
Paper ID #41329

Leveraging Peer-Authored Tutorials to Cultivate Programming Skills and
Promote Open Educational Resources: A Multi-Classroom Case Study

Dr. Dirk Joel-Luchini Colbry, Michigan State University

Dr. Dirk Colbry is a faculty member in the Department of Computational Mathematics, Science and
Engineering (CMSE) at Michigan State University. Dr. Colbry earned his Ph.D. in Computer Science
and his principle areas of research include scientific image understanding, large scale computing and
education.

©American Society for Engineering Education, 2024

Leveraging Peer-Authored Tutorials to Cultivate Programming Skills and
Promote Open Educational Resources: A Multi-Classroom Case Study

Abstract

The rapid evolution of the computational and technological landscape poses a significant
challenge for educators in computer and data science. Keeping pace with the ever-changing tools
and technologies is an ongoing struggle, and the ability for students to become self-reliant
learners, adapting to new tools, is crucial. This paper introduces a pedagogical approach that
leverages student-authored tutorials to cultivate programming skills and promote open
educational resources (OER). The approach has been implemented across diverse classroom
settings, including a summer research program, multiple years of an undergraduate data science
capstone course, and a graduate special topics course on generative AI (Artificial Intelligence).

Motivation

The dynamic nature of the computation and technology landscape necessitates a shift in teaching
strategies. Traditional methods of having students master specific tools are rapidly becoming
obsolete, prompting the need to refocus learning goals on teaching students how to adapt and
learn new tools. The “protégé effect,” emphasizing that students learn best by teaching, forms the
basis of the approach outlined in this paper. This student-centric strategy aims to address the
challenge of keeping up with evolving tools by having students collaboratively identify and write
tutorials for useful of-the-moment tools.

The key learning objective of this approach is to help students understand the importance of
exploring and using current and emerging tools as part of their lifelong education. The specific
tools can vary a lot depending on individual classroom learning goals, resulting in a wide range
of student-authored tutorials. Some examples from the author’s classes include:

 Setting up ChatGPT to help write code in Jupyter notebooks.
 Building and deploying your own Shiny App.
 Accessing the US census API in Python.
 Downloading and installing Seaborn to make more robust figures.

Students are tasked with creating in-depth tutorials designed to help their peers learn to use the
software tools effectively. Creating successful tutorials requires that student authors both
understand the tools and effectively communicate their functionality to peers. These assignments
culminate in the collaborative curation of a git repository that serves as a valuable resource for
current and future students [1]. Importantly, these new tutorials are shared under a Creative
Commons license and provided as Open Educational Resources (OER), allowing free access by
learners worldwide [2].

This paper describes the structure of the tutorial development assignment and the steps involved,
sharing insights and case studies on how to implement this approach successfully in different
classroom settings. The methodology for assessing the assignment's effectiveness is discussed.
Additionally, this paper addresses the transferability of this approach to a broad range of
programming and data science courses, highlighting its adaptability and the benefits of
contributing to the OER ecosystem.

The outcomes of this multi-classroom case study offer valuable insights for educators seeking to
enhance their students’ tool fluency, self-directed learning capabilities, and collaboration skills
while also contributing to OER. By emphasizing the importance of figuring out tools and the
creation of comprehensive tutorials for peers, this pedagogical approach not only equips students
with essential technical skills but also fosters a culture of mutual support and knowledge sharing
in the classroom, contributing to a broader educational community.

Methodology

This section introduces the concept of a Student-Crafted Hub for Open Learning and
Academic Resources (SCHOLAR). The motivation behind SCHOLAR is to encourage students
to engage in self-directed learning and transfer their knowledge by writing tutorials that will
teach others. These tutorials become a reusable resource that the student authors can keep as a
future reference, while also building a repository of tutorials that are useful to the instructor and
future students. In fields like computer and data science, where tools and libraries are constantly
changing, the ability to adapt approaches and learn new tools quickly and efficiently is an
essential skill. The SCHOLAR approach stresses the importance of students filtering through
vast information, learning how to use tools for specific problems, and developing skills for
navigating the ever-evolving technology landscape. Students also learn how to write coherent
tutorials that are complete and thorough enough for their peers.

The SCHOLAR assignment employs an open-source platform, utilizing git version control and
Jupyter notebooks for organizing the tutorials [3]. Jupyter notebooks are an open-source file
format designed specifically to encourage communication. Jupyter notebooks effectively present
ideas using formatted text, LaTeX equations, images, video, and executable code. They are an
ideal tool for communicating complex ideas, and thus Jupyter notebooks are extremely suitable
as a base file type for any type of tutorial.

Git is a version control system that is used by some of the world’s biggest open-source software
projects and is specifically designed to enable multiple authors to work together on any text-
based file format. There are many online repository management systems that can help git users
share their files; the most common one is github [4], but there are many others such as gitlab [5]
and bitbucket [6]. For the Jupyter notebook tutorial repositories described in this paper, students
use our university-hosted gitlab instance. Each student in the class automatically has an account
in this gitlab that is linked to their student ID, which makes tracking and grading assignments
much simpler.

The SCHOLAR methodology involves a five-step cycle, each assigned as a course task:

1. Generate a new Tutorial and issue a pull request. Students pick a software library or
tool that they need to use in their projects and write a comprehensive tutorial for the
library/tool. This tutorial should include the steps needed to install the software and get it
working using a simple example. When they are done, students use the git concept of a
“Merge” or “Pull request” to submit it to the main repository.

2. Review and merge the new tutorial into the main branch. Students review each
other’s work in the second step. The reviewer must follow the directions outlined in the
tutorial and successfully get it working. The reviewer must also ensure that the changes
meet the coding standards set up in the class, which typically cover simple things like file
naming conventions and ensuring that only files needed for the tutorial are included in the

repository. The instructors or the students can then merge the solution into the main
repository.

3. Review existing tutorials and Submit an Issue. Since software is constantly being
updated and changed, the tutorials authored by previous classes need to be regularly
reviewed and updated to ensure they remain valid. This assignment helps with this data
curation process. Almost all online git repositories have a mechanism for users to submit
“issues,” which is just a way to identify problems that need to be fixed in a repository. In
this step of the SCHOLAR assignment, students find a mistake or recommended
improvement in a tutorial and submit the “issue” to the repository. The issue should say
where the mistake is and give sufficient details for someone else to be able to correct the
mistake.

4. Review current issues, fix the issue, and submit the fix as a pull request. In this step,
students go through the issues that have been submitted and pick one or more that they
can fix. Students then proceed to fix the issues in a “branch” and push that branch to the
main repository as another pull or merge request. The comment for the pull request
should clearly indicate which issue is being fixed by identifying it using a hash tag and
issue number.

5. Merge a pull request into the main branch. Finally, either the instructor or the students
should review the merge requests and accept or reject them based on how well the issue
was resolved. This is essentially a repeat of the tasks in step 2, but substitutes fixing the
existing tutorials instead of adding newly
authored ones.

This cyclical approach (see Figure 1) allows students
to continuously contribute to and improve the
SCHOLAR repository, reinforcing their skills in
learning, collaborating, and adapting to new tools.
The ordering of the steps can be easily adjusted to
meet the varying skillsets and learning goals of
different class settings. For example, students with
less technical experience might start by reviewing
existing tutorials, submitting issues, and learning to
navigate the git repository before authoring and
submitting their own tutorials.

The next three sections describe case studies that illustrate the effectiveness of the SCHOLAR
assignment in different classrooms. These case studies include an undergraduate capstone course,
a bridge program for incoming students in a Master of Data Science (MSDS) program, and a
graduate special topics course in generative AI (Artificial Intelligence). The case studies
demonstrate how engaging students in generating and evaluating tutorials authored or updated by
their peers enhances their learning and increases students’ adaptability to new tools and
techniques.

Case Study: MSDS Bridge Curriculum

In the summer of 2022, a team of six incoming graduate students spent the summer preparing to
start a Master of Science in Data Science (MSDS) program. This MSDS program was newly
launched at Michigan State University in the fall of 2022, and these six students were funded as
part of an NSF workforce development project (NSF #2123260) to spend the summer preparing

Figure 1: Five-Step Assignment Cyclic Cycle:
New Tutorial, Review and Merge, Submit Issues,
Review/Fix Issue, Review and Merge

for success as graduate students. In addition to studying math and programming, these students
helped curate some self-guided tutorials for the other incoming MSDS students who would
arrive in the fall.

This MSDS program recruited students from a wide range of backgrounds, and there was
considerable concern among the faculty that not all students would arrive with a common
understanding of core topics and skills necessary for success in the new MSDS program. The six
students who arrived early had a variety of disciplinary backgrounds as undergraduates and were
not yet experts in data science. These six students worked with faculty over the summer to
brainstorm key topics and skills that incoming students would need to know for the first year of
classes. The students then reviewed and tried various online learning resources in these areas and
compiled the ones that they found most useful for themselves and their incoming peers. These
tutorials were added to a shared repository and provided to all incoming MSDS students the
week before classes started when they convened for orientation and onboarding activities. These
included a workshop designed and led by the six summer students, who taught their peers how to
download the repository of resources and get it working on their individual laptops.

This summer program was an early inspiration for what became the SCHOLAR approach. The
summer program did not involve formal classes and assignments, and the six students curated a
repository of existing resources instead of authoring entirely new tutorials. However, the
materials and resources that the students collated highlighted many of the computational and
communications tools that were important for the MSDS program. The summer program also
gave the faculty an opportunity to help students develop and manage a shared repository and
highlighted many of the practical and logistical issues that needed to be resolved as the
SCHOLAR approach evolved [7].

https://gitlab.msu.edu/CMSE/data_science_bridge_curriculum

Case Study: Undergraduate Data Science Capstone

Starting in the spring of 2023, the SCHOLAR approach was integrated into the data science
capstone course at Michigan State University (MSU). Data science is a new undergraduate major
at MSU, with the first senior-level capstone design course offered in spring 2022. This course
typically serves 60 students divided into 12 project teams working with community partners on a
variety of real-life data science challenges. During the first year, it became apparent that students
both needed tutorials and resources for learning various computational and analytical tools, and
needed practice developing clear written communications. In the second year (2023), the
SCHOLAR method was introduced to help address both learning objectives.

The capstone is a high engagement, 4-credit course that meets three times a week for an hour and
twenty minutes per class, with students expected to spend substantial out-of-class time working
together on their group projects. One class day a week (typically Friday) is set aside for the
SCHOLAR assignments. The tutorials collated during summer 2022 for the MSDS students were
used as a starting point for the first capstone course, and during class on Fridays each student
was expected to work with the repository. The SCHOLAR approach was adjusted for the
capstone course as follows:

1. Review a tutorial and submit an issue.
2. Review the issues, pick one, resolve it, and submit the solution as a pull request.
3. As a Team, write a new tutorial and submit it as a pull request.

In the first year of using the SCHOLAR approach as part of the capstone course, the instructors
managed all the merge requests. This turned out to be time-consuming, as every request had to
be carefully reviewed to determine whether the student team’s proposed solution actually
resolved the issue (or whether their new tutorial worked). In 2024, the second time the
SCHOLAR assignments were used, the instructors experimented with a different approach. A
team of six student volunteers was identified to work with the instructors to review and issue the
merge requests. These students took on this extra responsibility as an “Honors Option” for the
class (an option offered at Michigan State allows students to earn Honors credit in a regular, non-
Honors course). The students are given extra instructions on how to work with git and the “git
management team” shared what they learned about git with their project teams. Once all the
assignments have been submitted and merged, the “git management team” reviewed and
organized the tutorials to make the entire repository easier to use and understand, and to help
prepare it for use by future students [8].

https://gitlab.msu.edu/CMSE/datatools_tutorial_demo

Case Study: Graduate Special Topics Course

In the fall of 2023, the Computational Mathematics, Science and Engineering program at
Michigan State University offered a graduate-level Special Topics course on using Generative AI
in scientific discovery. This course was open to graduate students from across the university and
enrolled 12 students from 6 majors. Four faculty volunteered as the instructional team and the
course was modeled after two previous “emerging technologies” classes taught in the same
department. The idea behind all of these “emerging technologies” special topics courses is that
they specifically introduce something that is not only new to the students, but may also be new to
the instructors. For example, previous “emerging technologies” courses covered NextGen GPU
programming, FPGA programming for scientific computing, and utilizing a unique large scale
location dataset. In all these cases, the instructors were not the experts but acted more as guides
to graduate student learning.

To foster co-created knowledge and a shared learning process, previous versions of this course
had students add notes to a wiki during the semester. This shared recording space allowed
students to reflect on and build off each other’s knowledge. Expanding on this constructivist
approach, the SCHOLAR model was introduced in the “emerging technologies” course for fall
of 2023, focusing on generative AI. Instead of a wiki, each student built a tutorial about some
aspect of generative AI and/or its use in scholarly research. Examples included:

 Gradio Library Tutorial.
 Prediction Protein Structure from Amino Acid Sequence using AlphaFold – Tutorial.
 How to use ChatGPT in Jupyter Notebook.
 TSNE Tutorial: Visualizing & Exploring High-Dimensional Data in 2D/3D.

Students shared their tutorials with each other in a git repository using the five-step SCHOLAR
approach previously described. Each tutorial was written and published freely as an open
educational resource, which not only allowed the students to use them in class but to also share
outside the classroom to enhance their science and research. Since learning to use git was not a
priority for the course, we adjusted the SCHOLAR steps such that students turned in their
tutorials via the course management system and the instructor added them to the git repository.
The full repository was made available to the students as a reference (with basic instructions for

accessing the contents, for students unfamiliar with git), and this repository can be used as a
starting point when the course is taught again [9].

https://gitlab.msu.edu/CMSE/Gen_AI_Tutorials

Lessons Learned

In this section we will talk about some of the lessons learned when implementing the SCHOLAR
approach in various classrooms. By navigating these lessons learned, educators and students
alike can optimize the SCHOLAR assignment for effective learning, collaboration, and the
creation of valuable open educational resources.

Navigating the Learning Landscape: One of the fundamental aspects of the SCHOLAR
assignment is recognizing that students do not have to create tutorials entirely from scratch. The
internet is filled with useful resources (as well as unhelpful ones) such as videos, blogs, and
Stack Overflow comments that students can leverage to unravel complex topics. The SCHOLAR
assignments aim to teach students how to navigate this information deluge effectively and
encourage students to select and organize useful pieces in a coherent manner to create learning
resources for themselves and their peers. An essential skill cultivated through this process is
understanding when and how to cite sources in digital environments; at a minimum, students are
required to provide links to the original sources.

Teaching git and Collaboration Etiquette: The SCHOLAR assignments emerge as effective
vehicles for teaching git and its associated etiquette in the classroom. Git, a powerful yet
complex tool, can be used on three major levels: as a consumer, as a personal backup system,
and as a collaborative tool between teams. While many individuals are initially introduced to git
as consumers, forking or cloning repositories to use others’ files, the SCHOLAR assignment
encourages students to progress to using git for their software projects. The assignment
emphasizes the development and use of key skills like tracking changes, commenting on
modifications, and adopting git as a large-scale collaboration tool. The student-generated
SCHOLAR repository, which includes contributions from multiple classes, facilitates the
teaching of best practices for working on extensive collaborative projects.

While the SCHOLAR approach can be advantageous when learning git is one of the course
objectives, that is not always the case. The complexity and power of git means that it can be
frustrating or even distracting for students when learning this collaboration tool is not a key
component of the course (as with the generative AI course described above). Considering this,
the SCHOLAR assignment allows flexibility for students to submit their tutorials in alternative
ways, with the instructors ultimately responsible for synchronizing the repository. This
adaptability ensures that the focus of the SCHOLAR approach remains on the overall learning
goals, while acknowledging the varied skill levels of students in different classes.

Automated Grading and Tracking Student Progress with Git: Git’s complexity also proves
advantageous in automating aspects of grading and tracking student progress. Git repositories
automatically log students’ actions, enabling the development of scripts that facilitate the
evaluation process. For instance, scripts can identify when students complete specific
assignments by analyzing submitted issues or merge requests. While these scripts may not
evaluate the quality of submissions, they significantly expedite the identification of students
encountering difficulties, streamlining communication and support for instructors.

Challenges with Jupyter Notebooks and Git Integration: Integrating Jupyter notebooks with
git repositories introduces challenges due to the unique combination of source- and program-
generated information in Jupyter files. The inherent issue arises when running a Jupyter file adds
output cells, triggering git to perceive significant changes incorrectly. To mitigate this, a simple
yet crucial step is introduced – clearing all output cells before committing any changes to Jupyter
notebook files. Although this additional step may seem tedious and students occasionally forget
it, it plays a vital role in minimizing noise and bloat within git repositories. This is a well-known
challenge in the Jupyter community.

Discussion and Future Work

The outcomes of this multi-classroom case study emphasize the value of the SCHOLAR
assignment in enhancing students’ tool fluency, self-directed learning capabilities, and
collaboration skills. The approach not only equips students with essential technical skills but also
fosters a culture of mutual support and knowledge sharing. By contributing to the OER
ecosystem, students become active participants in the broader educational community, ensuring
the sustainability and adaptability of their learning resources. This paper serves as a guide for
educators seeking innovative ways to empower students in navigating the ever-changing
landscape of computational tools and technologies.

Although the open nature of the assignment encouraged student creativity, as the repository
becomes bigger it becomes harder to organize. A future improvement to the SCHOLAR
methodology will be the addition of template files. We are also working to integrate specific
features such as titles, summaries, and keywords. These fields will hopefully allow us to develop
software to automatically build a SCHOLAR tutorial index with the option of exporting the
entire repository as a website.

The SCHOLAR lessons and examples will continue to be refined and shared as a git repository
for any interested instructors. As the SCHOLAR type of lessons are adopted, it will be possible
to share the resources across institutions building a robust framework and resource for learning.

References

[1] “Git.” Accessed: Aug. 22, 2016. [Online]. Available: https://git-scm.com/
[2] S. Downes, “Models for Sustainable Open Educational Resources,” Interdisciplinary Journal

of E-Learning and Learning Objects, vol. 3, no. 1, pp. 29–44, Jan. 2007.
[3] T. Kluyver et al., “Jupyter Notebooks – a publishing format for reproducible computational

workflows,” in Positioning and Power in Academic Publishing: Players, Agents and
Agendas, F. Loizides and B. Schmidt, Eds., IOS Press, 2016, pp. 87–90.

[4] “GitHub · Build software better, together.” [Online]. Available: https://github.com/
[5] “GitLab.com | Open Source Git Management Software.” [Online]. Available:

https://www.gitlab.com/
[6] “bitbucket.com.” [Online]. Available: https://www.gitlab.com/
[7] “CMSE / Data_Science_Bridge_Curriculum · GitLab,” GitLab. Accessed: Feb. 07, 2024.

[Online]. Available: https://gitlab.msu.edu/CMSE/data_science_bridge_curriculum
[8] “CMSE / DataTools_Tutorial_Demo · GitLab,” GitLab. Accessed: Feb. 07, 2024. [Online].

Available: https://gitlab.msu.edu/CMSE/datatools_tutorial_demo
[9] “CMSE / Gen AI Tutorials · GitLab,” GitLab. Accessed: Feb. 07, 2024. [Online]. Available:

https://gitlab.msu.edu/CMSE/Gen_AI_Tutorials

