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High School Computing Education: The Landscape of
Equity-Enabling Research (Fundamental)

Abstract
Motivation: Demographic disparities in computing instruction contribute to a tech workforce and
a society where the ever-increasing role of computing reflects those disparities. One facet of the
solution is to broaden the computing education research corpus to include experiences of all
students, particularly those from marginalized groups, and to adopt best practices for high-quality
research.

Research Question: What gaps related to participants in computing education research studies
exist? How might these contribute to the lack of equity in high school computing?

Methodology: Using a curated data set of research articles focused on K-12 computing education,
we analyzed articles that included high school students as study participants (n = 231) to
determine which dimensions of high quality and/or equity-enabling research were included.

Results: The yearly growth rate for studies of high school computing averaged over 40% during
the past decade. While that research has some indicators of being increasingly focused on equity,
there are also substantial gaps. For example, while publications that include student disability
status have been increasing, the number still remains very low (fewer than 5%). And while most
studies adhere to the practices of high quality research (e.g., specifying a research question), there
is some room for improvement.

Implications: Awareness of the landscape of recent computing education research that focuses on
high school students will enable education researchers to align their efforts with the needs of all
students, including those who are less likely to study computing.

1 Introduction and Background
Under-representation by race [1] and gender [2, 3] in computing is by now a well-known problem
in computing education research. Similar disparities exist for students with disabilities [4] and
those living in rural areas [5]. Barriers to accessing computing instruction constitute not only a
moral issue but also can lead to computing technologies that promote inequities in arenas ranging
from the criminal justice [6] to the health care [7] systems. Further, companies that lack diversity
experience worse performance [8].

One facet of rectifying these problems is the development of a corpus of education research that
studies the experiences of all students, not just those who come from groups that have
traditionally studied computing. A constant implementation of these practices can contribute to
curriculum and pedagogy that is more effective for dominant groups being integrated into



educational systems, thereby placing students from non-dominant groups (often marginalized or
excluded) at a disadvantage [9]. Further, historically, computing education research has not often
specified demographic information about study participants [10], making it difficult to determine
how and whether findings apply to all student groups. More explicitly, by not specifying when all
participants in a study are White, “Whiteness” becomes invisible, which by default then secures
the norm of Whiteness [11, 12].

Prior analysis of the demographics of computing education research study participants has used
an approach of critical demography [13] in order to explore norms in the literature. This work
found that most studies did not provide information on how demographic data was collected and
frequently used categories and response options that were suboptimal for fair representation (e.g.,
aggregate terms, gender binaries) and that most computing education research focused on
post-secondary students. Analysis of K-12 computing education research found that boys and
students in the US are most likely to be study participants and that race and socioeconomic status
are not often reported [14], but little to no previous research has focused specifically on the
landscape of high school computing.

As computing education expands in K-8, analysis focused specifically on high school becomes
increasingly important since a more granular perspective is key to better understanding the
research base and its gaps for secondary students. The historical trajectory of computing
education has been one of expansion from the most advanced levels of education (i.e., graduate
school) to the most basic, the elementary grades [15]. In the middle of that span are high school
students, whose computing instruction has some overlap with both primary and tertiary education
but is also distinct from those age groups. Hence, this study explores the research question: What
gaps related to participants in computing education research studies exist? How might these
contribute to the lack of equity in high school computing?

2 Methodology
The K-12 Computing Education Research Resource Center vets and then curates relevant articles
from over a dozen venues (see Table 1) that publish computing education research, including
dedicated journals and conference proceedings; there is also a mechanism for submissions to the
resource center by authors. The inclusion criteria require that articles (1) describe or assess a
computing activity, (2) focus on K-12 students and/or their instructors, and (3) focus on an
activity whose goal is teaching a computing or computational thinking concept.



Title
ACM International Computing Education Research (ICER)
ACM Innovation and Technology in Computer Science Education (ITiCSE)
ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE TS)
ACM Transactions on Computing Education (ToCE)
Frontiers in Education (FIE)
IEEE Global Engineering Education Conference (EduCon)
IEEE Research in Equity and Sustained Participation in Engineering, Computing, and Technology (RE-
SPECT)
IEEE Transactions on Education (ToE)
Journal of Educational Computing Research (JECR)
Koli Calling (Koli)
Taylor & Francis Computer Science Education (CSE)
Workshop in Primary and Secondary Computing Education (WIPSCE)

Table 1: Research Study Sources

Each abstract from the set of venues is reviewed to determine whether it meets the inclusion
criteria. Then, data for over 40 variables are logged for each included article; this data is verified
by a second reviewer [16]. Those variables include whether the grade level of study participants is
specified and, if so, which grade levels are included. There are over 1,200 articles in the resource
center that were published between 2013 and 2022 (inclusive), 771 of which were research
studies (i.e., not experience reports or position papers).

Of those, 472 specified the grade level(s) of study participants, and 231 of those included high
school students (grades 9 through 12, roughly ages 14 through 18). Figure 1 shows the count of
research articles that included high school students each year as a percentage of the articles where
the grade level of student participants was specified. We analyzed this set of 231 articles in order
to determine which factors of high-quality and/or equity-enabling research were included.
Research that is equity-enabling is defined as research that enables impactful education that leads
to equitable outcomes [17].



Figure 1: Papers focusing on high school students as a percentage of all papers that specified grade
level

3 Results
3.1 Metadata
As Figure 2 shows, there is a substantive increase in the number of studies each year, and an even
greater increase in the number of unique authors per year.

Figure 2: Count of papers and authors by year



Table 2 shows the paper count for the 9 venues with the most articles related to high school
computing education. The top two venues, the Association of Computing Machinery (ACM)
SIGCSE Technical Symposium and IEEE Frontiers in Education (FIE) conference proceedings,
together account for over a third (37%) of high school computing education studies.

Venue Count
SIGCSE Technical Symposium on Computer Science Education 58
Frontiers in Education (FIE) 28
Innovation and Technology in Computer Science Education 25
Transactions on Computing Education 21
Computer Science Education 16
International Computing Education Research 15
Koli Calling 15
Research in Equity and Sustained Participation in Engineering, Computing, and Technology 14
Workshop in Primary and Secondary Computing Education 12

Table 2: Venues

Organization Count
North Carolina State University 13
The University of Adelaide 9
Georgia Institute of Technology 8
The Findings Group 6
UCLA 6
University of Washington 6

Table 3: Organizations

There are 281 different institutional affiliations in the data set; Table 3 shows the organizations
listed as affiliations in more than 5 papers. Five out of six of these organizations are located in the
US; all are in English-speaking, higher-income countries.

3.2 Themes
Three variables in the data set are used to explore the themes of high school computing education
studies: the study’s area of focus, its keywords, and its citation count.

Each article in the data set is assigned a focus area. Figure 3 shows the proportion of papers that
have each focus area over time (the legend indicates the total number of articles with each focus
area). Some focus areas, such as resources (e.g., a tool), show substantive variability from year to
year and no clear trend. Other areas have a trend, such as student activity (which decreases over
time) and studies focused on the learner (which increase).
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Figure 3: Focus area by year

In this dataset, 82% of articles had keywords, with a total of 600 different keywords (synonymous
keywords, such as K-8 education and K-8, were combined for this analysis). Of those 600
keywords, 12 occurred in more than 4 years. A scaled count for each keyword was calculated for
each year by dividing the raw count of papers with the keyword by the number of papers with
keywords and multiplying the result by 1,000 (for readability).



Figure 4: Scaled frequency of keywords occurring in at least 4 years

As Figure 4 shows, unsurprisingly, K-12 and computing education are consistently common
keywords. The year 2016 appears as an outlier: the preponderance of references to broadening
participation stems from the low number (7) of studies meeting the inclusion criteria for that year,
only two of which had keywords. The keywords occurring in more than 10 articles are computing
education (59 instances), K-12 (37), computational thinking (26), equity (13), professional
development (13), gender (12), programming (12), and high school (12).

A scaled citation count was determined for each study by dividing its number of citations in
CrossRef [18] by the number of years since its publication (in a few instances where CrossRef did
not have data for a study, Google Scholar’s citation count was used; one research report in the
data set lacked entries in both CrossRef and Google Scholar and was imputed a citation count of
0). The most cited studies are shown in Table 4.



Title Scaled Count
Gender stereotypes about interests start early and cause gender disparities in com-
puter science and engineering

38.0

Computing whether she belongs: Stereotypes undermine girls’ interest and sense
of belonging in computer science

36.3

A crafts-oriented approach to computing in high school 17.6
From Scratch to “real” programming 15.4
Using commutative assessments to compare conceptual understanding in blocks-
based and text-based programs

13.7

Exploring the effectiveness and moderators of block-based visual programming on
student learning: A meta-analysis

13.0

Applying a transformative justice approach to encourage the participation of Black
and Latina girls in computing

13.0

Pedagogy that supports computer science for all 12.3
Block-based versus text-based programming environments on novice student learn-
ing outcomes: A meta-analysis study

11.7

Does computer game design and programming benefit children? A meta-synthesis
of research

10.7

Table 4: Most cited studies (scaled by year).

3.3 Research Approach
Table 5 shows the percent of studies including various research details; at least 8 out of 10 studies
include key information such as a research question, which concepts were taught, how data was
measured, and the count of participants.

Specification Percent
Research question 86%
Which concepts taught 83%
How data was measured 99%
Participant count 84%

Table 5: Percent of studies including various research details

Figure 5 shows the measurement tools used most commonly in the data set: surveys are most
common and are nearly twice as frequently used as interviews, which are the next most common
measurement technique. (See the discussion regarding possible equity implications of these
design choices.)



Figure 5: Most commonly used measurement tools

Fewer than half (40%) of studies involving a student activity specified whether that activity was
required or optional. Of those studies that specified, elective activities were most common
(74%).

As Figure 6 shows, Scratch is the most commonly used language or tool, with Python a close
second.

Figure 6: Most commonly used programming languages or tools



3.4 Equity-Related Factors
Tables 6 and 7 show paper counts by the country and by the US state of student participants, in
raw and scaled counts. The scaled counts adjust the raw counts relative to the location’s student
population using World Bank [19, 20] or NCES [21] data; scaled counts were only generated for
countries with more than 4 papers and states with more than 2 papers. Table 6 shows that, for
both raw and scaled counts, research papers disproportionately include student participants from
western, educated, and/or English-speaking countries. For those papers specifying a US state for
the location of student participants, the same six states appear at the top of both lists, albeit with
their order shuffled.

Raw Count Scaled Count
Country Count Country Count
US 77 Finland 5.6
UK 13 Sweden 2.8
Germany 10 US 1.5
Brazil 9 Australia 1.2
Australia 6 UK 1.2
Finland 5 Germany 1.0
Sweden 5 Brazil 0.2

Table 6: Raw and scaled paper counts by country

Raw Count Scaled Count
State Count State Count
Illinois 6 Illinois 3.1
California 6 Washington 2.6
New York 4 North Carolina 1.9
North Carolina 3 New York 1.5
Texas 3 California 1.0
Washington 3 Texas 0.5

Table 7: Raw and scaled paper counts by US state

Table 8 shows the percentage of papers that specify participant factors such as student
socioeconomic status or instructor gender. With the exceptions of participant location and student
gender, no factor is specified in more than half of the papers. Disability status is specified in very
few (3%) papers; similarly, instructor race or ethnicity is specified in fewer than 1 in 10 papers.
Most of these factors are increasingly likely to be specified over the time period of this study, with
the exceptions of student race, ELL status, and location.

For papers that do specify participant race, White and Latino/a/x/e are the most likely groups to
be mentioned (9 papers each), followed by Black or African American (8 papers), Asian/Pacific
Islander (6 papers), and American Indian or Alaska Native (4 papers); note that papers may
mention more than one group. Papers that specify gender mentioned girls/women (41 papers)
and/or boys/men (37 papers); there were no references to gender beyond this binary.



Factor Percent Trend
Student Socioeconomic Status 14% ↗
Student Disability 3% ↗
Student Gender 65% ↗
Student Race 36% ↘
Student Ethnicity 25% ↗
Student English Learner Status 16% ↘
Student Prior Computing Experience 33% ↗
Student Location 69% ↘
Instructor Gender 26% ↗
Instructor Prior Computing Experience 35% ↗
Instructor Race 7% ↗
Instructor Ethnicity 3% ↗

Table 8: Percent specified and trend over time for study participant factors

4 Discussion
The field of high school computing education research is rapidly expanding, with most years in
the study period showing substantive increases in relevant published studies, although there is
some year-to-year volatility. That only six papers met the inclusion criteria in 2013 but 32 did in
2022 speaks to the expansion of the field.

4.1 Gender
Gender appears to be a key concern of high school computing education research. This finding is
supported by several lines of evidence: gender is one of the few keywords to occur in more than a
handful of articles, it is the concern of the two most commonly cited studies in the data set, and it
is the only equity-related factor (other than student location) to be specified in more than half of
the studies. However, despite this emphasis on gender, there are still substantive gaps in studying
the impact of gender on high school computing students: over 2% of Generation Z (born 1997 -
2003) identify as transgender [22], but no studies in the data set involved categories for gender
other than the traditional binary of girls/women and boys/men. Further, an examination of the
most cited studies suggests that gender is more likely to be explored in relation to affective factors
(e.g., the impact of stereotypes) than in relation to, for example, curriculum or activities. Given
that some research shows gender differences in these areas [23–25], further research is
warranted.

4.2 Location
High school computing education is under-researched, particularly as it pertains to student
location. For example, Brazil is one of the most studied countries in the data set, making the list
of the top countries for both raw and scaled paper counts. But there are only nine papers in the
data set that involve student participants in Brazil. They cover a variety of topics, including
computational thinking, female students’ perceptions, and robotics. But no set of just nine articles
can exhaustively analyze the needs of high school aged students in an entire country, especially
one as large as Brazil; none of these studies focus on, for example, cybersecurity, accessibility, or
hardware. And Brazil is the only South American country on either list of most common



countries. Thus, this analysis suggests that, despite its rapid growth, much more computing
education research is required to better understand the needs of high school students. Further, the
paucity of research can make it difficult to analyze the research base, as is evident from the fact
that the existence of only two relevant 2016 articles with keywords skews the keyword analysis
for that year, as described above.

Underrepresentation by geographic location is also manifested in author affiliations: the most
prolific organizations in the data set are in higher-income, Western, English-speaking countries,
predominately the US. The extent to which research conducted in these countries is applicable
globally is an open question, especially given the different contexts and educational systems
found worldwide. Nonetheless, the rapid growth over the previous decade suggests that the field
is at something of an inflection point, where decisions about whether and how to focus on equity
concerns will have a magnified impact in the future. The movement toward expanding computer
science instruction (including, in some areas, as a required subject) suggests the importance of
current research and its trends.

4.3 Authorship and Venues
The fact that the number of authors is increasing much more rapidly than the number of papers
suggests something of a shift in how computing education research is conducted: larger teams
have the potential to include more diverse voices and thus may signal more equity-enabling
research if these larger teams are in fact more representative of the student population and more
attuned to equity-related concerns. Whether this is actually the case remains an open question,
although previous research has observed an absence of diversity in computing education research
[26].

Despite this growth in the field, only two venues included in the data set – SIGCSE TS and IEEE
FIE – account for over a third of studies in the data set. This concentration highlights the
importance of ensuring that these conferences foreground equity at every turn (e.g., in selection of
committee members, in submission policies, in reviewer protocols) given their outsized role in the
direction of computing education.

4.4 Disability
Participant disability is another category that is rarely studied, with only 3% of articles in the data
set specifying student disability; by contrast, in the United States, about 15% of students receive
services designed for students with disabilities [27]. Barriers related to disability appear in other
forms as well: the most commonly studied programming language is Scratch (19 papers), and
four of the most cited papers concern block-based programming, but visually-based languages are
not easily accessible for users with cognitive impairments [28] or, especially, limited vision [29].
(Text-based languages, such as Python – the second most commonly used in the data set – can
also suffer from accessibility issues due to the fact that screen readers are generally not designed
to read code, an issue especially relevant to the syntactical significance of white space in Python.)
There has always been a moral case for ensuring that students with disabilities could access
computing instruction, but that case is augmented by several factors including computer science
graduation requirements in some locations and the increasing popularity of the computer science
major.



4.5 Socioeconomic Status
Similarly, socioeconomic status is specified in only 14% of studies and prior computing
experience in 33%; these factors have significant equity implications given that students attending
under-resourced schools are less likely to have access to computer science [30] and Black and
Hispanic students are less likely to have computers at home [31], with prior computing
experience (i.e., preparatory privilege [32, 33]) shaping perceptions of who can succeed in
computer science.

4.6 Race and Ethnicity
More research on the experiences of students from diverse racial and ethnic backgrounds is
needed: only one of the most-cited articles is focused on students’ racial and ethnic identity, and
few papers specify the race (36%) or ethnicity (25%) of student participants. The proportion of
papers that specify student race has decreased over the study period. Papers rarely mention the
instructor race (7%) or ethnicity (3%), which makes it difficult to explore interaction effects
between student and instructor identities.

4.7 Other Equity Issues
There are substantial gaps in the research related to equity concerns. For example, virtually no
research (only 2 out of 231 studies) is focused on parents or the community. This may represent a
lost opportunity for equity-enabling research to the extent that it suggests room for growth in
culturally relevant and/or sustaining research studies, such as recent work on culturally responsive
debugging that leverages community expertise [34].

Other potential gaps in equity-enabling research are less obvious: for example, interventions
based on elective activities predominate (74%), perhaps due to the ease of studying student
behavior in enrichment programs (e.g., summer camps and after-school programs) as opposed to
in the formal classroom. But girls are less aware than boys are of these opportunities [31], which
may lead to disparate participation rates by gender and, in turn, an evidence base that does not
adequately reflect the experiences of all students.

Choices in research design may also impinge on equity issues. The most commonly used
measurement tool, surveys, have differences in responses based on language and culture [35, 36].
For example, Asian students will, on average, be less likely to provide responses on the extremes
to survey questions [37]. Similarly, interviews – the second most commonly used measurement
tool – can be skewed by the racial biases of the interviewer [38]. Observation (the third most
common measurement tool) has been shown to be impacted by the race or gender of the observer
[39, 40].

Further, there is a distinction between specifying a factor and analyzing that factor: an article
might specify how many girls, boys, and non-binary students participated in the intervention
without analyzing the results based on gender (e.g., “there was no significant difference in test
scores based on participant gender”). Many papers that specify an attribute do not analyze that
attribute. Thus, while the percentages of studies specifying demographic factors is an important
first step toward understanding whose computing experiences are being studied and to what
extent research findings may be applicable in other contexts, analysis of the factor provides
additional insight into whether the intervention being studied has a differential impact on various
groups of students. While it is neither possible nor appropriate for every research study to analyze



its findings based on every demographic factor, the overall lack of specified and analyzed factors
results in a significant gap in the knowledge base regarding effective computing instruction.

Interestingly, the keyword equity does not appear in Figure 4 because it does not occur in more
than 4 years, but it does appear among the most common keywords, pointing to a recent emphasis
on the topic. In fact, equity is not used as a keyword until 2019, but it occurs each year thereafter.
This finding is a positive indication of the increasing concern with equity in the computing
education community.

4.8 Limitations
We acknowledge several limitations to this study. First, citation practices have been shown to be
influenced by a variety of biases [41], making any analysis reliant on citation counts susceptible
to reflecting underlying inequities in academic research. Second, the categorization of papers
upon which this study is based has some subjective elements, which may impinge on the final
data. Third, some of the factors assessed in this paper (e.g., student participant location) are not
included in every study, which may skew some of the analysis, such as which geographic
locations are more or less likely to be represented in the research data.

4.9 Recommendations
As the discussion above suggested, there is room for improvement in addressing equity issues in
computing education research. We present the following suggestions for best practices for
equity-enabling research:

Consider the equity implications of research methods. Choices in research design may have
consequential but not obvious equity repercussions. As mentioned above, the three most common
measurement tools – surveys, interviews, and observations – can have biases; researchers need to
work toward mitigation of those biases. (In addition to equity concerns, previous research has
found that most surveys designed for computing education research do not follow best practices
for survey design [42]).

Appropriately specify and analyze demographic information. An intervention that shows promise
in the aggregate may or may not be equally effective for all student groups. Thus, where possible,
specify and then analyze demographic information. Several guides have been developed to help
researchers appropriately gather demographic information [43–45]. It is important that survey
questions present students with choices that reflect their identities, such as questions about gender
that present it as more than a binary choice [46], because requiring a student to select a category
that does not match their identity can in itself be oppressive [47].

Use accessible tools. Where possible, research studies should choose to use tools such as
programming languages designed for accessibility [48], add-ons that make block-based
programming accessible to blind and visually impaired students [49], and tools designed for
students with hearing impairments [50]. This also includes carefully choosing tools for data
collection that are also accessible.

Include details about interventions. Many studies do not indicate, for example, the grade level of
students, their geographic location, or what programming language was used in the study. When
this information is absent, it is difficult to draw conclusions about the landscape of extant research
and what gaps might exist. It is also difficult for other researchers and for practitioners to



determine how similar a study’s context is to their own. While the vast majority of studies
specified a research question, which concepts were taught, how data was measured, and the
participant count, there is some room for improvement in each of these variables.

5 Conclusion
In sum, the result of our analysis of computing education research focused on high school
students is that this expanding field is categorized by both much work on equity-related issues as
well as by some significant gaps. In particular, studies tend not to focus enough attention on the
needs of students with disabilities, and the use of common research methods (e.g., surveys) may
enable various forms of bias. At the same time, it is heartening that almost half of the most-cited
articles focus in some way on equity issues.
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