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WIP: An Open Educational Resource to Improve Architectural 
Engineering Students Conceptual Knowledge When Writing-to-

Learn: Investigation 1 
 
Abstract 
 

This paper presents the findings of the first of four investigations funded by the NSF to 
develop and then field test an open educational browser-based writing-to-learn tool called GIKS. 
The underlying theory is that writing-to-learn with immediate formative feedback presented as 
concept networks is engaging and effective for learning course lesson concepts. This work was 
conducted in a second-year architectural engineering course focused on building materials, 
processes, and modeling. Participants (n=84) completed a lesson (readings, lecture, and labs) 
followed by writing prompts centered on the following topics: Building with Concrete and also 
Wood Construction. At the end of each module, students completed the standing end-of-module 
multiple-choice post-test that included items from those lessons as well as items from other 
lessons in the module. 

Results to date highlight that for both lessons, the group using GIKS scored higher on the 
concept structure survey (more like the expert network) BUT performed lower on the multiple-
choice test, the difference was significant for the Building with Concrete lesson (p < .05) but not 
for the Wood Construction lesson. Descriptive analysis of the group-average networks for 
Building with Concrete show that the group-averaged network of those using GIKS compared to 
the control was more like the expert network (54% vs. 36%) and especially more like peers in the 
other group (67%). For Wood Construction the difference between the groups was less, the 
group-averaged network of those using GIKS compared to the control was more like the expert 
(40% vs. 39%) and especially like peers in the other group (72%). These findings show that 
writing-to-learn with GIKS with immediate network feedback improves conceptual knowledge 
as expected but at the cost of detail.  
 
Keywords: Writing to learn, conceptual knowledge, group networks, architectural engineering, 
quantify written work. 
 
Introduction 

 
Conceptual understanding of core engineering fundamentals enables engineers to predict 

how a system will behave, to determine appropriate solutions for problems, to choose relevant 
processes for design, and to explain how the world around them works [1]. While conceptual 
understanding is key, newly entering college students and even recent graduates commonly 
misperceive significant engineering concepts needed to solve even simple problems in real-world 
practice [2-4]. In many undergraduate STEM classrooms, instruction of these core topics is often 
within large lecture based classrooms (100+ students) that are delivered using methods that are 
predominantly “chalk and talk” [5-6] (U.S. DOE 2001; Young et al., 2012) that cannot optimize 
student engagement with the topic that often results in only surface learning [7-8]. To counter 
this, ongoing research and practice in engineering (and more broadly) seek innovative ways to 
restructure the classroom to focus attention on the learner engagement [9-10]. For example, 
Roehl et al. [11] found that active learning can be as simple as integrating brief in-class activities 
within the traditional lecture.  



Professional engineering preparation can and must go beyond memorizing facts and 
“crunching” equations [12-13], it must also include broader conceptual understanding of 
scientific principles and of phenomena of the domain [13-14] defined here as regularities, 
patterns, or relationships among objectives, events, and other concepts [15]. Conceptual 
understanding refers to students’ rich cognitive representations of concepts, both concrete and 
abstract (i.e., a masonry veneer wall composite aligned with heat energy principles) that are 
necessary to solve problems, make predictions, and generate questions [16]. Increasing students’ 
conceptual understanding is a key to advancing STEM education. One way to do this is by 
intentionally and explicitly including domain knowledge conceptual representations in our 
courses.  

 
A key question for this domain of research and for educational advancement is: How can 

we improve conceptual understanding? This NSF funded investigation combines two approaches 
that have previously shown to support conceptual understanding: 1) writing-to-learn and 2) 
conceptual structure feedback, that are combined in a browser-based application called Graphical 
Interface of Knowledge Structure (GIKS). This paper presents a work in progress towards 
studying how GIKS can be used in larger engineering courses and its impacts. 

 
Writing to Learn  

 
Writing to learn can be an active and engaging STEM disciplinary practice [17-18]. “The 

importance of incorporating writing in STEM classrooms is heightened by the role it can play in 
supporting student learning of disciplinary knowledge and thinking.” (p. 1548, [19]). More 
broadly, writing is a learner-centered strategy that intimately aligns with conceptual learning [20-
21]. Such writing helps students to improve and refine their thinking about complex scientific 
phenomena [20, 22], to grasp concepts in a related fashion rather than as discrete sets of ideas 
[23-25], understand common disciplinary conceptions, and to participate in scientific discursive 
communities [26]. Additionally, Mason and Boscolo [27] have identified writing as a way to 
foster conceptual change, especially for the correction of topic misconceptions, by encouraging 
students to develop more elaborated explanations of scientific phenomena [28-29]. 

 
The effectiveness of writing-based interventions to learn domain specific content has 

been documented across scientific fields including, but not limited to: biology, chemistry, 
ecology, and physics [29-37]. These and other studies have shown that writing-based STEM 
interventions can improve students’ reasoning and conceptual understanding [33, 38-41] and that 
writing becomes even more effective when it includes formative feedback and reflection (p. 84, 
[42]). For example, a meta-analysis by Bangert-Drowns et al. [43] across 47 studies considered 
the effects of writing-to-learn with feedback compared to writing with no feedback. Feedback 
was more effective than no feedback for academic achievement, with an effect size of 0.32. For 
46 studies that included writing with reflection or not, writing with reflection was more effective 
for academic achievement with an effect size of 0.44.  
 
 
 
 
 



Writing to Learn Feedback Tools: Network Graphs and the Existing GIKS Tool 
 
Network graphs as feedback when writing to learn 

 
One way of providing a summary of knowledge is through network graphs. Here, 

Network Graphs show interconnections between a set of entities (terms, traits, facts etc.) that are 
each represented by nodes, with node being connected (linked) to corresponding associations. 
Existing research points to an important mediating role of network graphs as feedback for 
developing students’ conceptual understanding, especially feedback on the correct, incorrect, and 
missing connections formed by students between concepts [44-46]. Trumpower and Sarwar [47] 
coined the terms “structural assessment” as measures of students’ domain-normative conceptual 
relationships and “structural feedback” as any form of feedback that aims to improve the quality 
of students’ domain-normative conceptual relationships.  

 
This project is grounded on structural feedback, that when students receive structural 

feedback, their formed conceptual model becomes more like an expert’s model upon review. A 
meta-analysis by Nesbit and Adescope [48] note, “Structural knowledge establishes a spatial 
frame that references visual features and verbal knowledge to enable efficient, spatially-indexed 
memory searches.” (p. 418). 
 
The Existing GIKS Tool 

 
A browser-based writing tool called GIKS, that leverages an ALA-Reader algorithm, was 

developed to promote writing to learn [44]. To use GIKS, an instructor creates a writing task by 
1) entering a question or prompt, 2) entering a list of key words (and their synonyms and 
metonyms), and 3) adding an expert referent network map. These writing prompts can be any 
combination of text, images, and/or videos. Once created, the instructor provides the URL of the 
task to students along with a unique ID code. From here students log in to review the writing 
task, compose a response, and then submit it. Immediately after submission, an interactive 
network graph of their essay is displayed along with the referent expert network (see Fig. 1). 

 
Figure 1: GIKS student network feedback 

 
Rather than seeing a random force-generated network graph each time, the student’s term 

locations align to the “Master” expert network map, thus the student views a network structure of 
their own essay for the first time laid out in a domain-normative way, where term closeness in 2-
dimensional space reflects that of an expert. Clicking on a term in either network highlights that 
term along with its links and term associates in both networks. Dragging any term in either 



network moves the same term in the other network. These interactive features allow the students 
to explore the sometimes complex networks in a term-by-term way. Also, there are control 
buttons under the student’s network. (Fig. 1) If students click the green “Your Network” button, 
it shows the student’s essay network links; clicking the orange “Missing Link/Node” button adds 
the missing terms and missing links; while clicking the red “Incorrect Links” button shows the 
incorrect links. You can try GIKS at: this URL removed for peer review. 
 
Published research using GIKS 

 
Prior research on GIKS related to this current NSF project includes several studies with 

the current version of GIKS, as well as several studies that are in progress. These include 
Zimmerman et al. [49], Tawfik et al. [50], Kim, Clariana, and Kim [44], Kim and Tawfik [51], 
and a dissertation by Wang [52]. Table 1 provide a summary of key area for these studies and 
highlight their results. These findings directly influenced this current project in terms of the form 
of the prompt, the extent of content addressed in the prompt (broad rather than narrow), and that 
GIKS has a greater potential as formative feedback while learning, in contrast to its summative 
value as an essay scoring tool. 

 
Table 1: GIKS studies to Data and their Results 

Publication Focus of Study Result Highlights 
Zimmerman et al. 
[49] 

Estimated the concurrent validity of the GIKS 
scoring approach as an end of course 
summative evaluation relative to multiple 
human essay raters. 

• Existed a polychoric correlation of GIKS scores with 
multiple rater scores for writing were between: r = 0.58 to 
0.67 for network common links and r = 0.66 to 0.79 for 
network key words 

Tawfik et al. [50] Used GIKS to analyze argumentation responses 
of undergraduate business students under 
scaffolds and faded-scaffolds conditions during 
ill-structured problem solving.  
Used three methods to measure students’ 
argumentation including computer-derived 
association rule mining [53], human-raters 
using rubrics, and GIKS. 

• The raters with rubrics found no statistically significant 
results.  

• Both association rule mining and GIKS identified the same 
latent differences between the groups not noticed by the 
raters. This sensitivity data provides increasing evidence of 
the validity of the ALA-Reader approach. 

Kim, Clariana, 
and Kim [44] 

Compared three structural feedback approaches 
designed to support learning through writing 
and revision.  
Wrote a summary essay using one of the three 
structural feedback treatments (GIKS with 
focused structural feedback network subgraphs, 
video-delivered information, and targeted 
multiple-choice questions), and then wrote a 
summary posttest essay. 

• Essay scores significantly improved from lesson-to-post-
test for all three forms of feedback, but GIKS obtained the 
greatest gains, with increase in relevant and decrease in 
irrelevant relations (these findings exactly align with the 
findings from Sarwar, 2012, p. 85).  

• Writing feedback improved most with GIKS, while viewing 
the multimedia feedback showed the greatest pre-to-post 
increase in the less important peripheral concepts. 

Kim and Tawfik 
[51] 

Examined how high school science students 
mental models transitioned during problem 
solving, GIKS essays were used as a posttest 
measure of knowledge structure, but not as an 
instructional intervention. 

• Results indicate that successful problem-solvers tend to 
share solution-focused knowledge whereas the less 
successful problem-solvers tend to share problem-focused 
knowledge. 

Wang [52] Used GIKS in an undergraduate architectural 
engineering course (AE 222) to compare the 
effectiveness of writing with immediate 
network feedback that is either a “full network” 
(26 terms) or else a “focused network” (subset 
of 16 of the 26 terms) that has only the most 
central terms in order to highlight only the most 
important relations in the content. 

• There was no significant difference observed between full 
versus focus network feedback on the end-of-module 
multiple-choice posttest, both were equally effective.  

• However there was an advantage for the focus network 
group on the knowledge structure posttest. The focus 
network group showed 62% overlap with the full expert 
referent network compared to the full network group that 
showed only 53% overlap. 

 
 



Research Design and Methodology 
 
This NSF Level 1 research investigation and software development project will add to the 

conceptual understanding and the writing-to-learn (WTL) knowledge bases regarding evidence-
based practices for STEM teaching and learning in predominantly lecture-based undergraduate 
STEM courses. 
 
Relevant Research Questions 

 
For this new NSF study, the researchers looked at the prior studies, such as those in Table 

1, as well as other literature to formulate a new continued direction for investigation. From the 
new direction, the following two broad research questions emerged: 

• How can we strengthen engineering students’ conceptual understanding?  
• Does summary writing about lesson content with immediate concept network structure 

feedback support classroom learning outcomes? 
 

Study Design 
 
This project combines two approaches that support conceptual understanding, writing-to-

learn and conceptual structure feedback, in a browser-based application called Graphical 
Interface of Knowledge Structure (GIKS). To answer the research questions, two separate 
investigations in an Architectural Engineering (AE) course were conducted. Student learning 
outcomes include essays, end-of-module subtests, and knowledge structure post-test measures. 
This WIP presents the findings for Investigation 1. 

 
Participants were assigned to one of two counter-balanced groups (Fig 2). Group A used 

GIKS software to write a 300-word summary of the first lesson (concrete) but did not write in 
the second lesson (wood), while group B did not write in the first lesson (concrete) but used 
GIKS in the second lesson (wood). Doing this, each group served as a control treatment for the 
other group. All students further completed a concept structure survey [52] after writing that 
contained 20 key concepts from that lesson. These two concept structure surveys’ data were 
transformed into concept networks and then these networks were compared to an expert network 
benchmark referent, as well as to networks of the textbook chapter and the PowerPoint slides of 
the related lesson. 

 

 
Figure 2: Course timeline and lessons 

 

Wk 3 test 2test 1

Module 1 Module 2

Group AB

Group BA control

Wood sys

control GIKS

GIKS

Concrete sysLesson topic:

AE 222 – Investigation 1, Spring 2023

Wk 7Wk 2 Wk 4 Wk 6

23-Jan 20-Feb16-Jan 30-Jan 6-Feb 13-Feb

Spring
breakWk 1

16-Jan 27-Feb 6-Mar



Investigation 1 Procedures 
 
Investigation 1 conducted in the spring 2023 considers whether writing with GIKS is 

better than no writing (control group) and the follow up Investigation 2 considers whether 
writing with GIKS is better than writing without feedback (i.e., by submitting essays as a 
document using the Canvas LMS drop box).  

 
All students in the course completed two lessons, the first on building with concrete and 

the second on building with wood; these lessons are presented early in the semester with each 
lesson lasting for about 3 weeks (Fig.2). Lesson materials and tests for these two lessons have 
been used regularly for the past several (4) years without modification, and include the textbook 
readings, PowerPoint lecture/ discussions, and lab session on projects. The only difference from 
regular course delivery is that participating students near the completion of each lesson were 
asked to complete one 15-minutes long summary writing task during lab time using the GIKS 
software. Each group served as a control group for the other group from lesson-to-lesson. After 
the writing task, all students in both GIKS and the control groups competed a survey of 
knowledge structure that requited about 15 minutes to complete. At the conclusion of each 
module, all students completed the end-of-module multiple-choice tests that covered the concrete 
and then the wood lesson topics, as well as other topics covered in the course. Note that the wood 
lesson materials, learning outcome measures and approach were previously used in a dissertation 
by Wang [52]. 

 
Participants 

 
Undergraduate students (n = 103) were recruited in an AE course (AE 222 Building 

Documentation and Modeling) at a large land grant university in the Northeastern U.S. There 
was an 85% participation rate (n = 87) in this investigation (31 females, 56 males), but there was 
incomplete data for three students (final sample n = 84). Students in the course were nearly all 
second year students (sophomores) who had covered basic fundamental engineering theories in 
previous courses. There were no repeating students in the course that could confound data with 
excess prior knowledge. The most recent program-wide undergraduate demographics for AE 
reported by the college are: program total n ≈ 330, 44% reporting as female, and by diversity 
75% white, 10% international, and 15% underrepresented (includes American Indian/Alaska 
Native, Black/African American, Hispanic/Latino, Native Hawaiian/Other Pacific Islander).  
 
Learning Outcomes (Post-test Measures) 

 
Learning outcome measures consists of: 1) knowledge structure networks and 2) 

declarative-knowledge multiple-choice end-of-module tests of each lesson (i.e., facts, 
propositional knowledge). Knowledge structure network data were elicited using a multiple-
response survey measure described by Wang [52]. The concrete and the wood knowledge 
structure surveys (KS-survey) were developed in the Canvas LMS system using the quiz feature. 
Quiz items consisted of the 20 key terms for each lesson that were selected by the course 
instructor and were used to create expert networks for concrete and for wood. Each of the 20 key 
terms were presented one-by-one along with the other 19 key terms, and participants were asked 
to select and enter two terms that are most related to the first key term (Fig. 3). 



 
An excel spreadsheet was used to convert the KS-survey raw data into proximity files 

(*.prx) for analysis by Pathfinder software [54]. For example, in item 1, if aggregate is 
associated with cement and materials (i.e., aggregate – cement, aggregate – materials), and in 
item 2 if admixtures is associated with materials and water (i.e., admixtures – materials, 
admixtures – water), these linked key terms pairs would be added to a 20 x 20 key term array 
sing 1 to indicate a linked pair and 0 to indicate no link, and so on until all 20 items have been 
completed. This 20 x 20 term-term array that consists of ones and zeroes is then analyzed with 
pathfinder software (with Minsowski r = infinity and q = n - 1, i.e., 19) to generate a network 
structure of the KS-survey data.  

 
1. The term aggregate is most related to what two terms in this list? (type in two terms in 

the box below separated by a comma): 
List: admixtures, cement, columns, concrete, curing, finishing, floor, 
formwork, materials, one way, placing, prestressed, rebar, reinforced, 
slab, system, two way, wall, water 

2. The term admixtures is most related to what two terms in this list? (type in two terms 
in the box below separated by a comma) 

List: aggregate, cement, columns, concrete, curing, finishing, floor, 
formwork, materials, one way, placing, prestressed, rebar, reinforced, 
slab, system, two way, wall, water 

Figure 3: Two items from the 20-item concrete KS-survey 
 

From here, each participants’ concrete and wood networks are compared to the expert 
network referent for concrete and for wood, reported out as percent (%) links in common 
(number of common links between the two networks divided by the average number of links in 
the two networks). For this data, the p < 0.05 significance threshold is approximately 5 common 
links (25% overlap), overlap equal to or greater that 25% are significantly similar above chance. 

 
Each of the two end-of-module declarative knowledge multiple-choice tests reside as a 

test item bank within the AE 222 Canvas LMS. The Canvas quiz system was set to randomly 
pull items from the test bank consisting of about 150 items to generate a 20-term individualized 
test for each student at each quiz delivery. Since students did not see exactly the same test items, 
the test data for each lesson only considered text items for concrete and for wood and these are 
converted to a percent for each test (correct/total).  
 
Results 

 
The KS network data and the end-of-module multiple-choice test data for the concrete 

lesson and the wood lesson were analyzed with MANOVA. Homogeneity of covariance matrices 
cannot be assumed (Box’s M test: p = 0.003) so the conservative Pillai’s trace is reported. There 
was a statistically significant effect for the GIKS writing intervention versus the no-writing 
control on the four combined dependent variables, F(4, 74) = 2.821, p = 0.031; Pillai’s trace = 
0.132, partial eta squared = 0.132 (Fig. 4).  
 



For the between-subjects follow-up analyses, there is a significant effect of the GIKS 
intervention for Concrete network scores, F(1, 77) = 9.396, p = 0.003, partial eta squared = 0.109 
(GIKS > no writing, see Figure 4). But no significant effects were observed for the other three 
scores: Concrete multiple-choice test scores, F(1, 77) = 1.885, p = 0.174, partial eta squared = 
0.024; Wood network scores, F(1, 77) = 0.749, p = 0.391, partial eta squared = 0.010; and Wood 
multiple-choice test scores, F(1, 77) = 0.223, p = 0.638, partial eta squared = 0.003. 

 
 

 

a) KS network similarity to the expert data  b) end-of-module multiple-choice test data  
Figure 4: KS network similarity and test scores for the concrete lesson and the wood lesson. 

 
Inspection of means shows that the GIKS intervention relative to the no-writing control 

significantly improves their building with concrete mental model structure similarity to the 
expert (GIKS > no writing control, see left side of Figure 4) but not multiple-choice test 
performance (no writing control = GIKS, see right side of Figure 4). This appears to be a 
disordinal interaction of mental model structure and declarative knowledge that has been 
reported previously [55-58]. 

 
Post hoc descriptive analysis of networks for Building with Concrete show that the 

group-averaged network of those using GIKS compared to the no-writing control was more like 
the expert network (GIKS 54% vs. control 36%) and especially like peers in the two group (peer-
peer convergence 67%). For Wood Construction, the difference between the group-averaged 
network similarity to the expert was negligible (GIKS 40% vs. control 39%) but the peer group-
averaged networks were quite similar (peer-peer convergence 72%). 
 
Discussion 

 
From this investigation, our deployment of GIKS as a classroom summary writing 

strategy to show students their conceptual working knowledge of the lesson topics compared to 
the expert had positive impacts in certain areas. From the Concrete writing activity, writing in 
GIKS and then seeing the networks immediately had a statistically positive impact over no 
writing. This was based on the scores from a term-association activity directly after writing. This 
highlights that when students are exposed to writing with network feedback (showcasing their 
correct and missing attributes), there is an influence on their ability to associate lesson terms 
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more like the expert. Observations from the classroom suggest that students did compare their 
networks to that of the expert (through the interface). But on the end-of-module test, there was 
no statistical improvement for writing with GIKS. In fact there was a decrease in performance 
(non significant) for those who used GIKS. Why improved mental model knowledge structure 
sometimes leads to small decreases in declarative memory remains unknown. 

 
Another outcome in this work-in-progress is that student knowledge structures are more 

closely aligned to that of the lecture PowerPoints over those of the readings. This is no surprise, 
as the instructors noted that while the assigned readings are given, it has been their observations 
that many students do not regularly do the reading. But students do seem to rely heavily on what 
is presented in class, particularly what is written in the lecture slides even more so than that of 
what is verbally added to the slides.  

 
From a deployment perspective, the utilization of GIKS was fairly smooth and easy to 

conduct in the lab. Students were in a computer lab and were able to launch the GIKS website 
and the instructions in the Canvas LMS in order to do the work. No technical issues or clarity 
problems were observed or voiced to the researchers or lab attendants present.  
 
Conclusions and Future Work 

 
This investigation covered two technical AE topics (concrete and wood) along with 

writing in GIKS vs. no writing. We observed both positive and some unexpected negative 
outcomes for short term conceptual knowledge along with longer term technical conceptual 
assessment (end-of-module tests). As this is a work-in-progress, two more technical topics are 
being studied next (masonry and sustainability) to see if there are specific content impacts. 
Additionally, other interventions such as writing in GIKS vs. writing in MS Word or writing in 
GIKS and getting detailed feedback on why their networks are missing vs their performance 
against other classmates, are points of future consideration for this funded study that are ongoing. 
Current results provide early insights into having knowledge representations shown to students 
can make a difference.  

 
Data Availability 
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has been aggregated and individual student identifiers have been removed. If you are interested 
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