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Abstract: 

The proposed method for identifying the number of exfoliated graphene layers on an oxide 

substrate from optical images is both simple and versatile. It involves using a limited number of 

input images for training, paired with a larger set of well-published Github images for testing and 

prediction. 

This study has employed a linear regression-based method in executing its thresholding process. 

This method leverages the red, green, and blue color channels of image pixels and establishes a 

correlation between the green channel of the background and the green channel of various 

graphene layers. The method is positioned as an alternative to both deep learning-based graphene 

recognition and traditional microscopic analysis. 

Notably, the proposed methodology performs well under conditions where the influence of 

surrounding light on the graphene-on-oxide sample is minimal. It enables the rapid identification 

of various graphene layers, showcasing its feasibility for non-destructive identification. The 

study also addresses the functionality of the methodology under nonhomogeneous lighting 

conditions, demonstrating successful predictions of graphene layers even in lower-quality images 

compared to those typically published in literature. 

In summary, the proposed methodology offers a quick, inexpensive, and effective means of non-

destructively identifying graphene layers from optical images. Its versatility and performance 

under varying conditions make it a promising approach for practical applications in graphene 

research. Additionally, and critically: the methods highlighted in this research can be utilized 

across a multitude of disciplines (from bioengineering to electrical, materials, nanoengineering, 

etc.) for one of the most fundamental areas of experimental research in STEM at the 

undergraduate level: accurately identifying multiple systems from optical images. A broad, 

relevant, and timely curriculum can be built around data analytics and application to solving 

STEM problems – including components such as data mining, cleaning, wrangling, and analysis, 

and critically, tying in these processes in solving real experimental challenges in a laboratory 

setting.  

 

1. Introduction and Background 

The realm of 2D material detection has experienced notable progress in recent times. However, 

certain practical challenges persist. Deep-learning techniques enable precise image recognition 

by utilizing high-dimensional hierarchical visual characteristics. For example, a deep-learning-

driven image segmentation has been previously devised by researchers, employing an algorithm 

capable of real-time detection of 2D materials through optical microscope images [1]. The neural 

network underwent training on annotated images encompassing various 2D materials like 

graphene, hBN, MoS2, and WTe2, utilizing the Mask-RCNN algorithm. Nonetheless, these 

algorithms demand a substantial amount of time for handling extensive datasets, data 

preparation, training, and evaluation [2]. Their computational expense, especially on smaller 

datasets, can be prohibitive. The algorithm is optimized for high-end graphics processing units 
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(GPUs) like the NVIDIA Tesla V100, resulting in an inference time of 200 Ms. Processing 

without a GPU significantly prolongs the time, posing challenges in applications where real-time 

detection is critical. Moreover, the computational cost hinders the practicality of this approach 

for tasks requiring swift analysis of large datasets. 

An alternative method has also been previously developed for accurate counting of graphene 

flakes on transparent bulk substrates using optical reflection microscopy measurements [3]. The 

universal optical conductance model matches reflection data for graphene flakes up to nine 

layers thick. However, achieving maximum sensitivity at the desired wavelength necessitates 

precise control over oxide thickness and oxide index of refraction. Another proposed method 

utilizes transmission or reflection optical microscopy to determine the number of graphene 

monolayers on various substrates [4]. Image modification through software analysis yields a 3D 

model of few layers of graphene on any substrate. However, this method relies on classical, time-

consuming techniques like AFM and Raman spectroscopy for calibration. Additionally, 

obtaining a large volume of high-quality optical image datasets for these methods remains a 

challenge. 

As an alternative approach, this study demonstrates the identification of graphene layer numbers 

using contrast in optical images. RGB (red, green, and blue) is a color model in digital images, 

where each pixel is represented by a combination of red, green, and blue colors in different 

intensities. The proposed method offers several advantages over traditional machine learning 

approaches for image recognition. It requires fewer data, works well with adequate lighting, and 

is computationally inexpensive. Instead of employing deep learning, mono/bi/few layers of 

graphene are recognized by extracting only the green channel pixel value (G-value) from 

collected graphene images [5]. The current method is flexible and suitable for controlled 

environments. It does not necessitate a large dataset or extensive preparation, enabling efficient 

and rapid analysis of images. The versatility of the approach allows for adaptation to varying 

conditions by tuning the threshold green channel values between different layers, achieved 

through a simple process utilizing only a few images for calibration.  

Critically, this methodology can be applied across multiple disciplines in working with a 

fundamental characterization tool in any experimental STEM area: the optical microscope. Not 

only can the entire suite of RGB techniques be taught to undergraduate students through an 

interdisciplinary curriculum, from invoking how to collect and analyze data through the eyes of 

data analytics all the way to the final goal of utilizing these robust scripts (akin but alternative to 

traditional machine learning) in deciphering various systems captured in an optical image. The 

non-destructive nature of this methodology in achieving this final goal is an added plus. 
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2. Materials and Methods 

2.1 Graphene Flake Sample Preparation & Deposition  

The graphene samples employed in this study were produced through the mechanical exfoliation 

of graphite on a SiO2 substrate. A 300-nm thermal oxide Si/SiO2 wafer (NOVA Electronic 

Materials, LLC.) was cleaved into approximately 10 mm × 10 mm samples. These samples 

underwent a cleaning process, involving a 1-minute ultrasonication in acetone, followed by an 

IPA rinse, and finally, were dried using nitrogen gas. Subsequent to the cleaning procedure, 

standard scotch tape exfoliation of KISH graphite (Graphene Supermarket) was utilized to 

deposit the multiple graphene flakes that were analyzed in this research. 

2.2 Image Preparation 

The dataset was captured under controlled lighting conditions within a fully enclosed dark box 

with one open side for the light source. Optical microscopy, a well-established non-destructive 

method for imaging graphene, was utilized as the standard imaging technique. The microscope 

used for this set of images was obtained from Sunny Optical Technology Company Limited 

(Model CX-40M), operating in reflection mode with a magnification of 100X. The intensity of 

the microscope's LED Kohler illumination source was set to 0-5W. 

2.3 Threshold Development 

 

 

Fig. 1 Scatter plot showing similar order for G values of various layers of each image. 
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Different layers of graphene were captured in each image. The layers are classified as: 

“monolayer” (1 layer), “bilayer” (2 layers), and “few layers” (more than 2 layers). An example 

image is shown in Fig. 2 

 

 

Fig. 2 Different types of graphene layers 

A trained analyst manually identified and annotated the layers, and their identification was 

further validated using Raman spectroscopy. Pixel values were extracted from multiple points on 

each layer across all images. Specifically, green channel values were isolated from these 

extracted pixel values, and the median green channel value was determined for each layer based 

on multiple data points. In Fig. 1, a scatter plot illustrates the median green channel values for 

each layer in all images within the dataset. It's worth noting that certain samples lack specific 

layers, leading to the omission of corresponding data points in the plot. 

The scatter plot (Fig. 1) reveals a consistent pattern where, for any given image, the median 

green channel value of the background consistently surpasses that of the monolayer. 

Additionally, the median green channel value of the monolayer is higher than that of the bilayer, 

and this trend continues for higher layer numbers. As the number of graphene layers increases, 

the corresponding zone appears darker, resulting in a reduction in intensity. So, from Fig. 1, 

Equation (1) becomes apparent- 

𝐺𝑏𝑎𝑐𝑘 > 𝐺𝑚𝑜𝑛𝑜 > 𝐺𝑏𝑖 > 𝐺𝑓𝑒𝑤 … … … … … . (1) 

The median green channel values of background (Gback), monolayer (Gmono), bilayer (Gbi), and 

few layers (Gfew) graphene are later referred to as Glayer throughout the paper.  Fig. 1 suggests 

that there might be a relationship between Gback and Glayer. So, the 
𝐺𝑚𝑜𝑛𝑜

𝐺𝑏𝑎𝑐𝑘
,

𝐺𝑏𝑖

𝐺𝑏𝑎𝑐𝑘
,

𝐺𝑓𝑒𝑤

𝐺𝑏𝑎𝑐𝑘
 ratios are 
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calculated for each individual image from the dataset. The values are succinctly summarized in 

Table 1, from which thresholds were derived using the mean values of the ratio Glayer/Gback with 

upper and lower limits defined as 𝜇 ± 2𝜎. This is mathematically shown in Equation (2), where 

RL and Ru is respectively lower and upper threshold value of the corresponding layers.  

Table 1 Median green channel ratio of different layers to background 

Parameter 

Value 

Gmono/Gback Gbi/Gback Gfew/Gback 

Maximum 0.946 0.889 0.869 

Minimum 0.863 0.805 0.532 

Mean (µ) 0.920 0.867 0.758 

Standard Deviation 

(σ) 
0.024 0.023 0.106 

Variance (σ2) 0.0005 0.0005 0.01 

 

𝑅𝐿 = 𝜇 − 2𝜎 𝑎𝑛𝑑 𝑅𝑈 = 𝜇 + 2𝜎… … … (2) 

Table 2 Threshold Values for Identifying Mono, Bi and Few Layers in Graphene 

Range Mono layer Bilayer Few layers 

RL 0.873 0.822 0.547 

RU 0.968 0.913 < 0.822 

 

The graphical representation of thresholds is depicted in Fig. 3. By comparing the Glayer/Gback 

ratio of a given pixel with the established thresholds, it is possible to determine the 

corresponding layer. However, it is important to note that there exists a degree of overlap 

between the thresholds of the monolayer and bilayer, introducing uncertainty in the classification 

of pixels within this overlapping range. 
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To address this, for the sake of simplicity in the proposed method, ratios falling within the 

overlapped region will be identified as bilayer, considering the slight margin of error. As a result, 

segmentation can be performed using the static thresholds developed from the Glayer/Gback ratio 

and its standard deviation. 

 

Fig. 3 Visual Representation of Thresholds for Monolayer, Bilayer and Few Layers 

Identification in Graphene Samples for the dataset 

 

Once again, Fig. 4 illustrates a linear relationship between Gback and Glayer for the image dataset. 

The equation of the best-fitted curve for this relationship is detailed in Table 4, where the tuning 

constant "k" is defined based on the mean deviation of data points from the best-fitted curve. It's 

crucial to acknowledge that fluctuations in illumination levels lead to variations in the median 

background green channel value, Gback, as well as in the median green channel value of the 

graphene layer, Glayer. However, the ratio of Glayer to Gback remains nearly constant. 

The thresholds for segmenting different graphene layers are established through a linear 

regression approach, considering this constant ratio. It's important to note that although the linear 

regression approach used in this research is influenced by lighting conditions, it maintains its 

intrinsic dependencies and trends even with changes in lighting. Specifically, the linear 

relationship between Gback and Glayer remains consistent despite variations in background 

illumination. Changes in the background median green channel value result in corresponding 

changes in the median green channel value of the monolayer or bilayer. 

However, when dealing with "few layers," as the number of layers in this category can be 

substantial, establishing a reliable linear relationship becomes challenging. Therefore, it is 

recommended to classify anything other than monolayer or bilayer as "few layers." 
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fig (a) 

 

fig (b) 

 

fig (c) 

Fig. 4 Linear relation between (a) Gback and Gmono, (b) Gback and Gbi (c) parallel relationship 

between Gmono and Gbi 

 

From the above developments, we developed the linear regression-based approach (for setting 

the threshold criteria) which produces a dynamic threshold. 

The initial step in this approach involves the acquisition of the median green channel values for 

the background, monolayer, bilayer, and few layers in each image. A scatter plot of Glayer vs 

Gback was then generated, and the best-fitted linear curve was determined. This curve allowed us 

to predict the median green channel value of the monolayer and bilayer considering variations in 

Gback. 

To establish upper and lower thresholds for the median green channel value of each layer, the 

average negative and positive deviation of the actual data points from the best-fitted curve was 

calculated and added to the predicted value. This calculation resulted in a dynamic threshold for 
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the monolayer or bilayer, enabling the segmentation of graphene layers even when the median 

green channel value of the background is subject to variations. 

Table 3 Best-Fitted Linear Regression Equations for Thresholding Different Layers of 

Graphene 

Range Mono Bi Few 

Lower (RL) 
(0.8905 ∗ 𝐺𝑏𝑎𝑐𝑘 + 3.542)  

− 1.69 

(0.982 ∗ Gback − 14.08)

− 1.23 
- 

Upper (RU) 
(0.8905 ∗ 𝐺𝑏𝑎𝑐𝑘 + 3.542)  

+ 4.26 

(0.982 ∗  𝐺𝑏𝑎𝑐𝑘 + 14.08)

+ 4.635 
< RU(Bi) 

General 

Form 
𝑅 =  (𝑚 ∗ 𝐺𝑏𝑎𝑐𝑘 +  𝑐)  +  𝑘  

 

3. Analysis and Results 

The linear regression-based threshold was employed to segment images within the dataset, and 

the results, as depicted in Fig. 5, demonstrate convincing outcomes. In the original images, 

regions highlighted in yellow represent the monolayer, those outlined in green indicate the 

bilayer, and those marked in red indicate a few layers. The implementation of this segmentation 

was facilitated by a MATLAB script, and additional details can be accessed through the provided 

GitHub link (). 

Color code for segmented 

images 

 Monolayer 

 Bilayer 

 Few layers 
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Original 
Linear Regression-based 

Approach 

  

  

  

Fig. 5 Comparison of Linear regression approach vs original image of the dataset. The 

scale bars correspond to 10 µm. 

 

4. Discussion 

The accuracy of the linear regression has been evaluated utilizing two methods. The first 

approach is named ‘Manual Cross-Checking’. In order to evaluate the accuracy of the 

segmentation, the segmented images were manually cross-checked with the annotated images. 

The segmented images were reviewed and compared them to the ground truth annotations. Each 

segmented layer was evaluated for its accuracy in terms of identifying monolayer, bilayer, or few 

layers of graphene. If the segmented regions exhibited a degree of similarity greater than 50% 

with the annotated images, they were considered to be accurately segmented. It is important to 
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note that in the ‘manual cross-checking’ process, the segmented images obtained through the 

linear regression-based approach are visually matched with reference images to calculate the 

detection accuracy. Due to its reliance on visualization, there may exist certain discrepancies 

within this evaluation technique. Nevertheless, it offers a rapid means of approximating the 

accuracy of the process. When comparing its outcomes to a more precise evaluation technique 

such as the pixel-accuracy ratio (described below), the observed accuracy shows similar trends. 

The second approach is referred to as the "Pixel Accuracy Ratio". This metric quantifies the ratio 

of overlapping pixels between the correctly identified layers and the total number of pixels in the 

annotated layer. For each segmented layer, the number of pixels correctly classified as 

monolayer, bilayer, or few layers of graphene was divided by the total number of pixels within 

that layer. The resulting ratio represents the accuracy of the segmentation process in correctly 

identifying the number of layers for each pixel. The overall accuracy of the segmentation was 

determined by calculating the average of the pixel accuracy ratios for all segmented layers. The 

evaluation of the approaches is shown in Table 5.  

Table 5 Comparison of Accuracy of the Linear Regression-based Approach for the given 

image dataset. 

Layer Accuracy (Manual Cross Checking) Accuracy (Pixel Accuracy Ratio) 

Mono layer 83.33% 75.21% 

Bilayer 91.67% 78.69% 

Few layers 88.24% 89.98% 

 

It is the general observation of the authors that the accuracy of the results might be improved by 

considering certain factors, such as capturing images in a well-lit central zone with high 

magnification and in a dark room to avoid interference from surrounding light.  

5. Development of Interdisciplinary Curriculum:  
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As a critical by-product of the current project, the methods highlighted can be utilized across a 

multitude of disciplines (from bioengineering to electrical, materials, nanoengineering, etc.) for 

one of the most fundamental areas of experimental research in STEM at the undergraduate level: 

accurately identifying multiple systems from optical images. A broad, relevant, and timely 

curriculum can be built around data analytics and application to solving STEM problems – 

including components such as data mining, cleaning, wrangling, and analysis, and critically, 

tying in these processes in solving real experimental challenges (like the highlighted optical 

image analyses) in a laboratory setting. The codes and datasets from this research are made 

public and available, so they can be utilized as desired. 

6. Conclusion 

The primary objective of this study was to devise a cost-effective and efficient method for 

determining the number of graphene layers in optical microscopic images. The linear regression-

based approach explores the linear relationship between the background green channel value and 

the green channel values of graphene layers. A best-fitted curve is obtained, and thresholds are 

established by observing the constant ratio between different layers and the background. Results 

demonstrate that the linear regression approach, with its dynamic threshold influenced by the 

background green channel value, accurately identifies the number of graphene layers under 

consistent lighting conditions. In conclusion, this proposed methodology provides a non-

destructive and cost-effective alternative to traditional graphene layer identification methods. It 

facilitates swift analysis of optical images with reduced data requirements and computational 

resources compared to deep learning-based approaches. Particularly beneficial in stable 

microscopic setups requiring quick results, this approach stands as a valuable tool for graphene 

layer identification. Additionally, and critically: the methods highlighted in this research can be 

utilized across a multitude of disciplines (from bioengineering to electrical, materials, 

nanoengineering, etc.) for one of the most fundamental areas of experimental research in STEM 

at the undergraduate level: accurately identifying multiple systems from optical images. A broad, 

relevant, and timely curriculum can be built around data analytics and application to solving 

STEM problems – including components such as data mining, cleaning, wrangling, and analysis, 

and critically, tying in these processes in solving real experimental challenges in a laboratory 
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setting. Further details and the implemented MATLAB script can be found in the provided 

GitHub link (https://github.com/saquibahmed1981/Image-Processing---first-project). 

 

References: 

 

1. Masubuchi S, Watanabe E, Seo Y, et al (2020) Deep-learning-based image segmentation 

integrated with optical microscopy for automatically searching for two-dimensional materials. npj 

2D Mater Appl 4:3. https://doi.org/10.1038/s41699-020-0137-z 

2. Rashid M, Singh H, Goyal V (2020) The use of machine learning and deep learning algorithms in 

functional magnetic resonance imaging—A systematic review. Expert Syst 37:. 

https://doi.org/10.1111/exsy.12644 

3. Gaskell PE, Skulason HS, Rodenchuk C, Szkopek T (2009) Counting graphene layers on glass 

via optical reflection microscopy. Appl Phys Lett 94:143101. https://doi.org/10.1063/1.3115026 

4. Obelenis F, Champi A (2014) Determination of the Number of Graphene Layers on Different 

Substrates by Optical Microscopy Technique. Brazilian J Phys 44:682–686. 

https://doi.org/10.1007/s13538-014-0260-4 

5. Palus H (1998) Representations of colour images in different colour spaces. In: The Colour Image 

Processing Handbook. Springer US, Boston, MA, pp 67–90 

 


