data. The "Raw Comments" column contained the extracted comments associated with the

specified project group ID. The "Processed Results" displayed the comments from the back end

using the GET method from FastAPI. In instances where no data was available for the provided

project group ID, a user-friendly message was displayed to communicate the absence of relevant

information. This feature aimed to enhance user experience by providing clear feedback in cases

where the system couldn't retrieve matching data. The graphical representation of the results took

the form of a pie chart generated using the Chart.js library. The chart visually depicted sentiment

distribution based on predefined categories. Each category was assigned a distinct color,

contributing to a clear representation of sentiment proportions within the dataset. The application

seamlessly integrated both tabular and graphical representations, providing users with a

comprehensive view of the sentiment analysis results. The user interface allowed for real-time

interaction, enabling users to input different project group IDs and observe the corresponding

changes in the displayed results.

(a) Chatbot design (b) User Interface

Figure 4. Proposed Chatbot Interface CHATME.

Framework for Virtual Assistant

As we built the chatbot, we began to question if a chatbot would provide the easiest and most

intuitive user experience. A chatbot would require users to type the project ids and/or first and

last names of students whose status they wanted to check. Users would also need to know what

functions our web app offers and specify the type of information that they were interested in, be

it summary of student feedback, advice, or identifying struggling or excelling students. The user

would also have to prompt the chatbot multiple times for each project to access the full

information about the project that our site provides.

Once the user uploads their export of student feedback from CATME, we have all the

information we need from the user to provide our site’s services. Instead of continually

prompting the user for more information with a chatbot, we decided that a standard web interface

would offer a better user experience. The user’s input is limited to a file input box at the top of

the site. Every project from the user’s uploaded files will be listed below with multiple sorting

options - alphabetical, by date, by status. The user can click on a project id to expand it. The

summary of the student feedback for the project and for each team member will be listed below

along with potential student leaders in the group, struggling students, and advice for the user.

Dataset and Preprocessing

The dataset used in this study was shown in Figure 5. The student comments were directly

imported from a Google Sheet. The raw data was imported from CATME. The comments then

manually broken down into sentences for data classification.

Figure 5. Data distribution in terms of the length of the student comments.

Training and Validation

The results of the classification leave some room for improvement. The initial testing has 73%

accuracy. Some examples of the initial training results are shown in Figure 6.

(a) Training Result 1

(b) Training Result 2

Figure 6. Two sets of training results using the Tensorflow’s Keras model[6].

Field Test Validation

Hamming Loss (HL) Equation was used for measuring accuracy:

𝐻𝐿 =
1

𝑚
∑

|𝑌𝑖∆𝑍𝑖|

|𝐿|
𝑚
𝑖=1 (1)

Where,

(𝑥𝑖 , 𝑌𝑖) is instances of multi-label dataset for i = 1,2,3….,m

 𝑌𝑖⊆ L is the set of true labels

L is the set of all labels

𝑍𝑖 is the set of labels that are predicted by an algorithm

Precision, Recall, and F1-Score are calculated for each label and then averaged. Moving forward,

more iterations of CNN and FNN would be necessary to see if the hamming loss could be

improved, which is already close to 80%. For training, 640 data points were used. For testing,

160 data points were used. In theory, prediction becomes more accurate with more data input. In

other words, it is possible to continue to maximize its learning efficiency.

Figure 7. Training results with different models: CNN, FNN, GRU, and LSTM.

Discussion

Model Training

The current model only has 73% accuracy on initial testing. Currently, 800 written sentences

were used in this study. Although this seems like a lot, given the nature of classification, this is

not enough to properly fit a model with this level of complexity. We need more training

examples to improve accuracy. Given the fact that many different people are classifying these

training examples, there is bound to be some level of bias when it comes to which categories

people feel a particular sentence belongs to. A stricter rubric for classification should be

developed for the future. Although the hyperparameters is good, there is always room for

improvement.

Potential benefits and risks

There are many benefits this system could offer. The instructor could monitor the entire class via

the pie chart shown in Figure 4. The virtual assistant offers direct support to the instructor to look

into the performance of specific project groups. On the other hand, the student could use the

virtual assistant to plan out project ideas, time management, meeting schedule and personal

research assistant. However, some of the functionality is still under development and the details

will not be included in this paper.

Limitations

The current platform is not running as a fully integrated system. There are several limitations in

the study. First, the dataset labelling is not equally distributed. Second, the student researchers

who performed the data labeling could have different opinions. For example, if a student

commented, “She helped to manage the group activity”, which could be interpreted as

“contribution to the team” and “keep the team on the right track” by one researcher, or just be

interpreted as “keep the team on the right track” by another researcher. On the other hand, if the

validation error increases with time or if the training error is significantly smaller than the

validation error, the network could overfit the training data and is becoming less generalizable.

Future work

This platform will incorporate a generative AI feature[7, 8], created using NLTK and

TensorFlow. This addition aims to provide real-time insights into the status of each student

group for faculty members. Moreover, when team issues arise, the platform will proactively alert

faculty members and provide constructive suggestions for improving group performance.

We plan to make a generative chatbot that can assist students in group projects. Meanwhile,

more data collection with unbiased labeling and synthetic data. Another possibility is to adjust

the number of classes in order to improve the classification accuracy and efficiency.

Some functions which the chatbot could offer:

Project Ideas: Students can submit their area of interest and the skills they would like to use and

the chatbot will return potential project ideas.

Time Management/Schedule Creation and Maintenance: Students can enter their project goal,

project deadline, number of group members, and each member’s weekly time commitment to the

chatbot and the chatbot will: break down their project into a series of tasks, and appropriately

schedule each task so that the students meet their deadline; assign subtasks to each group

member, taking their weekly time commitment into account; suggest whether completing the

project by the deadline with the given number of group members is realistic or if the project is

ambitious enough to keep all group members busy up to the deadline; if the project is unrealistic

or lacks ambition, suggest alterations to the project; flag if students fall behind and revise the

schedule accordingly; highlight internal deadlines, which if missed, will jeopardize the

completion of the project by the final deadline; send reminders to students prior to deadlines;

alert the professor if a student has missed a certain number of deadlines; alert the professor if the

group is in danger of missing their final deadline.

Schedule Meetings: The chatbot can collect all group members’ individual schedules and return

ideal meeting times; The chatbot can also schedule meetings with the group and the professor,

with individual members and the professor, or with a subset of members.

Research Assistance: The chatbot can point students towards relevant resources.

Note Taking: If we build voice recognition into the chatbot, it can listen in on meetings, take

notes, and update its other offerings; students can submit feedback about their project and group

members to the professor through the chatbot.

Conclusion

An initial platform has been built to test the feasibility of utilizing student team comments to

build a classifying model. The interactive chatbot feature has been explored. This platform uses

React for the front end, Fast API as the back end, and the model training is on Tensoflow Keras .

The platform can potentially be integrated with CATME or other team-monitoring software. The

current model only has 73% accuracy on initial testing with 800 sample comments. A future

improvement would be to use more and balanced data. A generative AI feature - CHATME -

will also be available at the front end to support the course teaching.

Acknowledgment

This study is under the IRB Exemption: IRB-FY2022-6435.

References

[1] K. Bosworth, "Developing collaborative skills in college students," New directions for teaching

and learning, vol. 59, pp. 25-31, 1994.

[2] P. R. Harris and K. G. Harris, "Managing effectively through teams," Team Performance

Management: An International Journal, vol. 2, no. 3, pp. 23-36, 1996.

[3] M. L. Loughry, M. W. Ohland, and D. J. Woehr, "Assessing teamwork skills for assurance of

learning using CATME team tools," Journal of Marketing Education, vol. 36, no. 1, pp. 5-19,

2014.

[4] D. Khurana, A. Koli, K. Khatter, and S. Singh, "Natural language processing: state of the art,

current trends and challenges," Multimedia Tools and Applications, vol. 82, no. 3, pp. 3713-3744,

2023/01/01 2023, doi: 10.1007/s11042-022-13428-4.

[5] N. S. Khan, A. Abid, and K. Abid, "A novel natural language processing (NLP)–based machine

translation model for English to Pakistan sign language translation," Cognitive Computation, vol.

12, pp. 748-765, 2020.

[6] N. K. Manaswi and N. K. Manaswi, "Understanding and working with Keras," Deep learning

with applications using Python: Chatbots and face, object, and speech recognition with

TensorFlow and Keras, pp. 31-43, 2018.

[7] D. Baidoo-Anu and L. O. Ansah, "Education in the era of generative artificial intelligence (AI):

Understanding the potential benefits of ChatGPT in promoting teaching and learning," Journal of

AI, vol. 7, no. 1, pp. 52-62, 2023.

[8] E. Brynjolfsson, D. Li, and L. R. Raymond, "Generative AI at work," National Bureau of

Economic Research, 2023.

