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An Initial Investigation of Design Cohesion as an IDE-based Learning  
Analytic for Measuring Introductory Programming Metacognition 

In this full paper, we describe our case study approach to initially characterize Design Cohesion 
as a new IDE-based learning metrics through an exploratory coding process. We developed a 
new alignment notation to generate two new qualitative metrics: Design Cohesion (High, 
Medium, Low) and Granularity Level (High, Medium, Low) Design Cohesion is the level of 
alignment between flowchart and code, which accounts for the order of intended program 
execution, the internal data of a flowchart node, and the number of nodes in the flowchart that 
map to the code. We define Granularity Level as an additional characterization of cohesion that 
labels the level of detail in the flowchart. Our primary objective is to use these new metrics to 
understand how a flowchart can be aligned with its code implementation to understand 
introductory students’ current level of programming metacognition. 

In the context of our case study, we discuss the exploratory coding process and alignment 
notation developed to generate the features for the newly proposed metrics. Next, we explore two 
cases to illustrate the diversity of characteristics found in various feature combinations. Each 
case study compares two examples from the same participant, one with High Cohesion and High 
Granularity, the other with High Cohesion and Low Granularity. 

Our initial investigation into design cohesion has led to the hypothesis that High-level Design 
Cohesion paired with low levels of flowchart granularity demonstrates high levels of abstraction 
in the initial flowchart design, which may point to under-designing by participants and/or lower 
levels of metacognition. Comparatively, having high cohesion and granularity may point to over-
designing by the participant and often stems from a one-to-one mapping of flowchart nodes to 
lines of code. Our results point toward a logical relationship between Design Cohesion and 
students’ level of self-estimated skill, and we are confident that Design Cohesion will serve as 
viable metric for understanding introductory programming metacognition. 

1. Introduction 
This paper presents our initial characterization of Design Cohesion and Granularity Level and 
our case study approach to the qualitative exploratory coding process applied to the flowchart 
and programming data collected as a exploratory study across 25 participants and 50 code 
samples. We seek to explore these metrics as candidates for our five-dimensional model of 
programming skill estimation and to determine if they are effective methods for characterizing 
introductory programming metacognition. The Design Cohesion metric is an alignment metric 
that proposes to classify the level of accuracy between a flowchart design and the code 
implementation of a programming problem. It aims to accounts for the order of intended 
program execution, the internal data of a flowchart node, and the number of nodes in the 
flowchart that map to the code. The Granularity Level further characterizes design cohesion by 
classifying the level of detail contained within a flowchart compared to the final program 
solution. 



Our research is motivated by a primary goal: the development of a model of programming skill 
estimation for introductory programming grounded in effective learning theories. By applying 
artificial intelligence and IDE-based learning analytics for collecting and analyzing programming 
process data, we seek to provide real-time personalized metacognitive feedback to introductory 
programming students on their current skill level. 

By combining learning analytics methods with instrumented IDEs, we have the opportunity to 
remove the labor-intensive task of providing individualized feedback to students on their 
programming process. However, current IDEs (Integrated Development Environments) lack the 
metrics to assess strategic knowledge effectively. Programming evaluation and teaching methods 
seem to focus entirely on the syntactic and procedural level instead of the strategic level despite 
the research showing that directly teaching metacognitive strategies and problem-solving 
techniques improves student outcomes [10, 12, 13].  

The design phase of a program solution, though encouraged, is almost entirely ignored and, as a 
result, not captured within IDE-based environments or learning analytics platforms. In order to 
begin assessing strategic knowledge, we need new methods to capture programming 
metacognition. This includes the development of more meaningful metrics for identifying 
metacognitive strategies. These metrics then need to be situated within a framework that relates 
the evaluation of syntactic and procedural knowledge to the level of strategic knowledge. By 
understanding students' approach to the design of a solution, we can determine if the difficulties 
in completing a programming problem lie in conceptual understanding of the problem and 
general programming constructs or if the issue lies with the programming language itself and the 
ability to translate a design into a concrete programming solution.  

Our approach to providing additional insight into student’s capacity to design is to develop 
Design Cohesion as a new metric for understanding programming metacognition for introductory 
programming using a custom web-based IDE as part of a broader study to generate new metrics 
for IDE-based learning analytics. This study consisted of a series of surveys to understand active 
programming knowledge and a set of programming exercises completed within our custom IDE 
in a supervised lab environment. 

1.1 Research Questions 
This qualitative exploratory study seeks to answer the following research question: What metrics 
can be developed for assessing students' level of design cohesion based on the alignment 
between flowchart design and source code implementation of a programming exercise?   

Additionally, we aimed to collect data that demonstrates the web based IDE as a proof of concept 
for collecting programming processing data and if design cohesion is a viable IDE-based 
learning analytic for programming metacognition.  

The following sections lead with a discussion on the relevant background and related works on 
IDE-based learning analytics and flowcharts in programming education. We then discuss the 



methods for our study design and participant recruitment. This is followed by a detailed 
walkthrough on the development of the alignment notation used to code the flowchart and 
programming data to assist in the development for the codebook on design cohesion and the 
classification process of each sample. We then present the codebook that was formulated as a 
result of the coding process for Design Cohesion and Granularity Level. To further clarify the 
application of this process we provide two case studies and close with a discussion on the results, 
current limitations and future work.  

2. Background and Related Works 
For clarity and context the following section provides a brief overview of the relevant literature 
and related work which touches on IDE-based learning analytics, a historic overview of 
flowcharts in programming and a description of our model of programming skill estimation. 

2.1 IDE-based Learning Analytics 
Currently, students still face many challenges when learning to program, and instructors struggle 
with the time-intensive process required to give students the appropriate level of feedback to 
excel. These challenges have increased the need for automated tools and methods to gather and 
analyze programming artifacts and understand student programming patterns in introductory 
computing courses. Research indicates that students lack the problem-solving skills to apply 
strategic knowledge to novel problems in real-world contexts. These challenges have led to a 
need to automate methods to identify what programming concepts students struggle with, 
identify at-risk students, and understand what metacognitive strategies and patterns students use 
to solve programming problems [5, 12, 13]. By developing methods for early identification, we 
can give instructors time to intervene and provide the appropriate level of feedback, improving a 
student's ability to succeed during the most formative times in their computing education [6, 8]. 

There have been many attempts at developing novel approaches to support various aspects of 
programming metacognition, improve self-efficacy, and provide automated feedback and 
assessment for students in introductory programming courses [5, 6, 8]. Programming 
metacognition can be broadly defined as how students think about programming and the 
problem-solving strategies they employ to achieve a goal when given a programming task [9]. 
However, most of these methods have yet to be successfully scaled and applied in the classroom. 
Previous studies suffer from issues such as being too small, difficult to validate or replicate, and 
software that is not shared or is abandoned. Software developed as part of research efforts is 
typically abandoned due to a lack of research funding or the high overhead of developing a 
system to collect and analyze data on a large scale [6, 7, 8]. Despite the success of some 
methods, advances have not been integrated into a cohesive platform where instructors can 
automate the data acquisition process [7, 6]. Furthermore, no platform can capture a persistent 
trace of the complete programming process, including the design phase.  

Programming platforms and Integrated Development Environments (IDEs) also lack meaningful 
feedback and skill estimation and still require extensive time from instructors to provide 
individualized feedback. Typically, a programming assignment is graded on whether or not the 



program generates the correct output. Little feedback is given on how the problem was solved or 
how the code was structured. However, code is read more frequently than written, and the ability 
to effectively debug, test, document, and write well-structured and maintainable code is a critical 
professional skill. Unfortunately, these skills are only briefly discussed in a typical computer 
science course [10]. Students are rarely evaluated on them, leading students to develop poor 
habits that follow them into their professional careers. Additionally, educators cannot see the 
effects of their interventions as they are affecting their classrooms in real time [6, 8]. This leaves 
space for researchers to explore new approaches to instrumented IDEs and learning analytics for 
programming education. 
  
2.2 Flowcharts and Programming Education 
Historically, flowcharts have been a widely accepted universal representation within the 
programming process to communicate algorithmic design [19] without the complexity or 
overhead of a programming language. From their introduction in the 1940s to the development 
of the ANSI standards [19, 22] and integration into a wide variety of other fields [22], flowcharts 
have been used within programming as a method for reducing cognitive load. There have been 
multiple attempts at reducing the cognitive load within programming with the development of 
mini-languages, Iconic Programming Languages, Pseudo-code, and Block based systems [17, 
18]. Current research efforts [16] have shown that flowcharts are most useful when executed at 
the proper granularity, which helps provide a higher-level overview of a program to assist with 
metacognition, problem-solving, and the design process. While there is still some debate about 
the utility of flowcharts within the programming process, there is significantly more evidence for 
than against them. Studies continue to find improvements in various areas such as academic 
achievement, self-efficacy, computational thinking, critical thinking, problem-solving, mental 
simulation, problem decomposition, and code tracing. As students become more familiar with the 
process and tools of flowcharting and as programming problems grow in complexity, the benefits 
of flowcharts become more apparent. A recent and effective use case is that of an offline 
educational tool to prevent students from defaulting to an 'act-first' over a 'think-first' approach to 
aid in the problem-solving process by teaching one to effectively generate sub-problems and sub-
solutions [17]. Overall, flowcharts still present as a promising metacognitive strategy for 
problem-solving irrespective of programming language.  

In spite of the benefits, flowchart and diagramming tools in programming education have had 
mixed success in being integrated into the classroom with the default being the use of static 
diagramming tools. Tools range from the development of applications that can generate and 
execute code from a flowchart such as Raptor and Visual Logic [19], which have largely fallen 
out of favor due to lack of maintenance, to web-based diagramming tools that only generate 
static flowcharts such as LucidChart, Cacoo and Dia [20]. Flowgorithm [21] is the only modern 
cross-platform diagramming application our researchers found that was specifically designed for 
introductory programming education that can also execute code in multiple languages such as 
C#, Python, and Javascript. However, currently available tools do not provide a method to 
capture the full design process, which limits the ability to analyze it beyond the final diagram. 



This leaves significant room for developing additional metrics for understanding programming 
metacognition from students' flowchart and design process.   

2.3 The Model of Programming Skill Estimation  
The development of Design Cohesion is one of the five dimensions of our current model of 
programming skill estimation for introductory programming. For additional details and 
information on each component we refer you to our previous work on this topic.  

• Thinking Processes (TP) [2, 3, 11, 23] 
• Organizational Strategies (OS) [1, 3] 
• Design Cohesion (DC) [3] 
• Skill Mastery (SM) [3] 
• Timeline of Development  (TD) [3, 4] 

Together these five components form a comprehensive model of student programming behavior 
and problem solving process.  

3. Methods 
In this section we present our methods for the study design, participant recruitment, and the 
development and application of the alignment notation. We then present the codebook that was 
formulated as a result of this coding process and two case studies that further demonstrate the 
application of the coding process.  

3.1 Study Design 
The development of Design Cohesion is part of a broader study to generate new metrics for IDE-
based learning analytics. This study consisted of a recruitment survey, a prior programming 
knowledge survey, two programming sessions, each consisting of a single programming problem 
to be completed in Python and an exit interview. We worked with Alphaflow Labs to develop a 
web-based IDE to use as the instrument for data collection.   

Each programming session consisted of a design phase using a custom web-based drag and drop 
flowchart diagramming tool and a programming phase with a custom IDE. Programming process 
data was captured using an event compression system [3]. The flowchart editor uses a subset of 
the standard ANSI flowchart symbols for start, process, conditionals, loops, input, output and 
stop. The subset consists of the symbols that would be most used by introductory programming 
students. Participants were required to complete a flowchart design prior to writing the code for 
the solution to the exercise. Participants were not permitted to make changes to their flowchart 
after submitting their design but were able to reference it while writing their code. Figure 3.1 and 
Figure 3.2 show screenshots of the the web application show the interface that the participants 
used to complete the programming exercises. 

Over the course of two weeks, students scheduled one hour time slots for each of the two 
programming exercises to be completed under the supervision of the facilitator in a research lab 
using the instrumented web-based IDE. Each facilitator was required to follow the experiment 
design checklist to ensure consistency. While the goal was to provide exercises that were simple 



enough for an advanced beginner to complete within an hour, participants were not given a time 
limit to complete the exercise. We also permitted participants to submit incomplete solutions if 
they felt they could not complete the exercise.  

3.1.1 Exercise A: Commission Rate  
Exercise A was a simple exercise intended to be completed in the same one hour session of the 
prior programming knowledge assessment in order to orient the users the software and the 
process.  The exercise consisted of instructions to create a program to calculate the total pay for 
sales staff based on the base pay, the commission rate and the amount of sales made in a month. 
Participants were provided with a table of sales amounts and their associated commission rate 
percentages, and were given examples input and output. This exercise assumes an understanding 
of functions, function arguments, function return values, calling functions, branching, if/elif/else 
statements, variables, type conversions, input and output and output formatting. 

3.1.2 Exercise B: Alternating Cipher  
Exercise B was a more logically complex programming problem intended to take a beginner 
programmer an hour to design and program. It assumes an understanding of the concepts in 
Exercise A in addition to working with lists, loops, and working with strings. The alternating 
cipher is a variation on the rail cipher and requires users to encrypt and decrypt input text by 
placing each character of the message on alternating lines, ignoring spaces, and then creating a 
single cipher text string by concatenating the two lines together. Students were given an input 
and output examples as well as a visualization of the encoding and decoding steps. 

3.2 Participant Recruitment 
Our recruitment efforts resulted in twenty-five participants ranging from freshman to senior with 
twelve freshmen, three sophomores, five juniors and four seniors. One participant was a graduate 
student. Based on the recruitment survey participants ranged from the ages of 18 to 25 with a 

Figure 3.1 The Flowchart Design Workspace used 
within the Archimedes IDE 

Figure 3.2 The Web-based IDE used to collect 
programming data.



mean age of 19.8. Four participants identified as female and 21 as male. Participant majors 
varied across eight disciplines. Fourteen were computer science, software engineering, or cyber 
security. Nine were classified as electrical or computer engineering, and the remaining three 
were from meteorology, chemistry and aerospace engineering, respectively. Additionally, we 
gathered GPA information, but note that a majority of the participants had a GPA above 3.0 on a 
4.0 scale with an average of 3.7, making it difficult to make any significant claim about 
programming skill level based on grades. Participants were also required to have a minimum of 
one semester of programming experience in Python, C or C++. 

Using the prior programming knowledge assessment we classified each participant with a self-
estimated skill level (SE-Skill) as either Beginner, Intermediate, or Advanced in the context of 
introductory programming concepts. After collecting the participant data we used a case study 
approach to understand the initial characterization of Design Cohesion using an exploratory 
coding process which has led to the development of an Alignment Notation and Design Cohesion 
and Granularity Level as a new qualitative metrics.  

3.3 Exploratory Coding Process for Classifying Design Cohesion 
The classification of design cohesion requires a flowchart and its corresponding code. For 
Exercise A and B for each participant, the flowchart is converted into a texted-based 
representation of the chart. Each node in the flowchart (Figure 3.1) is represented by a number, 
its type (i.e., input, output, process, etc.), and the data that is contained in that node using the 
following structure: [number][type]:[data] as seen in Figure 3.2 for participant P05. To normalize 
the node counts for each participant, Start and Stop nodes are not assigned a number unless they 
contain data other than the default ‘start’ and ‘stop’ text. If edges are used for branching or 
looping structures, they are included as Branch, and if there is a label such as True or False, the 
branch is assigned accordingly as True Branch or False Branch. 

After the chart is converted to its text representation, the code is also converted to a text 
representation (Figure 3.3). Each line in the code is classified according to its appropriate 
flowchart structure, such as an input statement of input(“Input monthly sales”) would be given a 
class of [input]. An if-else structure would assign [conditional] to both the If Branch and the Else 
Branch. Some lines can include more than one classification, such as lines 2 and 3 in Figure 3.4, 
where input is assigned to a variable. The left side is classified as [process] and the right as 
[input]. Another example is when a python list comprehension is assigned to a variable. List 
comprehensions constitute a loop . Therefore, the left side is assigned [process] while the right is 
assigned [loop]. When all lines have been classified, the code is manually inspected in 
conjunction with the flowchart and the text-based representation of the flowchart. Next, each line 
is assigned a symbol using an alignment notation. The alignment notation consists of five 
symbols as described in Table 3.1. Applying the above-described classification method to 
Exercise A - Commission Rate for participant P05 results in 6 - Equivalent, 0 - Changed, 15 - 
Added, 0 - MissingNodes, and 6 - IgnoredLines for the example shown in Figures 3.1 - 3.4. Not 
including Comments, this results in 22 lines for the code and six nodes for the flowchart. 



Figure 3.2: P05 Flowchart Text-based Representation

Figure 3.1:  P05 Flowchart Submission 
Example

Figure 3.3: P05 Text Representation of Code annotated using 
Alignment Notation 

Figure 3.4: P05 Code Submission for Exercise 
A: Commission Rate



Using this alignment notation in conjunction with an expert’s classification of how well the flow 
of the chart matches the structure of code, a Cohesion Level and Granularity Level are assigned 
to the participant for each exercise. Cohesion Level is a qualitative metric that takes into 
consideration the correctness of the intended code execution path, the nature and correctness of 
the data in each node of the flowchart, and how many of the nodes align with the final code 
solution. Granularity Level provides a classification of the level of implementation detail 
provided in the chart, where a high level of granularity would result in a close one-to-one 
mapping of flowchart nodes to code lines and a low level of granularity would represent a 
significant amount of encapsulation of functionality. 

For the example presented in Figures 3.1 - 3.4, the classification process resulted in a Cohesion 
Level of High and a Granularity Level of Low. This classification accounts for the fact that all 
structures in the flowchart are implemented in the code but with a low level of implementation 
detail. None of the intended structures were changed, and no nodes were missing. As a result, the 
flow of the chart matches to a reasonable degree. However, the functionality of the calculatePay 
function is encapsulated by a single node resulting in a reduction in the level of detail. Ideally, a 
more accurate chart representation would use a second chart to represent the functionality and 
branch conditions of the calculatePay function, as high levels of encapsulation or ‘black-boxing’ 

Name Symbol Description

Ignored [~] An Ignored line does not have a corresponding flowchart structure and is 
assigned to lines such as comments, return statements, import statements, 
pass, and try/except blocks. Comment lines are not included in line counts 
when used in subsequent calculations, but the remaining structures are.

Added [+] Code lines are assigned the Added notation if there is no node in the chart 
that the code line can be mapped to.

Equivalent [=] Equivalent lines are lines that map to at least one node in the flowchart text 
representation. In our example, we see that lines 2, 3, 6, 29, 30, and 31 are 
classified as equivalent and assigned a node number as they represent the 
corresponding nodes in the text representation. It is important to note that a 
single node can be equivalent to more than one line in the code, meaning 
that Design Cohesion cannot be defined only by directly mapping nodes to 
lines of code. Instead, the flowchart's level of detail, or granularity, must be 
considered to reduce the number of lines that are considered Added to the 
intended solution as initially represented by the flowchart. 

Changed [*] A line is considered Changed if the data maps to a node in the flowchart but 
the flowchart construct is different such as using an output node for a 
process node, but the data assigns a variable.

Missing [x] Nodes that exist in the chart but have no code equivalent are counted as 
Missing.

Table 3.1: Alignment Notation Symbols and Descriptions



can leave a lot of problem-solving to be completed in the coding phase where a participant may 
need more time to complete the project or run into unanticipated problems.  

3.4 Design Cohesion and Granularity Level 
After applying the alignment notation to each of the exercise samples we determined that Design 
Cohesion could be classified as low, medium, or high. A low level of design cohesion can 
indicate a low level of metacognition and ability to plan prior to implementing a programming 
solution. It may also represent a lack of attention to the planning phase, where a student prefers 
to arrive at a solution through a trial and error approach, which is referred to as a ‘tinkerer’ [15]. 
A medium level of cohesion can represent a sufficient attempt at planning before the 
programming phase but significant errors were made in the design phase or changes were made 
to the final implementation after realizing that the initial plan was not sufficient. A high level of 
cohesion will indicate that the student may have a high level of metacognition, and fully 
understood the programming problem and the programming concepts needed to implement the 
final solution. The data captured from the web application will be used to determine if we can 
automatically classify students’ level of metacognition through their 
level of design cohesion. 

Similar to Design Cohesion Granularity Level can also be class as low, medium or high. This 
metric was discovered as a result of our exploratory investigation and is a subclassifications of 
Design Cohesion that helps us understand the level of detail contained within the flowchart. This 
resulted in nine potential classifications for a sample (i.e. High Cohesion - High Granularity, 
High Cohesion - Low Granularity, etc.) Definitions for each level of Design Cohesion and 
Granularity are provided in our codebook in Table 3.2. 

In the following sections, we discuss two case studies to further demonstrate the application of 
the coding process. These two cases are from the same participant. The first case study looks at 
Exercise A, which is classified as High Cohesion - High Granularity. The second case presents 
Exercise B, classified as High Cohesion - Low Granularity.  

3.5 Case Study: P12 - High-High vs High-Low - SE-skill Intermediate 
The first cases study focuses on the data captured for Exercise A: Commission Rate from 
participant P12. It is classified as High Cohesion-High Granularity, and Exercise B is classified 
as High Cohesion - Low Granularity to make it clear why Granularity is a necessary feature. This 
participant has a Self-Estimated Programming Skill of Intermediate, a Self-Estimated 
Programming Experience in their primary language of C or C++ for 12 months and has a solid B 
GPA of 3.2 out of 4.0. In addition, they scored 14 out of 20 on the Prior Programming 
Knowledge Assessment (PPKA) for Python Programming.  

3.5.1 Case Study A: Exercise A - Commission Rate - High-High 
In Exercise A, there are 14 Nodes in the flowchart (Figure 3.5) and 16 lines in the code solution 
(Figure 3.6). The participant took a total duration of 43 minutes (rounded) to complete the 
exercise, with the design phase taking 17 minutes and the code phase 26 minutes. Each chart 



node contains data that is very close to the Python code used in the solution, so the chart was 
given a Chart Data Characterization Type of Code as opposed to Pseudocode, Natural Language, 
or Mixed. With a high level of Granularity, we see that each line in the code maps almost one-to-
one with the chart, with 12 of 16 lines marked as Equivalent. Lines 8 and 22 are marked as 
Changed as the conditional on line 8 was modified from “<” to “<=,” and line 22 is a Process. 
However, the data in flowchart node three indicates a calculation of the commission rate but is 
calculating total pay using the commission rate as determined by the conditional. Zero lines are 
Ignored, and only two are Added, lines 24 and 26, for outputting the results, which are not 
represented in the flowchart. No nodes were counted as missing from the flowchart. The final 
annotated code is shown in Figure 3.7. As a result of all lines being accounted for by the chart 
and all the nodes being accounted for in the code as well as the execution flow being mostly true 
to the original intention, this exercise is classified as High Cohesion - High Granularity. 

Table 3.2 Classification Criteria for Design Cohesion and Granularity Level 



Figure 3.6: P12 Exercise A: Commission Rate Code Solution 

Figure 3.5: P12 - Flowchart Submission and Text Representation for Exercise A: Commission Rate 



3.5.2 Case Study B: Exercise B -Alternating Cipher - High-Low 
In contrast to Exercise A, participant P12 seemed to alter their approach to the design phase for 
Exercise B and spent significantly less time on design with a duration of 3 minutes (rounded). 
The entire exercise duration was 32 minutes, and the code phase took 29 minutes. While the 
overall project and design duration was shorter, the participant took slightly longer to complete 
the second exercise. The short duration of the design phase is evident in the flowchart, which 
only contains four nodes (Figure 3.8) and four lines in the text representation (Figure 3.9), with 
the start node being ignored, so only three lines of code were mapped as Equivalent. The 
remainder of the code, aside from a single Changed and Ignored line, is considered additional 
without any node to map it to in the code. We consider this High Cohesion because all the nodes 
map to the code but with Low Granularity, meaning the level of detail in the flowchart is so low 
that it does not sufficiently document the intended design of the code. The tabulations of the 
features used for understanding the Design Cohesion and Granularity Classification are given in 
Table 3.4 and are applied in Figure 5.10 to the final solution shown in Figure 3.11.  

Figure 3.7: P12 - Text Representation of Code with Alignment Notation 

Figure 3.8: P12 Flowchart Submission for Exercise B: Alternating Cipher 



4. Results and Discussion 
In this paper we have demonstrated the application of the alignment notation and the codebook 
for design cohesion which defines two new metrics: Design Cohesion and Granularity Level. In 
doing so we have provided a new answer to our research question. We asked what metrics can be 
developed for assessing students' level of design cohesion based on the alignment between 
flowchart design and source code implementation and with this case study we have shown the 
development of a Design Cohesion classification process to manually classify the alignment 
between a flowchart and its associated code.

Using the newly developed metrics, we saw that one could have a High level of Cohesion and a 
Low level of Granularity which characterizes a high level of abstraction and points to potential 
under-design by the participant. In contrast, one could have High Cohesion and High 
Granularity, which could represent over-designing. In this case, each node in the chart has 
almost a one-to-one mapping to the code implementation. Medium Granularity is often more 
desirable than High Granularity in a flowchart as its effectiveness as a design and documentation 
tool works better at a reasonable level of abstraction than over or under-designing components. 
Determining the appropriate level of detail and encapsulation is often a difficult balance for 
Beginner and Intermediate students, with Beginners under-designing due to a possible lack of 

Figure 3.9: P12 Exercise B Text 
Representation 

Figure 3.10: P12 Exercise B: Text Representation of Code with 
Alignment Notation 

Figure 3.11: P12 Exercise B: 
Alternating Cipher Solution 



programming knowledge and Intermediate students over-designing. Advanced users are much 
more likely to have a Medium level of abstraction that encapsulates the finer implementation 
details. With this, we answer our research question in that we can create a metric to assess 
students' level of design cohesion as our analysis has resulted in two qualitative metrics: Design 
Cohesion and Granularity Level. 

4.1 Limitations 
This work has made a significant effort to collect data and develop instrumentation for 
establishing new metrics for IDE-based learning analytics for programming skill estimation. 
However, we acknowledge that there were limitations to the study. The primary limitation to this 
study was its size, but this was an effort to collect exploratory data to determine if using 
flowchart data would be useful in determining a student’s level of metacognition and in the 
development of Design Cohesion as a component of the Model of Programming Skill 
Estimation. This data presents many fascinating questions and additional analysis and results for 
this research effort is forthcoming as we continue to explore and collect additional data. 
Additionally, we are working towards automation for classification of Design Cohesion and 
Granularity Level as it is a time consuming process. This will allow us to further validate and 
replicate our results as well as integrate it into our current model for providing automated 
feedback as we continue to improve upon and expand our methods. 

We would also like to recognize that there are limitations related to the current development of 
the Design Cohesion metrics. Importantly, the analysis is limited because fewer students were 
familiar with using flowcharts as a design tool than what was assumed at the time of the study 
design. Previously, a flowchart design was required for all programming labs, but after 
COVID-19, labs were no longer conducted in person. Flowcharts were only taught to some 
sections of students and made optional for assignments, so many participants lacked experience 
with flowcharts. To mitigate this, participants were provided additional information on an as-
needed basis on flowcharts, which may have biased or skewed results. At this time, it is difficult 
to determine if poor flowchart design was due to lack of flowchart skill, lack of programming 
skill, or lack of effort. In addition to the limitation related to participants’ limited knowledge of 
flowcharts, the qualitative coding of the Design Cohesion level is further limited in that all the 
classification was conducted by a single person, while the person conducting the classification 
has significant expertise in programming, flowcharts, and design, additional raters would 
strengthen the validity of the classification and could be used to establish trust with the 
calculation of an inter-rater reliability. 

4.2 Future Work
From our initial review we hypothesize that a participant with an Self-Estimated skill of 
Beginner will have a higher likelihood of having either Medium or Low Cohesion while a 
participant with a Self-Estimated Skill of Intermediate is more likely to have either medium or 
High Cohesion. Secondly we also hypothesize that advanced participants have a higher 
likelihood of having a Medium level of Design Cohesion. Our results also suggest that it is easier 
to draw a boundary between Low and Medium Cohesion than between Medium and High 
Cohesion and that it may be more beneficial to cluster the Medium and High into a single group 
and use Design Cohesion to distinguish two groups instead of three. Finally, we hypothesize that 
the actual skill as determined by the prior programming knowledge assessment (PPKA-Score) 



relates to participants' Design Cohesion in that if a participant has a lower PPKA-Score, they are 
more likely to have a Low level of Design Cohesion and if they have a high PPKA-Score they 
are more likely to have either Medium or High Cohesion. Future work and additional data will 
be used to to determine if these patterns are typical.

5. Conclusion 
In this paper we presented our initial investigation into design cohesion as a metric for 
understanding introductory programming metacognition. This has lead to the development of a 
codebook that defines two new qualitative metrics: Design Cohesion and Granularity Level. To 
clarify the development of these metrics we presented our alignment notation process and used 
two case studies to demonstrate the reasoning behind our coding process. This has led to the 
discovery that high-level Design Cohesion paired with low levels of flowchart granularity 
demonstrates high levels of abstraction in the initial flowchart design. We postulate that this may 
point to under-designing by participants and/or lower levels of metacognition (either due to lack 
of effort or to a lack of understanding). Comparatively, having high cohesion and granularity 
points to over-designing by the participant and often stems from a one-to-one mapping of 
flowchart nodes to lines of code. Overall, our initial results point toward a logical relationship 
between Design Cohesion and students’ level of self-estimated skill, and provide evidence that 
Design Cohesion will serve as a viable metric for developing our understanding of introductory 
students programming metacognition. 
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