
Paper ID #41267

An Experience Report on Reducing Barriers by Removing Prerequisites for
a CS 1 Introductory Programming Course

Dr. Udayan Das, Saint Mary’s College of California

Udayan Das is an associate professor and program director in computer science. Dr. Das’s main area
of research is Technical Language Processing (TLP). Current NLP approaches and LLMs are inadequate
to dealing with the complexity of technical text that needs to be reasoned on in such a manner that the
accuracy of the automated reading can be relied upon and the cross-referentiality of technical documentation
can be captured. His current research is focused on developing higher reliability Technical Language
Models (TLMs) which are essentially knowledge-graph backed LLMs that can pinpoint where information
was drawn from within a complex information environment. He also works toward improving CS education,
broadening participation in computing, and incorporating ethics into CS education.

Christopher Isaac Fulton

©American Society for Engineering Education, 2024

An Experience Report on Reducing Barriers by Removing
Prerequisites for a CS 1 Introductory Programming Course

Udayan Das†
 Mathematics and Computer Science

 Saint Mary’s College of California
 Moraga, CA

 udd1@stmarys-ca.edu

Chris Fulton
 School of Continuing and Professional Studies

Loyola University Chicago
 Chicago, IL

 cfulton@luc.edu

ABSTRACT
Introductory programming has evolved in many places to become a CS0 course, enabling students
to get their feet wet with programming without completing significant math coursework. However,
a survey conducted of CS programs shows that most CS1 programming courses that count towards
an undergraduate CS degree continue to have a math or CS0 prerequisite. This experience report
discusses the impact of removing the math prerequisite at an R2 university (Loyola University
Chicago) and a liberal arts college (Saint Mary’s College of California). Our experience shows that
the removal of prerequisites, making the course readily available for those interested in pursuing
CS, had no significant impact on student performance. Having minimal prerequisites has beneficial
effects in terms of diversifying the CS student body as well as enabling students to begin CS
coursework early, often in the first semester, potentially impacting persistence, but also enabling
students to decide, early, if CS is right for them. Programs should evaluate what prior knowledge is
required to be successful in a CS program. The high success rate of students of various backgrounds
taking CS certificates and pursuing graduate school also shows that aggressive prerequisites may
be functioning as barriers to entering CS programs. If we are serious about supporting diversity, we
need to acknowledge the wide disparity in high school education nationwide and that prerequisites
are perhaps functioning as a needless barrier. Where the CS0 course doesn’t count towards a
degree, or there isn’t space for that requirement in the program, it is also worth considering
whether the CS0 prerequisite is necessary.

KEYWORDS
CS 1, Introductory Programming, First programming course, Diversity, Barrier reduction,
Broadening Participation in Computing (BPC)

1 Introduction
Prior to Fall 2018, the CS 1 introductory programming course at Loyola University Chicago

had calculus as a prerequisite. The same was true of a similar course at a Saint Mary’s College until
Spring 2022. In this experience report, we share our experience of having removed the calculus
prerequisite and requiring minimal prerequisites for the CS 1 programming course. Dr. Das was the
program director at the Loyola when the change was put in place and has since moved to Saint
Mary’s College of California as of Fall 2021. Prof. Fulton is the current program director at Loyola
who has left the minimal prerequisite requirement for the CS 1 course as is based upon their prior
experience with similar requirements at a large public R1 university and a technical college offering
associate degrees. Several major types of academic institutions are thus covered by our collective
experience and demonstrates that most students are prepared to study programming at a CS 1 level
right away provided there are appropriate teaching and learning methodologies applied. At Loyola
and Saint Mary’s College the change to the prerequisite is coupled with peer tutoring; active
learning; project-based learning; and strong student support through academic advising, course
touchpoints, and student success coaches.

Evolution. There is an evolution in progress as far as what prerequisites are required to
begin a CS 1 programming course. As In a survey scan, we found that 30% of institutions have
limited or no prerequisites1 required for students starting a CS 1. This no prerequisite approach is
consistent with our experience and the purpose of this experience report is to share information
with those programs that still have prerequisites, especially calculus prerequisites, and to
encourage them to reconsider those requirements.

Impact. There has been a signi�icant increase in students with no calculus background opting
to take the course and when students are taking the course. Both authors have strongly encouraged
students taking the CS 1 course as early as possible and the now almost all students take the CS 1
course in the �irst 2 semesters, with the vast majority taking it in the �irst semester.2 Although this
paper does not focus on graduate students from non-CS backgrounds, it is worth noting that at the
Loyola those students in the CS and CS-adjacent masters programs often take the CS 1 course as
prep for beginning graduate study. There, as in a majority of graduate CS and CS-adjacent programs
there is no explicit undergraduate calculus requirement to begin graduate study in CS. This is an
important observation and worthy of re�lection by all CS faculty as to the necessity of the
prerequisites at the undergraduate level. We believe this also supports our observation that student
motivation is the biggest factor in ensuring student success in the CS 1 programming course.

Saint Mary’s College of California (SMC) is a Minority and Hispanic Serving Institution
(MSI/HSI) and the student population at Loyola’s School of Continuing and Professional Studies
(SCPS) is majority women and over 35% minority. And supporting diversity and inclusion is a key
principle at both institutions.

1 We will use “no prerequisites” throughout this paper to mean no prerequisites other than high school completion or GED.
2 Note that at Loyola the first semester is split into 2 8 week terms.

CS 1 programming topics. In this experience report we use Tew et al. [1], curriculum 2013, and
curriculum 2023 beta [2] as guides for a set of topics common to a CS 1 programming course. In our
survey scan, we found that most CS 1 programming courses cover all of these topics with the only
main variance being in whether or not objects and recursion are introduced. Table 1 summarizes
these general topic areas and we �ind no dependence of any of these topics on calculus.

Table 1: CS 1 topic areas

Variables

Data types

Console I/O

Expressions

Branching and selection

Loops

Functions

File I/O

Modules and libraries

Objects

Recursion

2 Background / related work

In a survey of students in an applied CS program students reported that motivation was the
biggest success factor in academic and professional success (Virkki [3]). Herbert et al. found that
improving student engagement early can also signi�icantly impact both retention and student
performance [4].

As noted in the next section, 30% of scanned programs now accept CS 0 as a prerequisite for
beginning the CS 1 course. The impact of the CS 0 course on CS 1 has been studied quite extensively
[1], [5], [6] and it is not a surprise that taking a CS 0 course, in college or in high school improves

student performance in the CS 1 course. Our concern is whether the CS 0 course is a necessary
prerequisite, and whether, as in our case, the removal of the CS 0 prerequisite enables students
more �lexibility in taking upper division courses. We could also not conclusively answer, based on
public information, whether the CS 0 counts for a degree. (The majority of scanned programs do not
count CS 0 for the CS major.)

As in our experience, Doyle et al. [7] found that lowering mathematics requirements had no
signi�icant impact on the performance of students in CS 1. Pejcinovic et al. [8] found that having or
not having calculus previously not only did not impact performance in algorithmic tasks but did not
have much impact on engineering problem solving tasks either, suggesting that the problem solving
skill gains from calculus may not directly translate into other domains, especially computational
problem solving which is fundamentally different from mathematical problem solving.

The impact of taking calculus in high school as a predictor has been studied more extensively
and having taking high school calculus, especially AP calculus predicted better performance in CS
programs [6]. Our intention in this experience report is not to refute those claims but to present our
experience in demonstrating that students can be successful in CS 1 without having taken calculus
�irst. This is partially driven by the observation that there isn’t a direct relationship between topics
taught in a CS 1 programming course (table 1, [1]) and calculus and our intuition that having
calculus in high school may be indicative of other success factors. The disparity in the availability of
AP courses [9], [10] is a major concern for us, and should be for the larger community, in terms of
addressing equity in CS education. While certain prior preparation is necessary for students to begin
CS programs, if there is prior prep that we can compensate for through teaching and learning
techniques in the introductory CS course sequence [11], [12] rather than using those as barriers-to-
entry, then we believe that that is the way we should proceed. We subscribe to the idea that learning
programming is easy [13] provided the academic environment supports that. When there is
tremendous interest and extremely high enrollments in CS courses, there is a temptation to be more
exclusive, but high interest could be an opportunity for addressing the gaps of the past.

Active learning [14], [15], peer learning and pair programming [16], [17], mastery learning
[18], project-based learning [18]–[20], stronger student supports [12], availability of peer tutors
[21], creativity and open-ended projects [20], [22], [23], and making course materials relevant to
the student body [15], [24], [25] have all been shown to be successful approaches to improving
overall performance and persistence in CS programs and often have impacts on supporting diversity
[12], [24], [26].

3 Survey Scan Results

We conducted a survey of CS programs based on publicly available information for 50
programs in the US. These programs included many top CS programs as well as academic
institutions of various types, including Carnegie Classi�ied R1 and R2 universities, private and state
universities, liberal arts colleges, as well as community colleges. 30% of CS1 courses at surveyed

programs have no prerequisites to start the course. (Note no prerequisites other than high school
completion or GED.) Of the CS1 courses that have prerequisites the breakdown is as follows.
calculus or precalculus is a requirement in 24%. Another 12% require calculus or precalculus as a
corequisite. Other math such as college algebra or mathematical reasoning account for 12%. CS 0 is
an accepted prerequisite for the CS1 course in 30% of institutions. Note that the numbers do not
add up to 100 because the listed requirements sometimes overlap. Ex: at Loyola University Chicago,
a student can start CS 1 having completed either a precalculus course or a CS 0 programming course.
UC Berkley requires Math 1A which can be taken concurrently along with a 3 or above on AP CS A
or equivalent, which for the purposes of our discussion is a CS 0 equivalency. Still others require
calculus or college algebra. An exhaustive accounting of the speci�ic requirements is beyond the
scope of this discussion. The full list of scanned programs and their requirements is available from
the authors upon request.

Several programs from highly ranked CS programs have moved to the no prerequisite model
including University of Illinois (Urbana-Champaign and Chicago), Harvard, Cornell, Virginia Tech,
Duke, and Georgia Tech. Other major CS programs opt to start students at CS 0, including Stanford,
University of Washington at Seattle, University of Wisconsin at Madison, the University of Southern
California, University of California (multiple), and Caltech. However, there are still many others that
require calculus, such as the University of Maryland College Park and the University of Texas at
Austin. Cornell’s CS Engineering degree requires a calculus corequisite. Princeton requires a CS0
course along with college-level Science. Surveyed community colleges require college algebra, with
the exception of Harper College in Illinois which requires a CS 0 course in addition to college algebra.

 Table 2: Scan Results of CS programs scan

CS1 course Prerequisite Percentage

None 30%

Calculus or precalculus 24%

Calculus or precalculus co-requisite 12%

College algebra or mathematical reasoning 12%

CS0 30%

 * Note: numbers do not add up to 100 because listed requirements sometimes overlap.

One curiosity, based on our reading of the publicly available requirements, is that in many
cases the CS 0 courses do not count as part of the CS major (the University of Southern California is

a notable exception). We hope that the CS 0 does count towards the undergraduate degree. If CS 0
does not count in any way towards a student's program—as part of the major or as an elective—
then this is a disservice to those students who may not have access to CS education or AP courses
in high school. Given our experience, the CS 0 is not necessary for students of virtually any
background to begin a CS1 course and therefore if CS 0 is a course that does not count for an
undergraduate degree, then this is an additional burden for already disadvantaged students.

Overall, our survey indicates that there is an evolution in progress as far as what prior
preparation is required for beginning a CS 1 course and by extension a CS major. We think therefore
that this experience report is a valuable addition to the overall conversation and our experience of
observing no impact of removing the existing math prerequisites is more data in favor of letting
students regardless of their prior preparation to begin CS studies immediately, which we expect has
considerable bene�its. We discuss our experiences more directly in the re�lections section below.

4 Instructor and Program Director Re�lections

Between the 2 authors we have several years of collective experience of teaching CS1 with
no prerequisites other than high school completion or GED, and overseeing programs that have
those CS1 courses in the CS or applied CS major. We have served as instructors of the CS1
programming courses, and we are both Program Directors overseeing our respective programs.

At the liberal arts college, the CS1 requirement is part of BS and BA CS majors. At Loyola, the
CS1 requirement applies in a continuing studies program where students primarily come for degree
completion. This has implications for student motivations which are discussed in a re�lection below.
Loyola a traditional undergraduate program still exists which has more traditional prerequisites.
Further, in the continuing studies context, the CS1 course is offered in an accelerated 8-week online
format, which would in theory present more challenges for students who have little to no
background in programming. While it may be bene�icial to add a CS0 course, in the context of both
institutions the addition of the extra course would be signi�icantly challenging. And, based on our
experience, and this experience report, we expect that there is more value added in additional upper
division electives than adding the CS0 course into our respective programs.

4.1 Instructor 1 Re�lection

I began working at Loyola in January 2018 and continued until the end of June 2021. I was in
charge of teaching coursework and overseeing programs in the continuing studies school. There
was a BA Information Technology which was an applied CS degree as well as a CS certi�icate. The
student population at this continuing studies school is primarily adult learners looking to complete
college as well as those seeking career change and upskilling. My experiences running a non-pro�it
training program for underserved individuals prior to starting my position at Loyola had taught me
that those with little or no background could be brought up to speed as far as programming is

concerned with the right teaching and learning approaches bolstered by the appropriate student
supports. At the same time, there were challenges with students being hesitant to take calculus
simply to be able to take the CS 1 introductory programming course. For those seeking a CS
certi�icate the additional course would also essentially increase their time-to-completion and cost-
of-completion by a third. Both BAIT and CS certi�icate students were also likely to have been away
from schooling for a while and starting schooling again with calculus was a daunting prospect.
Taking everything into account, and building on my non-pro�it experience, I decided to remove the
calculus prerequisite. Given the standard CS 1 curriculum I did not see any dependence on calculus
and thought that a calculus requirement may have a gate-keeping function than impacting learning
in a CS 1 course.

In Fall 2021, coming to SMC as a CS program director in a Mathematics and CS department I
once again found that there was a historical calculus prerequisite for the CS 1 intro programming
course and successfully had that requirement removed applicable Spring 2022. In all, I have seen 9
semesters of teaching of a CS 1 course with minimal requirements and found that it has no impact
on student performance. In fact, over time the traditional CS department has begun sending
graduate students with non-CS programs to the continuing studies courses so that those students
can meet the prerequisites needed to begin graduate school. This is unsurprising since CS certi�icate
students of various backgrounds have gone on to top 10 graduate programs indicating the quality
of their education and the fact that students were able to meet the learning outcomes needed to
begin graduate school in CS. (Incidentally, it is worth noting that graduate CS programs have less
stringent math requirements than undergraduate CS programs which we �ind interesting.)

I have, however, observed several bene�its of removing the prerequisite. At Loyola, students
previously turned away from both the BAIT and CS certi�icate due to the calculus requirement were
now able to pursue the degree. Students from other majors such as Management and Psychology
were able to complete the CS certi�icate as an added credential. At SMC, a wider range of students
and those interested in CS have been able to take the CS 1 course. An English major who became
interested in CS after taking a programming workshop over Summer 2022 was able to take CS 1
immediately in Fall 2022 and has since become a double major in English and CS (pursuing the non-
calculus BA CS) which would not be possible if the calculus was a prerequisite for the CS 1 course
and a non-calculus BA CS was available. I believe one of the greatest drivers of student success in
the CS 1 course is motivation and starting students as early as possible in what got them interested
in the discipline in the �irst place can go a long way toward maintaining motivation. As noted earlier,
motivation was also self-identi�ied by surveyed students as being the biggest success factor in Virkki
[3].

We offer a CS 0 course meant to introduce students to computing and computational thinking
which is also proving quite popular among non-CS majors. Many non-CS-majors such as those in
psychology or sociology bene�it greatly from having programming skills. Additionally, those
students now also have the opportunity to pursue the 3 course CS certi�icate or the 6 course CS

minor neither of which require calculus making it more accessible to students of different
backgrounds.

When there is a CS 1 class with students who bring a wide range of prior preparation to the
course there is a course management challenge, and it is incumbent upon the instructor to ensure
that there are support mechanisms for students who may be struggling with the course materials.
In addition to the training of peer tutors and TAs, in my case this has meant ensuring that whenever
I am teaching CS 1, I have accounted for extra time needed for the course. In the CS 1 course students
are required to meet with me 1-on-1 which helps me assess student progress as well as strategize,
often with student agency, how to help each student succeed. Active learning and peer learning
techniques are also critical to ensuring there is a greater opportunity for students to learn from each
other and form a learning community. In the future, I also plan to experiment with a pass/fail and/or
mastery learning approach for the base requirements of the course.

4.2 Instructor 2 Reflection

 Starting in Fall 2022, I began teaching at Loyola with a primary audience of adult learners
through the school of continuing studies. Before my current role, I held roles at both an R1
institution and a small private institution. The latter was focused on expediting students into the
workforce by offering associate degrees centered around computer science. Neither my current
institution nor the ones I previously mentioned required prerequisite for CS 1. Through a variety of
institutional contexts, I was able to observe students succeeding in CS 1 without having taken the
prerequisites that are widely required in CS programs.

 A considerable number of my students have been adult learners. Adult learners have
expressed that barriers for returning to school are higher in comparison to that of a traditional
student transitioning from high school. Factors such as gathering admission material to adopting
new life routines in preparation for pursing education are major adjustments and having to take
courses that do not particularly align with career interest in�luenced their choice on what programs
would suite their career interest. It is often the excitement and drive to immediately start learning
a technical skill that motivates students to return to school. Immediately capturing the interest of
what drew a student back to school is what resulted in higher engagement and matriculation. What
I observed was without the immediate grati�ication of learning that ultimately brought them back
to school, the requirement of taking other courses before a CS 1 course deterred students from
enrolling in a CS 1 course due to the misconception that programming involved a signi�icant amount
of math. I found this to be the case when students were encouraged to complete general education
courses that involved math prior to enrolling in technical courses. Removing prequisites to a CS 1
course can attract more returning students, without imposing a barrier of advanced mathematics
such as calculus, which may have little relevance to their interests or to the actual course material.

While re�lecting on the jobs students obtain after graduation, many of the technical jobs and
skills needed are not predicated on having prerequisites such as calculus. A good portion of the jobs

students obtained included skills such as creative thinking, programming, and problem-solving
skills, but most did not appear to require an advanced level of mathematics such as calculus. I do
not advocate for the elimination of courses like calculus, but rather their exclusion as entry criteria
for enrolling in a CS 1 course. During my initial teaching role at the private institution, students had
the option to complete a 2 + 2 program: 2 years for an associate degree and the remaining 2 years
for the bachelor’s degree completion. The associate degree included a mixture of general education
and technical courses to prepare students for entry-level tech jobs. The subsequent two years
focused more on theory-based and advanced mathematics courses, including calculus. Once a
student obtained an associate degree, they were encouraged to pursue employment and gain
meaningful work experience before returning to complete the bachelor’s degree. There were a
signi�icant number of bene�its to this approach, some included students having a keen awareness of
how material would apply to real world scenarios, employers offered students tuition
reimbursement to offset cost, students had a clear objective for how their education would
supplement their career pursuits. The courses students completed upon returning to earn the
bachelor's included calculus and other theory-based courses that provided more relevance to a
deeper understanding of concepts relayed. Students also took more thoughtful consideration of
what courses would be applicable to their career objective and engaged more in the advising
process taking more agency over their programs of study.

During my time at the R1 institution, the absence of prerequisites for CS 1 led to diverse
students from various disciplines enrolling in the course which resulted in high enrollment. The
accessibility of the course to non-computer science majors broadened the reach to majors outside
of the school who found value in the course. Students from the school of design expressed the
relevance of the CS 1 material when developing creative digital art. I observed students from other
disciplines continuing in subsequent courses with successful completion of CS 1 due to �inding an
interest in programming. Not having prerequisites for CS 1 allowed administrators to easily
approve a request for students who desired to enroll in the course as a general elective if there was
space.

4.3 Pedagogical techniques and student support
In this section we present some of the teaching techniques applied in courses in our

respective classes and programs. We present this in the interest of giving a complete understanding
of all factors that in�luence the success of students at Loyola SCPS and SMC.

At a classroom level, active learning techniques are used extensively, including liberal use of
groupwork. Project based learning is used throughout the intro programming courses at both
institutions. Das uses an open ended �inal project in the intro programming course called “Bring
your own project” (BYOP) which de�initely drives student engagement [20]. We both heavily rely
on online materials such as Wiley Zybooks [27] as an active textbook environment.

Additional support measures and techniques involve creating peer-to-peer learning
opportunities and providing students the opportunity to receive individual assistance. Fulton
schedules designated in-class times for students to work together on coding activities. These
activities provide an opportunity for students to process the material with others who vary on the
spectrum of knowledge. Guidelines are provided for peer-to-peer opportunities which encourage
students to ask questions and to share their understanding of the code and share helpful
information that contributed to their overall understanding.

5 Discussion

We will focus this discussion on the following questions. What is the rationale behind the
calculus prerequisite for a CS 1 programming course? How does a CS 0 prerequisite compare with
the calculus prerequisite? What is the result of removing either a calculus or CS 0 prerequisite?

 As discussed in the introduction, the typical content for a CS 1 introductory programming
course does not have any dependence on calculus. The standard topics are usually composed of
variables and expressions, I/O including working with �iles, branching, loops, functions, and objects.
None of these topics require any knowledge of calculus, and high school level math is suf�icient for
embarking on learning any of these topics. Thus, we strongly advocate for a reconsideration of
calculus prerequisite. A calculus prerequisite can function as a barrier for students who have had
less advanced math preparation in the past, which includes access to AP coursework. The calculus
prerequisite is a signi�icant self-selector towards which students are able to begin the CS 1
programming course and when. Students who are able to begin programming courses sooner have
an advantage over students who take that course later, further amplifying pre-college disparities.
At the same time, in our experience, the mere presence of the calculus prerequisite discourages
many students from even considering taking the CS 1 course. The main advantage of taking calculus
should be in learning problem-solving skills. But computational problem solving is different than
mathematical problem-solving. Authors such as Pejcinovic et al. [8] found that calculus not only had
an inconclusive effect in improving computational problem-solving but general engineering
problem-solving as well.

The CS 0 prerequisite is more in line with the needs of a CS 1 course. The CS 0 course is also
well positioned as a trial course for students considering CS as an option. However, in our
experience the CS 0 course is not necessary for success in the CS 1 course. Whether the CS 0 course
should exist should be dependent upon whether or not the course counts towards the degree as a
whole. In our scan we were not able to de�initively answer whether all programs that require a CS
0 prerequisite count that course towards a degree. Programs that do not count the CS 0 course as
part of the major hopefully still count the course as part of the degree. If they do not, then this is a
needless burden for those students who did not have access to a CS 0 course previously (AP or
otherwise). On the other hand, in the case of our programs with limited size majors, the lack of a CS
0 course allows for the inclusion of upper division courses.

This experience report indicates that there is no difference in student performance between
CS 1 programming course requiring a calculus prerequisite and one without that requirement.
Granted that there are other factors such as the instruction methodology and the student support
that impact this result. However, if we are serious as a community regarding broadening
participation in computing it is incumbent upon us to consider whether the prerequisite is
necessary or is functioning as a barrier to students starting the CS 1 programming course, and by
extension starting CS programs.

While prior experience [5] and having some form of high school calculus, especially AP
calculus, has been shown to predict improved student success through an introductory CS sequence,
towards broadening participation in computing we should as a faculty community be working
towards teaching and learning approaches that bridge the prior experience gap. We also note that
there is no strong counter-factual since not having prior math preparation does not predict failure
in the intro programming course. We should be concerned with who has access to AP courses [9],
[10], [29] and whether or not the erecting of barriers based on high school access or privilege is
justi�ied.

The long-term performance of our students at Loyola and Saint Mary’s also indicates that
students who have taken these CS 1 classes have continued to be successful. This should suggest
reconsideration of when and where in the curriculum the math and/or calculus requirement should
show up. Can we change the function of the math/calculus requirement from a gatekeeper to a when
needed requirement. Note that while the BS CS at Saint Mary’s includes Calculus I and Calculus II,
the reason for their inclusion is to mainly support understanding of the underbelly of Machine
Learning and Arti�icial Intelligence. The BA CS at Saint Mary’s and the BA IT at Loyola do not have a
Calculus requirement.

We reiterate what was noted earlier that Calculus is often not a requirement for entry into
graduate level CS programs. Those coming from non-CS backgrounds are asked to take prerequisite
courses that are often some type of accelerated intro to computing and/or coursework in
programming, data structures, and algorithms, but not Calculus.

It is time to ask what the utility of the Calculus course is to a Computer Science major?
Colleagues mention the need to learn problem solving techniques. In our experience, the techniques
needed to successfully solve computing problems are different than calculus. This is not to say that
knowing Calculus is not bene�icial; undoubtedly having Calculus under their belt is greatly bene�icial
particularly in ML/AI and Engineering oriented applications. We look forward to animated
discussions on this topic.

6 Conclusions and future work

 The removal of prerequisites has signi�icant bene�its in terms of allowing a wider variety
of students to take the CS 1 course earlier in their programs. The rationale of requiring students to

take calculus prior to taking a CS 1 course should be reconsidered. Not only is there no dependence
of a standard CS 1 programming course on calculus, but this requirement can also function as
discouragement and a delay in students interested in taking the CS 1 programming course. Towards
broadening participation in computing and supporting students from a wide variety of backgrounds,
bringing differing prior experience a big step would be making it easier for students to begin
programming as soon as possible. As recognized in the ACM/IEEE/AAAI CS 2023 curriculum guide
beta, introductory programming topics and knowledge areas do not have required math
prerequisites. The results of our scan indicate that a variety of institutions (30%) have come to the
same conclusion as this experience report and enable students to begin the CS 1 programming
course very early in the CS programs.

We reiterate that we are not calling for a removal of calculus from CS or CS-adjacent
programs. That depends upon the type of program under consideration. However, we strongly
advocate for the removal of calculus as an entry criterion into the CS 1 programming course, thereby
reducing a barrier-to-entry.

 For future work, we would like to expand the scan to include more institutions and make
that information available online and allow institutions to update and comment on their thought
process behind the prerequisites for the CS 1 course. It would also be interesting to see how the
requirements have evolved over time by reviewing older course catalogs. Once the CS2023
curriculum guide is �inalized, we would also like to repeat the survey scan and analysis in 2 years to
evaluate how programs are responding to the new guide.

ACKNOWLEDGMENTS
We would like to thank the Computer Science department chair and Dean at the Loyola College of
Arts and Science as well as the Interim, Associate and Assistant Deans of the School of Continuing
and Professional Studies at the Loyola University Chicago. We would also like to thank the
Mathematics and Computer Science department chair, and the Dean of the School of Science at Saint
Mary’s College of California. As ever, we are of course eternally thankful and grateful for our
wonderful students.

REFERENCES
[1] A. E. Tew and M. Guzdial, “Developing a validated assessment of fundamental CS1 concepts,” in

Proceedings of the 41st ACM technical symposium on Computer science education, Milwaukee
Wisconsin USA: ACM, Mar. 2010, pp. 97–101. doi: 10.1145/1734263.1734297.

[2] “CS2023 – ACM/IEEE-CS/AAAI Computer Science Curricula.” Accessed: Aug. 18, 2023. [Online].
Available: https://csed.acm.org/

[3] O. T. Virkki, “Performance and Attrition in Information Technology Studies; A Survey of
Students’ Viewpoints,” in 2023 IEEE Global Engineering Education Conference (EDUCON), May
2023, pp. 1–9. doi: 10.1109/EDUCON54358.2023.10125231.

[4] N. Herbert, “Impact of Student Engagement on First Year ICT Performance,” in 2017
International Conference on Computational Science and Computational Intelligence (CSCI), Dec.
2017, pp. 1085–1090. doi: 10.1109/CSCI.2017.189.

[5] G. Bui, N. Sibia, A. Zavaleta Bernuy, M. Liut, and A. Petersen, “Prior Programming Experience: A
Persistent Performance Gap in CS1 and CS2,” in Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1, Toronto ON Canada: ACM, Mar. 2023, pp. 889–
895. doi: 10.1145/3545945.3569752.

[6] C. Chen, J. M. Kang, G. Sonnert, and P. M. Sadler, “High School Calculus and Computer Science
Course Taking as Predictors of Success in Introductory College Computer Science,” ACM Trans.
Comput. Educ., vol. 21, no. 1, pp. 1–21, Mar. 2021, doi: 10.1145/3433169.

[7] M. Doyle, D. Kasturiratna, B. D. Richardson, and S. W. Soled, “Computer Science and Computer
Information Technology majors together: Analyzing factors impacting students’ success in
introductory programming,” in 2009 39th IEEE Frontiers in Education Conference, Oct. 2009, pp.
1–6. doi: 10.1109/FIE.2009.5350582.

[8] B. Pejcinovic, M. Holtzman, P. K. Wong, and G. Recktenwald, “Assessing student preparedness
for introductory engineering and programming courses,” in 2017 IEEE Frontiers in Education
Conference (FIE), Oct. 2017, pp. 1–5. doi: 10.1109/FIE.2017.8190539.

[9] J. R. Thomas, “Access to AP courses often elusive for low-income students,” CT Mirror. Accessed:
Aug. 17, 2023. [Online]. Available: http://ctmirror.org/2018/05/14/advanced-placement-
debate-open-closed-gate/

[10] G. Siegel-Hawley, K. Taylor, E. Frankenburg, and K. Bridges, “Segregation within Schools:
Unequal Access to AP Courses by Race and Economic Status in Virginia,” Apr. 2015.

[11] M. S. Kirkpatrick and C. Mayfield, “Evaluating an Alternative CS1 for Students with Prior
Programming Experience,” in Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, Seattle Washington USA: ACM, Mar. 2017, pp. 333–338. doi:
10.1145/3017680.3017759.

[12] P. Dempster, D. Onah, and L. Blair, “Increasing academic diversity and inter-disciplinarity of
Computer Science in Higher Education,” in Proceedings of the 4th Conference on Computing
Education Practice 2020, Durham United Kingdom: ACM, Jan. 2020, pp. 1–4. doi:
10.1145/3372356.3372366.

[13] A. Luxton-Reilly, “Learning to Program is Easy,” in Proceedings of the 2016 ACM Conference
on Innovation and Technology in Computer Science Education, Arequipa Peru: ACM, Jul. 2016, pp.
284–289. doi: 10.1145/2899415.2899432.

[14] N. Dehbozorgi, “Active Learning Design Patterns for CS Education,” in Proceedings of the 2017
ACM Conference on International Computing Education Research, in ICER ’17. New York, NY, USA:

Association for Computing Machinery, Aug. 2017, pp. 291–292. doi:
10.1145/3105726.3105741.

[15] E. F. Gehringer and C. S. Miller, “Student-generated active-learning exercises,” in Proceedings
of the 40th ACM technical symposium on Computer science education, in SIGCSE ’09. New York,
NY, USA: Association for Computing Machinery, Mar. 2009, pp. 81–85. doi:
10.1145/1508865.1508897.

[16] L. Porter and B. Simon, “Retaining nearly one-third more majors with a trio of instructional
best practices in CS1,” in Proceeding of the 44th ACM technical symposium on Computer science
education, Denver Colorado USA: ACM, Mar. 2013, pp. 165–170. doi:
10.1145/2445196.2445248.

[17] J. Brougham, S. Freeman, and B. Jaeger, “Pair Programming: More Learning And Less Anxiety
In A First Programming Course,” in 2003 Annual Conference Proceedings, Nashville, Tennessee:
ASEE Conferences, Jun. 2003, p. 8.912.1-8.912.9. doi: 10.18260/1-2--11728.

[18] M. Jazayeri, “Combining Mastery Learning with Project-Based Learning in a First
Programming Course: An Experience Report,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Florence, Italy: IEEE, May 2015, pp. 315–318. doi:
10.1109/ICSE.2015.163.

[19] M. Frydenberg and K. Mentzer, “From Engagement to Empowerment: Project-Based
Learning in Python Coding Courses,” 2021.

[20] U. Das, “BYOP: ‘Bring Your Own Project’: How student-driven programming projects in an
introductory programming course can drive engagement and continuous learning,” presented
at the 2023 ASEE Annual Conference & Exposition, Jun. 2023. Accessed: Aug. 18, 2023. [Online].
Available: https://peer.asee.org/byop-bring-your-own-project-how-student-driven-
programming-projects-in-an-introductory-programming-course-can-drive-engagement-and-
continuous-learning

[21] J. A. Cottam, S. Menzel, and J. Greenblatt, “Tutoring for retention,” in Proceedings of the 42nd
ACM technical symposium on Computer science education, Dallas TX USA: ACM, Mar. 2011, pp.
213–218. doi: 10.1145/1953163.1953227.

[22] T. VanDeGrift, “Supporting Creativity and User Interaction in CS 1 Homework Assignments,”
in Proceedings of the 46th ACM Technical Symposium on Computer Science Education, in SIGCSE
’15. New York, NY, USA: Association for Computing Machinery, Feb. 2015, pp. 54–59. doi:
10.1145/2676723.2677250.

[23] S. Sharmin, “Creativity in CS1: A Literature Review,” ACM Trans. Comput. Educ., vol. 22, no. 2,
p. 16:1-16:26, Nov. 2021, doi: 10.1145/3459995.

[24] R. Varma, “Making computer science minority-friendly,” Commun. ACM, vol. 49, no. 2, pp.
129–134, Feb. 2006, doi: 10.1145/1113034.1113041.

[25] B. Hui, P. Rajabi, and A. Pinchbeck, “Disparity Between Textbook Examples and What Young
Students Find Interesting,” in 2021 IEEE Frontiers in Education Conference (FIE), Oct. 2021, pp.
1–8. doi: 10.1109/FIE49875.2021.9637145.

[26] W. Wei, J. J. Ryoo, and A. Morris, “Centering Minoritized Students’ Perspectives: What Makes
CS Learning Consequential,” in Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1, in SIGCSE 2023. New York, NY, USA: Association for Computing
Machinery, Mar. 2023, pp. 666–672. doi: 10.1145/3545945.3569878.

[27] “zyBooks - Build Confidence and Save Time With Interactive Textbooks,” zyBooks. Accessed:
Jan. 09, 2024. [Online]. Available: https://www.zybooks.com/home/

[28] C. F. Reilly and E. Tomai, “An examination of mathematics preparation for and progress
through three introductory computer science courses,” in 2014 IEEE Frontiers in Education
Conference (FIE) Proceedings, Oct. 2014, pp. 1–9. doi: 10.1109/FIE.2014.7044349.

[29] “AP versus the excellence gap,” The Thomas B. Fordham Institute. Accessed: Aug. 17, 2023.
[Online]. Available: https://fordhaminstitute.org/national/commentary/ap-versus-excellence-
gap

