
Paper ID #41333

Seamless Integration of Digital Circuits and Assembly Language

Prof. Yumin Zhang, Southeast Missouri State University

Yumin Zhang is a professor in the Department of Engineering and Technology, Southeast Missouri State
University. His research interests include semiconductor devices, electronic circuits, neural networks, and
engineering education.

©American Society for Engineering Education, 2024

Seamless Integration of Digital Circuits and Assembly Language

Yumin Zhang

Department of Engineering and Technology

Southeast Missouri State University

Cape Girardeau, MO 63701

Abstract

Digital circuits, with their ability to manipulate binary data, form the foundation of modern

electronic devices. On the other hand, assembly language, operating as a low-level programming

language, provides nuanced control over a computer's hardware. The seamless convergence of

these two realms empowers students with a deep comprehension of the interface between

hardware and software, unlocking pathways for adept and streamlined code development at more

advanced levels.

A course with the title of “Computer Systems and Assembly Language” is designed for

undergraduate students majoring in Computer Science. The first half of the semester focuses on

introducing combinational and sequential logic circuits. A free web-based circuit simulator

allows students to design a basic CPU, which facilitates the formulation of an instruction set,

empowering students to execute machine codes for fundamental operations. In the second half of

the semester, the curriculum delves into assembly language. Through online simulators, students

explore the fetch-decode-execute cycle and gain insights into implementing essential structures

such as the for-loop and if-else, commonly used in high-level computer languages.

Introduction

In recent years, enrollment in the Computer Science (CS) department has surged dramatically.

Consequently, faculty members with backgrounds in Electrical and Computer Engineering have

been called upon to teach certain CS courses. From their standpoint, there appears to be a

disparity between software and hardware, with CS students often lacking fundamental awareness

of the digital circuits that form the backbone of software operations. While courses in computer

organization and architecture are the most relevant in addressing hardware aspects, their primary

focus tends to be on register-transfer level optimizations [1-3].

To furnish CS students with a comprehensive understanding of computer systems from the

ground up, we offer a course that commences with the fundamentals of basic logic gates. As

shown in Fig. 1, it covers layers 4-7 on logic gates, digital circuits, micro-architecture, and ISA

that includes both instruction set and assembly language. The first half of the semester focuses

on the exploration of combinational and sequential logic circuits, which correspond to layers four

and five in Fig. 1. Thereafter, students can design an Arithmetic Logic Unit (ALU) circuit

capable of executing fundamental arithmetic and logic operations. This design exercise can aid

students in grasping how binary opcodes can effectively govern digital circuits. Furthermore,

students also design a functional CPU circuit using the essential components provided by the

circuit simulator. This practical laboratory experience contributes to a

thorough comprehension of the operations associated with basic

assembly code.

To furnish CS students with a comprehensive understanding of

computer systems from the ground up, we offer a course that

commences with the fundamentals of basic logic gates. As shown in

Fig. 1, it covers layers 4-7 on logic gates, digital circuits, micro-

architecture, and ISA that includes both instruction set and assembly

language. The first half of the semester focuses on the exploration of

combinational and sequential logic circuits, which correspond to layers

four and five in Fig. 1. Thereafter, students can design an Arithmetic

Logic Unit (ALU) circuit capable of executing fundamental arithmetic

and logic operations. This design exercise can aid students in grasping

how binary opcodes can effectively govern digital circuits.

Furthermore, students also design a functional CPU circuit using the

essential

components provided by the circuit simulator. This practical laboratory

experience contributes to a thorough comprehension of the operations

associated with basic assembly code.

With the CPU circuit designed and simulated, the focus transitions to

assembly language. An integral aspect is the correlation between

assembly code and machine code, enabling direct interaction with the

digital circuits in CPU. The course adopts the RISC-V ISA, renowned for its straightforward and

systematic instruction set. The online simulator, emulsiV, proves highly beneficial in illustrating

the intricacies of executing assembly code. However, it also exhibits certain limitations. Hence,

the incorporation of alternative simulators for assembly language becomes essential, particularly

for handling advanced projects.

ALU Design

At the core of a CPU lies the Arithmetic Logic Unit (ALU), responsible for executing arithmetic

and logic operations. Fig. 2 illustrates the structure of a 4-bit ALU featuring four distinct

operations, each encoded with 2-bit opcodes. This circuit comprises three operational modules,

executing the functions of AND, OR, and ADD. The design of logic modules are

straightforward, which simply include four copies of AND/OR gates. The adder module at the

bottom engages four built-in single-bit adders. Fortunately, the CircuitVerse simulator [4]

includes a component, the circle at the bottom, facilitating the conversion of a number into its 2’s

complement form, simplifying the implementation of the subtraction operation.

The control stemming from the opcode is implemented through three multiplexers. The Most

Significant Bit (MSB) of the opcode regulates the rightmost multiplexer: when “00” or “01” is

selected, it connects the output to the two logic modules, whereas “10” and “11” direct the output

to the adder module. Simultaneously, the Least Significant Bit (LSB) of the opcode governs the

selection between two results within the same category (logic or arithmetic). In Fig. 2, the

opcode is set to “11,” indicating the operation Y = A – B. Initially, the input B undergoes the

App. Software

Opearting System

ISA

Micro-Architecture

Digital Circuits

Logic Gates

Analog Circuits

Transistors

Semiconductors

Fig. 1. Layers of

abstraction.

conversion to its 2’s complement format, followed by addition to A, and the result is showcased

in the hex-display on the right. Modifying the opcode will accordingly reflect the corresponding

results.

Fig. 2. ALU Circuit.

With 4-bit operands, the numbers can be conveniently displayed with the hex-displays. In Fig. 2,

A = 6, B = 4, and Y = 2. In addition, wire color is coded with the voltage level: light green

signifies a high voltage level, while dark green corresponds to a low voltage level. This effect

will also be demonstrated in Fig. 4-5.

CPU Design

The circuit simulator provides an ALU component, as depicted in Fig. 3. In contrast to the ALU

circuit illustrated in Fig. 2, this version is more potent, featuring a 3-bit opcode that allows it to

perform up to eight distinct operations. For this lab assignment, we opted for a 4-bit bus width,

wherein the two input numbers are sourced from the left, and the resulting output is showcased

on the right. Positioned at the top is the opcode, and the associated operations are detailed in the

table on the right, accessible through the documentation website [5].

Fig. 3. ALU component with opcode table.

Regrettably, the circuit simulator lacks a register as a built-in component, necessitating students

to design a register circuit using D Flip-Flops and multiplexers [6], as illustrated in Fig. 4. This

circuit is transformable into a component, featuring input pins on the left and an output pin on

the right. Activation of the “Load” pin facilitates the loading of a new 4-bit data into the register.

Moreover, it also accommodates the "Clear" operation.

Opcode Operation

00 AND

01 OR

10 ADD

11 SUB

Fig. 4. Register circuit and component.

Furthermore, students are required to construct a one-hot decoder circuit employing basic logic

gates, as depicted in Fig. 5. This decoder circuit plays a pivotal role in governing the data path

between the ALU and the registers, ensuring that only one output is set to ‘1’ while the other

three remain ‘0’. While this circuit is very simple and can be manually designed, CircuitVerse

offers a convenient tool (combinational analysis) capable of generating digital circuits based on

truth tables.

Fig. 5. One-hot decoder circuit and component.

Having designed the register and decoder circuits, the construction of the CPU circuit is now

feasible, as illustrated in Fig. 6. Tri-state gates regulate the data paths, capable of being open or

shorted based on the output signals from the decoder circuits. Additionally, hex-displays are

connected to the inputs and output of the ALU, along with the three registers. In the RISC-V

architecture, the first register, X0, is hardwired to zero, thus necessitating only three registers for

this CPU. If students are unable to finish the design within one lab session, they can save the

incomplete design for future work. In CircuitVerse, the designs can be saved either online or

offline.

Adhering to the RISC-V ISA convention, the machine code format for this CPU is structured as

follows: | RS2 | RS1 | RD | Opcode |. Given the presence of four registers, only 2 bits are

required for their addressing. Additionally, the opcode uses 3 bits, resulting in a 9-bit machine

code for this CPU. For instance, the machine code 001101010 can be decoded as follows: RS2 =

X0, RS1 = X3, RD = X1, Operation = addition, indicating the operation X1 = X3 + X0. This

operation aligns with the associated assembly language instruction: add x1, x3, x0. Interestingly,

the sequence of the components in a line of assembly code is reversed when compared to the

machine code.

Fig. 6. CPU circuit.

CPU Operations with Machine Code

Upon activating the "Clear" button located at the bottom, all data stored in the three registers are

reset to zero, as depicted in Fig. 6. Starting from this initial state, various operations can be

subsequently executed.

1) X1 = X0 |~ X0 → 000001101: RS2 = 00, RS1 = 00, RD = 01, Opcode = 101, and the result is

X1 = “1111”, which is essentially the inversion of X0.

2) X2 = ‘1’ if (X0 > X1) → 010010111 (RS2 = 01, RS1 = 00, RD = 10, Opcode = 111), and

the result is X2 = “0001”, since the number “1111” is equal to -1 in 2’s complement format.

The opcode 111 (SLT) means “set the output if input A is less than input B”.

3) X3 = X1 – X2 → 100111110 (RS2 = 10, RS1 = 01, RD = 11, Opcode = 110), and the result

is X3 = “1110”.

4) X3 = X1 & X2 → 100111000 (RS2 = 10, RS1 = 01, RD = 11, Opcode = 000), and the result

is X3 = “0001”. In this operation, X2 serves as a mask to detect the least significant bit (LSB)

of X1. One application is to identify whether a number is even or odd, as the LSB of even

numbers is 0, while for odd numbers, it is 1.

RISC-V Assembly Language

There are several widely used instruction set architectures (ISAs), including X86, ARM, MIPS,

and RISC-V. In contrast to conventional proprietary ISAs, RISC-V stands out for its open

accessibility, enabling the implementation of processors based on its specifications without

incurring any licensing fees. A fundamental aspect of engaging with RISC-V architecture

involves proficiency in RISC-V Assembly Language. This proficiency is crucial for

programmers and hardware designers seeking to leverage the capabilities and adaptability

offered by the RISC-V architecture.

The RISC-V ISA offers a direct interface to the underlying hardware, enabling efficient resource

utilization across diverse computing environments. With the expanding RISC-V ecosystem,

expertise in RISC-V Assembly Language becomes progressively more valuable for individuals

engaged in the advancement of next-generation computing systems. Among its various

advantages, a notable characteristic of the RISC-V ISA is its simplicity and regularity, as

illustrated in Fig. 7 showcasing the RV32I instruction format.

Fig. 7. RV32I Instruction Format.

Broadly speaking, basic assembly code can be correlated with machine code, and an online

simulator (emulsiV) [7] adeptly facilitates this association. Illustrated in Fig. 8, as the assembly

code is entered on the right-hand side, the corresponding machine code is automatically

generated. To the left of the machine code section also lists the addresses associated with the

machine codes.

Fig. 8. Machine code and assembly code.

Unfortunately, the machine code is arranged in big-endian format, necessitating the reordering of

the bits. For instance, the machine code for the first line of assembly code is 0x00028333, which

can be transformed into the R-type binary format with the three register regions highlighted as

bold: |0000000|00000|00101|000|00110|0110011|. The R-type machine code's operations can be

deciphered by examining the three remaining sections: function7 section, function3 section, and

the opcode section on the right. A comparison with Table 1 confirms that the operation is

“ADD.” Similarly, one can analyze the machine code for the second line of the assembly code,

revealing the AND operation: |0000000|00110|00101|111|00111|0110011|.

Table 1. R-type RISC-V machine code.

The online simulator (emulsiV) offers an animation mode, a valuable tool aiding students in

comprehending CPU operations. In this mode, as the code is executed step by step, the program

counter (PC) progresses through memory addresses, and the instruction register (IR) fetches the

machine code stored in memory. Simultaneously, the right-hand side of the simulator displays

the register values.

However, certain limitations exist with this simulator. Firstly, it only accepts authentic assembly

codes, despite pseudo codes being more user-friendly. Secondly, the absence of support for

labels makes it challenging to implement branching and procedures. Consequently, emulsiV

serves primarily for introductory purposes with simple assignments, while Venus [8] emerges as

a more powerful online simulator suitable for more advanced projects.

Discussion

In this course, all the simulators used are web-based, ensuring convenient access for students

without the need for installations on their computers. However, the trade-off lies in the limited

functionality and relatively slow speed of these simulators. While these drawbacks may not pose

significant challenges in the context of an introductory course on computer systems and

assembly language, it is important to acknowledge the trade-off between accessibility and

limitations associated with online simulators.

As depicted in Fig. 6, the online simulator CircuitVerse is sufficiently effective for designing a

basic CPU, aiding students in comprehending the interaction between binary machine code and

digital circuits. Furthermore, despite its relatively basic nature, emulsiV was utilized for a lab

assignment involving the generation of a dataset and subsequent sorting using the bubble sort

algorithm. Therefore, these simulators serve this course quite effectively.

Before teaching this course for the first time in Fall 2023, the author anticipated that CS students

might struggle with learning digital logic circuits due to their lack of background in basic electric

circuits. However, it turned out that this concern was unfounded, as the students encountered no

difficulties in designing and simulating the circuits. In fact, some students displayed great

enthusiasm during the lab sessions, and the divide between software and hardware was easily

bridged. The feedback from students was overwhelmingly positive, particularly considering that

this course had been regarded as the most challenging in the CS curriculum in the past.

Regrettably, there is currently no quantitative assessment data available to demonstrate the

effectiveness of this approach.

Summary

In a course titled "Computer Systems and Assembly Language," students delve into the design of

digital circuits from the ground up. Following the introduction of basic combinational and

sequential logic circuits, students progress to designing ALU and CPU circuits. This hands-on

process enables students to grasp how binary machine code seamlessly interacts with digital

circuits. The second part of the semester introduces assembly language, where the online

simulator emulsiV proves invaluable in elucidating the fetch-decode-execute cycle. Additionally,

students can also gain insights into the implementation with assembly language of higher-level

language structures, such as for-loops, while-loops, if-else statements, functions, etc.

References

[1] David Patterson, John Hennessy, Computer Architecture: A Quantitative Approach, 6th ed.

Amsterdam, Netherland: Morgan Kaufmann, 2017. ISBN: 978-0128119051.

[2] David Patterson, John Hennessy, Computer Organization and Design RISC-V Edition: The

Hardware Software Interface, 2nd ed. Amsterdam, Netherland: Morgan Kaufmann, 2020. ISBN:

978-0128203316.

[3] Jim Ledin, Dave Farley, Modern Computer Architecture and Organization: Learn x86, ARM,

and RISC-V architectures and the design of smartphones, PCs, and cloud servers, 2nd ed.

Birmingham, UK: Packt Publishing Ltd, 2022. ISBN: 978-1803234519.

[4] CircuitVerse simulator: https://circuitverse.org/

[5] CircuitVerse documentation: https://docs.circuitverse.org/#/

https://circuitverse.org/
https://docs.circuitverse.org/#/

[6] David Harris, Sarah Harris, Digital Design and Computer Architecture, RISC-V Edition,

Amsterdam, Netherland: Morgan Kaufmann, 2021. ISBN: 978-0128200643.

[7] RISC-V assembly language simulator emulsiV: https://eseo-tech.github.io/emulsiV/

[8] RISC-V assembly language simulator Venus: https://venus.kvakil.me/

https://eseo-tech.github.io/emulsiV/
https://venus.kvakil.me/

