
Paper ID #41355

Board 134: MATLAB Integration in Sophomore Mathematical Analysis Course

Dr. Djedjiga Belfadel, Fairfield University

Djedjiga Belfadel is an Associate Professor in the Electrical and Bio Engineering department at Fairfield
University. She obtained her Ph.D. degree from University of Connecticut in 2015, in electrical engineering.
Her interests include embedded system

©American Society for Engineering Education, 2024

MATLAB Integration in Sophomore Mathematical Analysis Course

Abstract:

This Evidence-based Practice Paper describes the addition of MATLAB programming language

to the Mathematical Analysis course for sophomore engineering students at Fairfield University

majoring in electrical, mechanical, and biomedical engineering. Previously, MATLAB was

taught in later years of the engineering program. Now, it is introduced in the first-year course,

“Fundamentals of Engineering”, and then fully integrated into the sophomore-level

“Mathematical Analysis” course. This redesign prepares students for their future courses.

MATLAB provides a diverse array of application-specific functions, graphical user interfaces,

debugging tools, and facilitates advanced visualization and matrix manipulation. Additionally, it

includes App Designer and Simulink providing essential programming tools for developing

coding skills and solving complex engineering problems.

The 3-credit Mathematical Analysis course, held twice a week, provides engineering students

with essential numerical methods concepts relevant to a wide range of engineering fields.

Designed to foster these skills within an interactive learning environment. During the first half of

the semester, students are introduced to basic programming concepts including variables,

conditional statements, loops, live scripts as well as the creation and execution of user-defined

functions, symbolics, and plotting techniques. In the second half, the curriculum progresses into

mathematical topics such as numerical solutions for nonlinear equations, analysis of linear

systems, and engineering-centric statistics and probability models. This is followed by a focus on

numerical differentiation, integration techniques, and data analysis methodologies like curve

fitting, linear regression, and interpolation.

The course highlights the significance of coding skills and encourages active student

engagement. Through a structured interactive lecture format, each session begins by introducing

fundamental mathematical concepts, moves on to numerical exercises, and concludes with a

practical MATLAB-programming session. This methodology seamlessly integrates theoretical

understanding with hands-on application.

A distinctive feature of the course is its weekly Peer Learning Group (PLG) sessions, designed as

programming workshops to offer students extra practice beyond regular lectures. Each week,

students engage in preparatory worksheets before class and programming assignments aligned

with lectures and PLG sessions. Additionally, the curriculum integrates online self-paced

training auto-graded modules from the MathWorks platform.

The course's unique design, combining MATLAB programming with mathematical analysis in a

condensed half-semester each presents both advantages and challenges. It offers an efficient way

to cover essential topics rapidly, emphasizing the practical application of programming to

mathematical concepts. This approach necessitates precise curriculum planning to ensure content

is both deep and manageable within the limited time, requiring strategies that maximize learning

outcomes and thoughtfully designed assessments to accurately gauge students' proficiency in

both areas.

Analytical data from assignment evaluations and student feedback indicate that integrating

MATLAB into the mathematical analysis course effectively develops sophomore students'

programming skills.

1. Introduction:

The integration of computer programming in engineering education has become increasingly

essential, especially in the sophomore year when students are expected to tackle more complex

engineering problems. Recognizing this need, most engineering curricula require a computer

programming course, often taught using traditional languages like Python, C, or JAVA. While

these languages have their merits, their complexity can be a barrier for students who are still

developing their engineering problem-solving skills [1,6]. This challenge becomes even more

pronounced when students lack a solid understanding of mathematics and engineering principles

[2].

The author's redesign of the mathematical analysis course to include MATLAB addresses an

educational gap, leveraging MATLAB's strong reputation in engineering and its ranking among

the top technical skills sought by employers. The initiative was shaped through consultations

with the chairs from the Electrical, Mechanical, and Bioengineering departments and curriculum

committees of the school. This updated engineering course supersedes the former mathematical

analysis that solely focused on mathematical skills and is distinct from computer science

programming offerings.

MATLAB popularity stems from its user-friendly interface and powerful computational abilities,

making it approachable for programming novices. In contrast to conventional programming

languages, MATLAB offers a wide range of specialized functions, graphical user interfaces,

debugging tools, and supports enhanced visualization and matrix manipulation. These

capabilities not only make programming easier but also promote the advancement of

mathematical skills essential for solving engineering problems [3].

Originally, MATLAB introduction occurred in the later stages of the engineering program at

Fairfield University. Acknowledging the value of early engagement with practical coding

abilities, the author has now implemented MATLAB teaching in the freshman course,

"Fundamentals of Engineering”, and subsequently fully integrated it into the sophomore-level

Mathematical Analysis course. This adjustment guarantees that students acquire essential

computational tools at an early stage in their educational path, thereby enhancing their

preparedness for subsequent coursework [4].

The Mathematical Analysis course is designed to be highly interactive and engaging [5]. It aims

to introduce students to essential numerical methods and mathematical concepts, which are

pivotal across various engineering disciplines. The course begins with fundamental programming

concepts like variables, conditionals, loops, user-defined functions, and plotting. It then advances

to topics such as numerical solutions for nonlinear equations, linear system analysis, and

statistical models pertinent to engineering as the semester unfolds.

This course stands out due to its inclusion of weekly 75-minute Peer Learning Group (PLG)

sessions. These workshops, led by a teaching assistant, offer hands-on programming practice

beyond lectures, reinforcing core concepts. The PLG is a non-credit corequisite, taught by a

proficient former student, with all materials provided by the faculty. There is no direct grade

assigned to the PLG because students are completing their Programming assignments during the

PLG. The focus is to give students confidence to start writing code from scratch and let them

develop their own programming style.

In addition to the regular coursework, the curriculum is enriched with challenges and modules

from the MathWorks platform, such as ONRAMP and fundamentals of programming. These

resources are tailored to the individual majors of the students, providing them with a

personalized learning experience that is both relevant and challenging.

2. Course Design Challenges:

Integrating MATLAB into the Mathematical Analysis course creates a unique mix of

computational skills and mathematical theory. While this approach offers substantial benefits, it

also introduces challenges that require thoughtful attention:

• Increased Learning Curve: Introducing MATLAB concurrently with complex

mathematical concepts might overwhelm students, especially those with minimal

programming background or who are struggling with the mathematical content. This

compounded focus has the potential to impact student confidence and engagement

negatively.

• Curriculum Depth vs. Breadth: Incorporating MATLAB sessions into an already dense

curriculum necessitates a trade-off between the depth and breadth of mathematical topics

covered. This compromise may reduce the mathematical rigor of the course, potentially

diminishing students' comprehensive understanding of crucial concepts.

• Standardization and Flexibility: Choosing MATLAB as the primary computational tool

ensures a uniform learning experience. However, this decision could limit students'

exposure to a wider variety of programming languages and tools, which hold significant

value in the broad spectrum of engineering fields. Such a restriction could impair

students' ability to approach engineering challenges in various sectors with flexibility or

to adapt to new technologies.

• Assessment and Evaluation: Evaluating students' competencies in both programming and

mathematical analysis introduces a layer of complexity to the grading process. It may

become challenging for educators to discern if students' difficulties arise from

programming, understanding mathematical principles, or integrating both. This

complexity risks masking the true nature of students' learning challenges, potentially

complicating the provision of effective support.

3. Course Overview:

The "Mathematical Analysis" course at Fairfield University, designed to teach math and

programming skills, benefits from a small class size of around 15 students. This intimate setting

ensures personalized instruction and direct interaction between teachers and students.

The course is divided into two main segments, starting with an introduction to essential

programming concepts. This phase covers MATLAB basics, vector and matrix operations,

control structures, advanced functions, symbolic computing, and plotting techniques.

To maximize classroom time for hands-on programming and problem-solving, pre-class videos

and readings are provided. Each topic typically has one or two short videos, totaling about 15

minutes, and an initial weekly assignment worksheet to be completed before the lecture. By

employing a 'flipped' classroom approach, the course shifts focus on practical examples and in-

class exercises, reducing the emphasis on extensive theoretical lectures.

During lecture sessions, each topic is succinctly introduced with slides that cover its syntax,

supported by a series of MATLAB examples. The learning process is structured as follows: the

professor demonstrates the first example, the second is a joint effort guided by student

contributions, and the third is an individual task for students, with the professor and teaching

assistants available for help. A sample example is provided in appendix 1. Advanced students

frequently assist their peers, fostering a cooperative and lively classroom environment. Each

session wraps up with group discussions and the revelation of solutions for individual challenges.

Each week, students are assigned 2 HomeWorks: an initial weekly assignment - a preparatory

worksheet to be completed before the lecture, graded mainly for completion, using pre-class

videos and readings provided; and a second main assignment - programming assignments

aligned with lectures and PLG sessions, due at the end of the second lecture and PLG session of

that week and graded by teaching assistants. Additionally, the curriculum integrates online self-

paced training auto-graded modules from the MathWorks platform.

The initial phase of the course is structured to provide students with a comprehensive

understanding of MATLAB and its application in engineering, detailed as follows:

• MATLAB Basics: Introducing the interface, commands, and workflow of MATLAB.

• Vectors and Matrices: Exploring the creation, manipulation, and application of vectors

and matrices.

• Scripts & Functions: Learning to write live-scripts and functions for task automation and

modular programming.

• Control Flow (Conditional Statements): Implementing conditional logic to make

decisions within programs.

• Control Flow (Loops): Using loops to repeat operations and process data efficiently.

• Advanced Functions: Delving into more complex functions to solve intricate problems.

• Symbolic Operations & Plotting: Conducting symbolic calculations and visualizing data

through various plotting techniques.

• App Design: Creating graphical user interfaces (GUIs) for applications within MATLAB.

Starting right after the midterm, the course shifts into its second phase, delving into more

complex topics in mathematical analysis, including Root Finding & Optimization, Linear

Algebra, Statistics, Curve Fitting, Interpolation, and Numerical Integration & Differentiation. It's

important to note that students are not expected to master these advanced topics on their own

outside of class. The course is designed to first lay down the theoretical groundwork and tackle

numerical problem-solving manually in the initial weekly session. The following session then

focuses on algorithm development using MATLAB, marking a key transition from theoretical

concepts to practical computational applications. This phase encourages students to move from

manual problem-solving towards leveraging computational methods, guiding them through the

conceptualization and execution of computer algorithms to address problems. A sample final

exam is provided in appendix 2.

The second phase of the course is designed to equip students with a good understanding of

comprehensive mathematical concepts, as detailed below:

• Measuring Errors: True vs. Approximate and Absolute vs. Relative.

• Root Finding & Optimization: Techniques for identifying solutions to equations and

optimizing mathematical models using the bisection method, secant method, Newton-

Raphson method, and false position method.

• Linear Algebra: Exploration of vector spaces, matrices, linear transformations, and

solving a system of linear equations using the Gauss Elimination method.

• Integration: Fundamental methods for calculating integrals, including the trapezoidal and

Simpson's rule.

• Differentiation: Fundamental methods for calculating derivatives, including forward,

backward, and central differences.

• Data Analysis & Statistics: Introduction to statistical methods and data analysis

techniques for interpreting and understanding data.

• Linear Interpolation: Techniques such as Lagrange and Newton interpolation for

estimating values within a set of points, and the introduction of spline methods.

• Linear Regression: Strategies for estimating unknown values and analyzing the

relationship between variables, including methods for assessing the goodness of fit.

4. Course Outcome:

[] course outcome link to the Blooms Taxonomy levels goal () link to ABET student outcomes

1. Show proficiency in MATLAB including the understanding of the workspace, using

m-files, graphics and plotting, and vector manipulation. [I] (1)

2. Demonstrate mastery of mathematical, numerical, and statistical engineering topics

such as matrix algebra, data analysis and statistics, data interpolation, curve fitting,

integration, and differentiation [II] (2)

3. Identify how programming and mathematical content applies to the field of

engineering and understand the impact of engineering solutions in a global economic,

environmental, and societal context. [I,II] (4) knowledge

This course supports ABET Student Outcomes: (1, 2, 4)

1. ABET 1 an ability to identify, formulate, and solve complex engineering problems by

applying principles of engineering, science, and mathematics.

2. ABET 2 an ability to apply engineering design to produce solutions that meet

specified needs with consideration of public health, safety, and welfare, as well as

global, cultural, social, environmental, and economic factors.

3. ABET 4 an ability to recognize ethical and professional responsibilities in

engineering situations and make informed judgments, which must consider the impact

of engineering solutions in global, economic, environmental, and societal contexts.

5. Grade Distribution:

• Participation 5%

• Quizzes 10%

• Mathworks Certificates 10%

• Homework (WS) 10%

• Programing Assignments (PA) 20%

• Midterm Exam 20%

• Final Exam 25%

6. MATLAB Online Training and Its Implementation:

As a supplement to in-class and PLG sessions, students were required to engage with

MATLAB's online training platforms. These platforms offer a variety of hands-on, self-paced,

and free online training courses, including ONRAMP, MATLAB Fundamentals, App Building,

Linear Algebra, and a module specific to each student's major.

• ONRAMP Course: This introductory course, taking approximately two hours, covers

eleven main topics, beginning with fundamental MATLAB commands and progressing to

data importation and visualization. It culminates in a final project where students apply

their skills to analyze astronomical data, learning the practical application of concepts

from theory to implementation.

• MATLAB Fundamentals: This course offers a comprehensive dive into MATLAB

programming, covering a wide array of topics from data analysis to visualization. It's

ideal for students looking to expand their knowledge after completing the ONRAMP

course.

• App Building with MATLAB: For those interested in applying MATLAB to mathematics

teaching, courses on app building in MATLAB are available. These courses focus on

creating graphical user interfaces/apps, serving as practical tools for interactive teaching.

• Additional MATLAB Courses: Following ONRAMP, students are encouraged to explore

further courses available on the MATLAB academy training portal. These courses, such

as MATLAB for Data Processing and Visualization, MATLAB Programming

Techniques, and Simulink ONRAMP, offer more in-depth knowledge and specialized

skills.

• Certificates and Incentives: Upon completing these modules, students receive certificates

from MathWorks.

Topic Description of the ONRAMP

Topic Description

Commands

Enter commands in MATLAB to perform

calculations and create variables

Vectors and Matrices Create MATLAB variables that contain multiple

elements

Importing Data Bring data from external files into MATLAB

Indexing into and Modifying Arrays Use indexing to extract and modify MATLAB

arrays

Array Calculations Perform calculations on entire arrays at once

Calling Functions Call functions to obtain multiple outputs

Obtaining Help Use the MATLAB documentation to discover

information about MATLAB features

Plotting Data Visualize variables using MATLAB's plotting

functions

MATLAB Scripts Write programs in script

Logical Arrays Use logical expressions in MATLAB

Final Project Bring together the introduced concepts with a

project

Table I: Main topics of MATLAB Onramp training

7. Student Feedback

In Spring 2023 data was collected via Blackboard from all students (30). The course survey

highlighted several positive aspects and areas for improvement, summarized as follows:

• Positive Aspects:

• The practical programming assignments and PLG sessions were highly valued by

students, indicating the effectiveness of hands-on learning and collaborative

environments in enhancing understanding and engagement with the course

material.

• Understanding and Participation:

• 100% of students understand that survey participation won't affect their grade and

confirm their voluntary participation, indicating clear communication of survey

purposes and voluntary nature.

• PLG Sessions Helpfulness:

• A significant majority (86.666%) found PLG sessions beneficial for grasping the

course's objectives, suggesting the need to maintain these sessions while

incorporating more practical examples and guided exercises.

• Impact of MATLAB on Interest:

• About two-thirds of students (66.666%) reported that working with MATLAB

heightened their interest in programming, showcasing the positive impact of

integrating software tools into the curriculum.

• Suggestions for Course Improvement:

• Students recommended more in-class examples, and a better balance of

coursework to ensure a manageable workload.

• MathWorks Training Feedback:

• Feedback on MathWorks training was mixed, with some finding it overly lengthy

while others appreciated its content, indicating a need to evaluate and potentially

adjust this component to maximize its benefit without causing undue burden.

All students’ feedback in addition to the faculty’s observations, will be considered for the

improvement of next year’s course.

8. Conclusion

The integration of MATLAB programming into the Mathematical Analysis curriculum at

Fairfield University significantly benefits engineering students by bridging theoretical

mathematics with practical application. This method enriches students' comprehension of

mathematical concepts via interactive visualization and hands-on practice, fostering essential

skills such as problem-solving, computational thinking, and teamwork. The positive outcomes of

this approach, supported by student feedback and enhanced programming skills, underscore the

importance of combining practical programming abilities with a strong mathematical foundation

to improve overall student outcomes and readiness for future challenges. Although this model

has proven effective in smaller class settings, adapting it for larger classes involves adopting a

flipped classroom model where students engage with introductory materials before class and

focus on active MATLAB application during class time. Creating a collaborative environment

with structured group work and peer feedback, along with leveraging teaching assistants for

additional support and grading, further enhances learning. Integrating MathWorks auto-graded

programming workshops and requiring completion certificates for these sessions ensures active

participation and solidifies learning, making this comprehensive approach conducive to fostering

active learning and supporting individual advancement in larger classroom contexts.

References

[1] P. T. Goeser, W. Johnson, S. L. Bernadin, and D. A. Gajdosik-Nivens, “Work-in-Progress:

The Impact of MatLab Marina - A Virtual Learning Environment on Student Learning in a

Computing for Engineers Course”, ASEE Annual Conference and Exposition, 2013.

[2] R. Talbert, “Learning MATLAB in the Inverted Classroom”, ASEE Annual Conference and

Exposition, 2012.

[3] K. Larsen, A. Hossain And M. Weiser, “Teaching an Undergraduate Introductory MATLAB

Course: Successful Implementation for Students Learning”. ASEE Annual Conference and

Exposition, 2016.

[4] D. Belfadel, M. Zabinksi and I. Macwan. Introduction to MATLAB Programming in a

Fundamentals of Engineering Course, ASEE: Annual Conference and Exposition, Long Beach,

California, July 2021.

[5] D. Belfadel, M. Zabinksi and R. Munden. Walking on Water Term Design Project in

Fundamentals of Engineering. ASEE: Annual Conference and Exposition, Montreal, Canada.

June 2020.

[6] D. Belfadel, M. Arambulo, M. Zabinksi, R. Munden, and James Cavallo. “Use of the

Arduino Platform in Fundamentals of Engineering.” ASEE: Annual Conference and Exposition,

Tampa, Florida. June 2019.

Appendix 1: Sample in class code “Example of Interest Calculation”

format bank

ibalance=1000;

ny=30;

rate=0.08;

for i=1:ny

 ibalance=ibalance+rate*ibalance;

 bal(i)=ibalance;

end

fprintf('Balance after %d years is: %.2f dollars.\n', ny,ibalance)

Balance after 30 years is: 10062.66 dollars.

plot(1:30,bal)

title('Compounded interest after 30')

xlabel('Number of years')

ylabel('Balance')

axis([1 30 0 11000])

Appendix 2: Sample Final Exam (take home)

Problem 01:

The horizontal velocity of a body is given as a function of time by

𝑣(𝑡) = 𝑡2 + 4𝑡 − 2

where 𝑡 is given in seconds, and 𝑣 is given in m/s.

Question 1: (5 pts)

Determine the value of the acceleration at 𝑡 = 6 seconds using forward divided difference.

Question 2: (5 pts)

Determine the value of the acceleration at 𝑡 = 8 seconds using backward divided

difference.

Question 3: (5 pts)

Determine the value of the acceleration at t=10 seconds using central divided difference

Question 4: (5 pts)

Write your own Matlab function to validate your results (all 3 methods: forward,

backward and central).

Question 5: (5 pts)

Compare the results of question 4 to the results of question 1, 2 and 3.

what is your conclusion?

Problem 02:

The following data of the velocity of a body is given as a function of time.

Time (s) 0 15 28 32 54

Velocity (m/s) 0 34 47 85 173

Question 1: (5 pts)

Determine the value of the velocity at 𝑡 = 29 seconds with first order polynomial

interpolation using direct polynomial interpolation.

Question 2: (5 pts)

Determine the value of the velocity at 𝑡 = 29 seconds with first order polynomial

interpolation using Newton polynomial interpolation.

Question 3: (5 pts)

Determine the value of the velocity at 𝑡 = 29 seconds with first order polynomial

interpolation using Lagrange polynomial interpolation.

Question 4: (5 pts)

Use Matlab (built in function) to calculate the velocity at 𝑡 = 29 seconds.

Question 5: (5 pts)

Discuss your results.

Problem 3:

Determine the root (highest positive) of:

F(x)= x^3+5.9*x.^2+10.9*x-2

Note: Remember to compute the error Epsilon-a after each iteration.

 Use epsilon_s=0.01%.

Question1: (10 pts)

Perform (hand calculation) 4 iterations of Newton’s Raphson method to solve the equation.

Use an initial guess of x0=1.

Question 2: (10 pts)

Write your own Matlab function to validate your results and plot the error.

Question 3: (5pts)

Compare the results of question 1 to the results of question 2, what is your conclusion?

Problem 4:

 f(x) = x^3-5

Question 1: (10pts)

Perform 4 iterations of the bisection method, using initial guesses xl=-2, and Xu=4.

Question 2: (10pts)

Write your own Matlab function to validate your results and plot the error.

Question 3: (5pts)

Compare the results of question 1 to the results of question 2, what is your conclusion?

Note: Remember to compute the error Epsilon-a after each iteration (starting from iteration

number 2).

 Use epsilon_s=0.01%.

Problem 05

Given the system of equations:

𝑥1+2 𝑥2-𝑥3 =10

-3𝑥1-3 𝑥2 + 2 𝑥3=-10

𝑥1+4𝑥2 + 5 𝑥3 =-10

Question 1: (20 pts)

Use 2 different ways (methods) in MATLAB to Solve the system.

Show the code and the outputs.

Question 2: (5pts)

Is the solution unique? Explain why?

