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Generating, Consolidating, and Analyzing Social Network Data: Lessons 

Learned from a Large-Scale, Longitudinal, Network Study 
 

Introduction  

 

This methods paper provides recommendations for engineering education researchers 

considering Social Network Analysis (SNA) to answer their Research Questions (RQs) in current 

or future studies, particularly for studies of large-scale networks. Over the last several decades, 

engineering educators have increasingly recognized the role interpersonal interactions play in 

shaping engineering student outcomes. These interactions span various modes, including online, 

face-to-face (f2f), student-to-student, student-to-instructor, and instructor-to-instructor 

interactions [1], [2], [3]. Concurrent with this growth, the development of engineering education 

as a discipline included an increasing number of engineering education researchers adopting 

sociological research methods [4], [5]. Among these sociological research methods, SNA applies 

network theoretic concepts to interpersonal networks [6], allowing researchers to explore how 

interpersonal connections form, evolve, and relate to outcomes of interest. Recognizing the 

intersection of interpersonal network importance, and the ability of SNA to study these networks, 

engineering education researchers have increasingly adopted SNA to identify and promote 

positive interpersonal networks in engineering education. 

 

Throughout the relevant literature, engineering education research applying SNA to the 

undergraduate student context has demonstrated the importance of interpersonal connections for 

students’ academic performance and affective outcomes [7]-[10]. These studies not only 

quantitatively assess the importance of connections between individuals, but also inform which 

interaction types and frequencies lead to positive or negative outcomes. For example, Ellis, Han, 

and Pardo [11] found that students who engaged in ‘effective’ collaboration worked closely, in 

infrequent amounts, with small groups of peers. Ineffective collaboration included large groups 

with frequent interactions. In another study, Elliott and colleagues [20] identified that student-to-

student interactions increased in effectiveness as small groups became more close-knit over time. 

These and similar studies have demonstrated that cross-sectional networks applying simple SNA 

may overlook certain relationships between student interactions and outcomes. 

 

Beyond these issues, our review of the relevant engineering education literature demonstrates a 

prevalence of studies regarding interactions in the online context. These studies have provided 

important observations of how increased interactions relate to performance for remote and/or 

hybrid instruction overall [12], [13], [14]. However, we believe that this emphasis on online 

interaction over f2f interaction may not reflect the scale of research need, but the ease of data 

collection for SNA regarding online interactions. Specifically, f2f interactions are a less studied, 

but major component of students’ interactions.  

 

To overcome these issues, our research group, familiar with SNA from small studies, conducted 

a large-scale (1000+ individuals) SNA study at a large, public university in the United States 

[15]. This study sought to extend the current understanding of student networks to a more 

holistic level by a) sampling student networks several times throughout individual semesters, b) 

sampling student networks for the first two years of students’ undergraduate careers, c) asking 

participants to identify peers they studied and/or socialized with inside the academic context, and 



d) asking participants to identify peers they studied and/or socialized with outside the academic 

context. Key results demonstrate how student networks extend beyond the bounds of single 

classrooms in enrollment and time, how students form and evaluate their peer relationships, and 

how interactions within and/or outside the academic context relate to positive and/or negative 

student outcomes. 

 

Apart from the fundamental results of this work, we also identified several important 

considerations in the design, implementation, and evaluation of SNA studies, particularly in the 

large, f2f context. Primary issues include generating interaction data from a population of 

interest, consolidating interaction data to usable forms, and then analyzing the results in a 

manner that accurately represents the underlying network. These issues are further compounded 

by implications of the study goals, including how bounded the network should be, whether 

interactions are online or f2f, and the temporal resolution of the sampled network.  

 

The purpose of this paper is to disseminate recommendations from our experience including 

implications of the desired study network for collecting and consolidating interaction data, how 

the bounds of the network inform open-ended vs. close-ended responses, and the 

benefits/drawbacks according to each type of survey selection. Beyond collecting network data, 

consolidating networks into usable forms presents a major hurdle for large-scale studies. This 

paper presents practices and freely available resources for consolidating networks according to 

data collection types. Finally, the analysis of social networks is an ever-growing field and 

includes sophisticated methods that require a threshold of interaction data resolution and 

confidence. For this reason, we present several accessible resources for conducting fundamental 

and advanced statistical SNA methods.  

 

Social Network Analysis 

 

SNA provides researchers with a method for quantitatively and visually describing and analyzing 

the interactions between individuals. Within SNA literature, the interactions between individuals 

are referred to as ties or edges and the individuals in the network are referred to as actors. When 

researchers consider a single individual in the network as the focal point, that actor is referred to 

as the ego. The individuals who interact with the ego are referred to as the ego’s alters. The 

combination of actors and the ties between actors comprises a network. 

 

To conduct SNA there are several primary steps (adapted for engineering education research 

from Borgatti and colleagues [16]). Steps one, two, and six are necessary for conducting SNA 

which only considers the networks (e.g., network changes over time, connectedness of students, 

etc.). Steps three, four, and five are also necessary for researchers hoping to compare network 

traits and actor traits (e.g., student connectedness vs. grades, the level of demographic mixing in 

student networks, etc.). Each of these steps are as follows: 

 

1. Identifying the Study Network. Before conducting SNA, researchers must consider the 

who, what, and when aspects of the network that they want to study. This requires well-

describing the actors (e.g., students enrolled in a specific engineering course, engineering 

club members, etc.), the interaction types (e.g., extra-curricular interactions, formal group 

interactions, etc.), and the time (e.g., a single course meeting, a full year, etc.) that 



comprise the study network. The quality of these descriptions will determine the quality 

of the subsequent data collection and analysis. 

 

2. Generating Network Data. After identifying the study network, data generation includes 

identifying and validating data collection methods, choosing a sampling frequency, and 

consolidating network data to an acceptable level of confidence.  

 

3. Identifying Actor Traits. Parallel to identifying networks, identifying the actor traits such 

as demographics (e.g., age, race, ethnicity, etc.), academic outcomes (e.g., course grades, 

retention, etc.), and affective outcomes (e.g., motivation, feelings of belonging, etc.) is 

typically a key component of SNA studies in engineering education. Particularly in the 

engineering education context, identifying academic and/or affective outcome traits 

allows researchers to identify relationships between interactions and outcomes. 

 

4. Generating Actor Trait Data. After identifying the actors and desired actor traits, 

researchers must identify and validate data collection methods, choose a sampling 

frequency, and consolidate alter trait data to an acceptable level of confidence. 

 

5. Integrating the Network and Alter Trait Data. For studies that gather both network data 

and alter trait data, consolidating these into a single usable format is necessary before 

analysis. 

 

6. Analyzing the Consolidated Data. After data is generated and consolidated into a usable 

manner, actual SNA begins. These steps include visual analysis of sociograms (network 

graphs of interpersonal networks), quantitative analysis of SNA measures (numeric 

descriptors of the network and/or alter), and statistical tests of SNA measures to alter 

traits. 

 

Axiologically, the first author’s pragmatic research paradigm suggests that effective research 

begins with a question, and then identifies methods to answer that question. To make this process 

easier for those considering SNA while aligning with this paradigm, this paper will focus on 

providing recommendations for researchers who begin with a research question and are 

evaluating SNA as a method for answering that research question. Further, our experience is 

particularly in conducting SNA in the f2f undergraduate engineering context and includes large, 

longitudinal networks. To make this experience available to the broader engineering education 

community, this paper generally presents considerations for researchers considering SNA but 

will trend toward considerations in large-scale, open-ended networks as these have proven the 

most difficult.  

 

Network Types 

 

SNA includes three broad types of networks: ego-, whole, and sub-networks [6], [16]. Ego 

networks isolate the interactions that are in and/or out of single individuals within the study 

network. An example of ego-network analysis includes researchers exploring the relationship 

between how many study partners each student in a class has and those students’ grades [1], [17], 

[18]. Whole networks include all the individuals and interactions within the study network. An 



example of whole network analysis includes considering the longitudinal evolution of connection 

density between all students in a specific cohort [19]. Between whole and ego-networks, sub-

networks focus on a specified collection of individuals and interactions within the whole 

network. An example of sub-network analysis includes researchers studying how a single study 

group changes the number of reciprocal connections throughout a single semester [20]. Whole 

networks are typically built from a collection of ego-networks but require that a significant 

number of participant egos provide network data to be an accurate representation of the whole 

network. As a result, resource requirements are generally highest for generating whole networks 

and lowest for generating ego-networks. Further, whole network data often allow for subsequent 

sub- and ego-network analysis.  

 

For whole and sub-network analysis, a minimum threshold of network completion is necessary to 

ensure useful results. Specifically, inaccurate whole and sub-network data may lead to 

differences in network traits being a result of errors in the data, rather than changes in the 

network. For example, a simple measure of reciprocity is the proportion of reciprocal 

connections (i.e., both individuals have reported the link) relative to the number of observed 

connections. If a larger number of participants within the network are sampled, the reciprocity 

may increase due to the number of sampled participants, rather than an actual increase in the 

social network’s reciprocity. Further, several ego-network analysis methods rely on an estimate 

of the whole network. For example, ego-network measures such as eigenvector centrality (the 

connectedness of an individual considering how connected the surrounding network is) and in-

degree centrality (the sum of incoming connections for an individual) rely on an estimate of the 

surrounding network, despite being ego-network traits.  

 

For these reasons, researchers should carefully consider if their network is well-bounded enough 

for whole or sub-network analysis, and if they anticipate gathering sufficient network data to 

complete the network before analysis when determining which network type to study. While 

whole networks are desirable due to their broad usefulness, the resources required to gather an 

accurate whole network representation are high, scaling on the size of the study network. 

Researchers should carefully consider if their RQ requires whole, sub-, or ego-network data and 

select the minimum acceptable level. 

 

Beyond network bounds in actors, networks may be either static (do not change with time) or 

dynamic (change with time). Like whole and ego-networks, researchers can build dynamic 

networks from a collection of static networks. Further, researchers can convert dynamic 

networks into static networks by aggregating interactions over a data collection period. Network 

data generation strategies also depend on and/or inform static vs. dynamic networks as explained 

in the network sampling section. Overall, building dynamic networks from multiple cross-

sectional networks is most likely to require the greatest effort on the part of the researcher in 

both data collection and subsequent analysis.  

 

Network Data Generation 

 

Deciding on methods for network data generation involves a careful balance of the RQs to be 

answered and the resources available to the researcher. Overall, the network type and 

characteristics of interest according to RQs should be the primary determinants of the method. 



However, researchers should also be aware of the resource costs to anticipate for each data 

collection method. Resource requirements for data collection scale on a) the size of the network, 

b) how automated the methods are (i.e., recorded through location, recorded through interaction 

medium, or not recorded automatically), and c) the characteristics of the interactions (e.g., 

perceived strength of ties, classifying friends or study partners, etc.). These factors are 

interrelated, and each case is likely to be unique. Recognizing these issues, we present a general 

strategy as a beginning guide for researchers interested in deploying SNA methods.  

 

Network Data Collection 

 

Several methods for gathering social network data are common in the relevant literature. General 

categories include automated data collection (i.e., recorded through the interaction medium), 

name generator surveys (asking participant egos to identify their alters), and interviews/protocols 

(i.e., asking participant egos about their interactions individually or observing their interactions) 

[21], [22], [23]. Within name-generator surveys, there are close- and open-ended name-

generators. These categories are decided by whether (close-ended,) or not (open-ended,) the 

participant is provided a set list of names to choose from in the survey instrument. To elaborate 

on these points, we use this section to present each data collection method individually and 

summarize the key benefits and drawbacks of each. 

 

Pull Data from LMS. Most LMS provide an Application Programming Interface (API), which 

helps users familiar with coding pull interaction data from the chatrooms, comments on 

assignments, etc. Further, strategies for pulling data without the use of an API are available for 

those who are adept at relevant coding. These strategies provide a wealth of information with a 

high temporal resolution and low uncertainty (i.e., interactions in online chat are known). 

However, these strategies require that the RQs may be answered when interactions are limited 

specifically to online interactions within the LMS platform. For instance, researchers studying 

connectedness between the instructor and students vs. course outcomes may miss email 

communication without additional methods. Overall, pulling network data from the course LMS 

provides high accuracy and resolution information at a fixed cost regardless of network size. 

These benefits come at the expense of strict actor and interaction-type bounds. 

 

Pull Data from Social Media. Similar to LMS data, most social media platforms provide an 

API for pulling relevant data, and methods are also available for scraping this data without the 

API for adept coders. Unlike LMS data, social media can provide researchers with strategies for 

identifying friendship and similar networks. This difference in the bounds for alter types is a key 

benefit to social media and comes with a similar level of low uncertainty and high temporal 

resolution. However, similar limitations as in LMS data exist in social media data. These 

limitations include that the interaction types are not well documented, relationships between 

alters are limited to those the social media platform targets, and interactions are only recorded 

through platform-based interactions. 

 

Close-Ended Name Generator Survey. Close-ended name-generator surveys ask potential 

participants to select whom they interact with for a specific purpose from an a priori list. 

Methods for providing this list include the use of a drop-down menu, a search function, or a 

written table. This network data collection method allows researchers to select the interaction 



types (e.g., friends, study partners, etc.) and potential alters (e.g., classmates, club members, etc.) 

without accepting the bounds of LMS or social media data. In this regard, close-ended name 

generators provide a significant improvement in freedom for RQs which can be answered, 

maintain confidence in the alters identified, and reduce recall error (errors in participants 

forgetting who they interact with). However, this method requires that the researchers know and 

provide all potential alters in the survey instrument. Further, the temporal resolution of the 

network and network completion are limited by the survey sampling frequency and response 

rates. 

 

Open-Ended Name Generator Survey. Open-ended name-generator surveys ask potential 

participants to identify alters whom they interact with for a specific purpose without providing a 

list of potential participants. This method removes bounds to potential alters and allows 

researchers to answer broader RQs with fewer prior assumptions than LMS, social media, and 

close-ended methods. This benefit comes at the expense of introducing increased uncertainty and 

resource costs. Specifically, the likelihood for recall error increases in open-ended name 

generator surveys, and at a scale larger than ~100 participants, the need for Entity Resolution 

(ER) methods increases. Like close-ended surveys, the temporal resolution of the network and 

network completion in open-ended data are limited by the survey sampling frequency and 

response rates. Generally, open-ended name-generator surveys allow researchers to generate 

exploratory network data at the expense of network completion and accuracy. 

 

Interview/Protocol. Interview and/or protocol data collection methods provide researchers with 

a network data collection method that is not limited to interaction types, alters, or recall errors. 

These methods can also provide deeper insights regarding interaction and/or alter quality. For 

example, interviewers may ask about the strength of certain ties, in each context of interest, 

which would be limited by survey fatigue in name-generator surveys and is not possible in 

automated data collection methods. The cost of these benefits is the resource requirement for 

each interview/protocol. Generally, interviews are not scalable to the extent of automated data or 

name-generator data due to their individual time requirements.  

 

Summary of Network Data Collection Methods 

 

To summarize the primary trade-offs between each network data collection method, Table 1 

presents a brief description of significant tradeoffs according to network data collection method. 

 

Table 1. Summary of the study implications according to network data collection type.  

Data 

Collection 

Method 

Temporal 

Resolution 

Scalabi-

lity 

Need for 

Entity 

Resolution 

Interaction 

Uncertainty 

Alter 

Bounding 

Interaction 

Type 

Bounding 

LMS High High Med.* Low High High 

Social 

Media 
High High Med.* Low Low High 

Close-

Ended 

Name 

Generator 

Low Med. Low Med. Med. Med. 



Open-

Ended 

Name-

Generator 

Low Med. High Med. Low Med. 

Interview/ 

Protocol 
Low Low Low Low Low Low 

*Entity resolution, discussed in “Data Consolidation,” may be necessary for pairing alter trait 

data to network data. 

 

 

As illustrated in Table 1, no single data collection method provides the optimal value for all 

study implications. In our experience, the resources required to collect and consolidate the data 

are a key limiter for large studies. To aid researchers in the decision process for whom resources 

are also a consideration, Fig. 1 provides a decision tree for minimizing resource cost while 

answering the RQs. Relative resource cost associated with each data collection method is 

indicated by color, where dark green indicates a low resource cost, and red indicates a high 

resource cost. 

 

  

 
Figure 1. Decision tree for selecting network data collection methods according to desired 

network characteristics and minimizing resource cost. Relative resource cost associated with 

each data collection method is indicated by color, where dark green indicates a low resource 

cost, and red indicates a high resource cost. 



 

Each data collection method in Figure 1 has specific trade-offs that balance the researchers’ 

ability to measure interaction characteristics and extend network bounds against the resource 

cost. For example, a significant amount of SNA research has been conducted on Learning 

Management System (LMS) interactions vs. performance in courses. However, these studies are 

limited to the online context in both interaction types and participants. Similarly, interviews 

provide high-confidence data without limits on the interaction type, but at a very high resource 

cost. Researchers who cannot accept these limits to answer their RQs without the necessary 

resources may consider a hybrid approach (e.g., pulling automated course data and using 

interviews with several participants) for multi-methods or mixed-methods studies [24]-[27]. This 

option is a strong technique for capturing the positive aspects of multiple data collection types 

and overcoming the limitations of a single type at a balanced resource cost. 

 

Network Data Sampling 

 

Network data sampling frequency is first determined by the data collection method. Automated 

data collection methods such as pulling interaction platform data (i.e. Twitter, Canvas, Discord) 

or using location data (i.e., the Copenhagen network study [22]) have an effectively unlimited 

temporal resolution. However, for those studies that do not involve automated recordings of 

interactions (i.e., interviews and name-generator surveys), survey fatigue becomes a primary 

issue [28], [29]. In our experience, survey participation rates on name generator surveys follow a 

decreasing participation rate according to time in the study and the survey frequency. Figure 2 

demonstrates the survey participation rates according to the number of survey iterations per 

semester in the pilot semester of the same study. Similarly, Figure 2 demonstrates the survey 

participation rates on a large, open-ended name generator survey-based study according to time 

in the semester. Note that the increase in survey participation at the end of the semester is likely 

due to extra credit incentives. 

 

 



 
Figure 2. Name generator survey participation rates vs. time for changing survey 

frequency (left, data from [30]) and constant one survey per three weeks frequency 

(right). 

 

 

Together, these results demonstrate that researchers deploying name-generator surveys or 

interviews should be aware of and sample at the minimum acceptable temporal resolution of the 

final network. In our experience and review of similar studies, within-semester changes in a 

network would be captured at a survey frequency of three times per semester without significant 

losses in network evolutions [19], [20]. 

 

Network Data Consolidation 

 

After researchers collect the raw network data, the interactions must be consolidated for analysis. 

For LMS data, social media data, and close-ended name generators, this process includes the 

straightforward process of matching the recorded identities (accurate names) of egos and alters to 

their traits of interest (i.e., academic outcomes, demographics). However, a key issue in open-

ended name generator surveys is the lack of recorded identities mixed with the number of 

possible alters. For example, if a “Jane Smith”, is identified in the survey data, who that 

reference represents in the real world is not a trivial question. For studies with a limited scope 

(i.e., less than 100 potential alters), this issue is solvable through careful consolidation by hand. 

However, when the study exceeds this scope, ER methods become necessary [31]. 

 

Entity resolution describes the process of matching ambiguous references in raw interaction data 

to the real-world identity they are meant to represent. Several libraries are available online for 

conducting ER on ambiguous references [32], [33], including a GitHub repository published for 

novice coders conducting SNA [31]. These libraries require the user to provide records of the 



interaction data, any known identities available, and thresholds according to the ER algorithms in 

the library for consolidating reference-identity similarities. The documentation in these libraries 

is generally helpful for identifying thresholds and methods for unfamiliar users.  

 

Overall, ER makes large, open-ended network studies possible, while introducing the potential 

for added error through incorrect consolidation. For this reason, we suggest researchers use 

conservative estimates of the ER thresholds, validated by hand on a sub-sample of the data. 

Further, conducting statistical analysis on only participant egos ensures that only actors with a 

high confidence of correct identity-reference consolidations are used for hypothesis testing. After 

the networks are consolidated with an acceptable level of confidence, researchers must prepare 

the network data for analysis by SNA software. 

 

Standards importing formats for SNA software include edge lists (a list of interactions from an 

ego to an alter) or adjacency matrices (a matrix where each interaction is recorded as a value in 

the matrix from an ego [row index] to the alter [column index]). Social networks, which are 

typically sparse, may be stored as edge lists to save memory. Further, these interaction data are 

typically mixed with attribute lists (a list of alters and their relevant academic outcomes, 

demographics, etc.). 

 

Network Data Analysis 

 

Once researchers have prepared all necessary data representations, there are several options for 

conducting visual and statistical analysis on whole, sub-, and ego-networks. Useful tools for 

visualizing networks are the freely available Gephi [34] and SocnetV [35]. In our experience, 

SocnetV is simpler to use, and Gephi provides more features such as analyzing longitudinal 

networks. We recommend either resource for visually analyzing whole networks, visually 

analyzing sub-networks, and conducting basic statistical analysis. An example output from 

Gephi is in Fig. 3, demonstrating the results of a clustering algorithm available within Gephi 

applied to a large undergraduate engineering student network. 

  



 
Figure 3. A Gephi-generated sociogram of a first- and second-year 

undergraduate engineering student network clustered through  

modularity clustering. 

 

 

For thorough quantitative analysis, researchers should include a group member who has some 

familiarity with coding. The Python-based NetworkX library [36] and R-based Statnet library 

[37] are excellent resources with a wealth of methods and online resources for conducting 

statistical analysis of network data beyond those available in SocnetV and Gephi. Within each of 

these resources are strategies for analyzing whole networks, sub-networks, and ego-networks. 

Each of these libraries also provides methods for storing and analyzing networks with multiple 

types of connection between nodes called multigraphs. For novice coders and/or new researchers 

to SNA, each of these packages are likely to provide sufficient methods for analyzing cross-

sectional networks through simple statistical methods.  

 

However, a growing body of engineering education research applying SNA has recognized 

Exponential Random Graph Modelling (ERGM) and Stochastic Actor-Oriented Modelling 

(SAOM) for cross-sectional and longitudinal data respectively. These methods, to our 

knowledge, are not well developed and documented in openly available Python-based libraries. 

Further, Python-based libraries are not well prepared for longitudinal network analysis. Opposite 

this, R-based libraries such as Statnet have several readily available packages for running ERGM 

and analyzing longitudinal data. Researchers considering more advanced statistical analysis 

without manually coding the methods should consider doing so in R.  

 

A final consideration for network analysis is applying clustering methods. For researchers who 

have identified a whole network or large sub-network, smaller sub-networks are readily 



identifiable through clustering methods such as k-means for a prescribed number of clusters, or 

modularity clustering for an unknown number of clusters [38], [39]. A useful example of 

clustering in engineering education is identifying the size, density, and reciprocity of small 

friendship or study groups within a larger course network [20], [40], [41]. Clustering provides an 

efficient method for identifying sub-networks and is available in the recommended SNA tools. 

 

Conclusion   

 

This paper is meant to provide engineering education researchers with a brief overview of and 

recommendations for conducting SNA in the engineering education context. These 

recommendations were developed from our review of relevant literature and personal experience 

generating, consolidating, and analyzing large-scale, longitudinal social network data. This 

experience has guided our discussion to focus on the challenges of SNA for studying less 

understood, resource-intensive, large-scale networks (i.e., 1000+ actors, f2f, and longitudinal). 

Our primary difficulties in conducting this and similar studies were identifying the optimal 

network data collection method, identifying an optimal sampling frequency, developing and 

deploying entity resolution, and identifying freely available network analysis tools that met our 

needs. 

 

Recognizing these issues, key recommendations for researchers undergoing the SNA process 

outlined in this paper are to a) capture the smallest network that will accomplish the goals of the 

study, understanding the implication of whole, sub- and ego-network data for subsequent 

analysis; b) use the network data collection method which maximizes network data accuracy and 

minimizes resources used according to the decision tree (Figure 1) and Table 1; c) sample at the 

lowest frequency possible to maximize network completion per sample, recognizing that large 

network, within-semester changes may be observed at a frequency of three iterations per 

semester, d) apply ER methods for efficient consolidation of open-ended network data, and e) 

consider SocnetV and Gephi for network visualization, and NetworkX and Statnet for statistical 

analysis. We hope that this and similar discussions will provide engineering education 

researchers considering using SNA to answer their research question a starting point and will 

demonstrate methods for making large SNA achievable at a reasonable resource cost. 
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