
Paper ID #41184

An Initial Investigation of Design Cohesion as a IDE-based Learning Analytic
for Measuring Introductory Programming Metacognition

Dr. Phyllis J. Beck, Mississippi State University

Phyllis Beck is a blend of art and science having completed an undergraduate degree in Fine Arts at
MSU and a Ph.D. in Computer Science, where she focused on applying Artificial Intelligence, Natural
language Processing, and Machine Learning techniques to the engineering education space. Currently,
she is working as an Assistant Research Professor at Mississippi State University in the Bagley College
of Electrical and Computer Engineering. She has worked for companies such as the Air Force Research
Laboratory in conjunction with Oak Ridge National Labs and as an R & D Computer Science Inter for
Sandia National Labs conducting Natural Language Processing and AI research and was inducted into the
Bagley College of Engineering Hall of Fame in 2021.

Dr. Mahnas Jean Mohammadi-Aragh, Mississippi State University

Jean Mohammadi-Aragh is the Director of Bagley College of Engineering Office of Inclusive Excellence
and Associate Professor in the Department of Electrical and Computer Engineering at Mississippi State
University. Through her interdependent roles in research, teaching, and service, Jean is actively breaking
down academic and social barriers to foster an environment where diverse and creative people are successful
in the pursuit of engineering and computing degrees. Jean’s efforts have been recognized with numerous
awards including the National Science Foundation Faculty Early Career Development award, the American
Society for Engineering Education John A. Curtis Lecturer award, and the Bagley College of Engineering
Service award. Jean earned her B.S. and M.S. in computer engineering from Mississippi State University,
and her Ph.D. in engineering education from Virginia Tech.

©American Society for Engineering Education, 2024

An Initial Investigation of Design Cohesion as an IDE-based Learning
Analytic for Measuring Introductory Programming Metacognition

In this full paper, we describe our case study approach to initially characterize Design Cohesion
as a new IDE-based learning metrics through an exploratory coding process. We developed a
new alignment notation to generate two new qualitative metrics: Design Cohesion (High,
Medium, Low) and Granularity Level (High, Medium, Low) Design Cohesion is the level of
alignment between flowchart and code, which accounts for the order of intended program
execution, the internal data of a flowchart node, and the number of nodes in the flowchart that
map to the code. We define Granularity Level as an additional characterization of cohesion that
labels the level of detail in the flowchart. Our primary objective is to use these new metrics to
understand how a flowchart can be aligned with its code implementation to understand
introductory students’ current level of programming metacognition.

In the context of our case study, we discuss the exploratory coding process and alignment
notation developed to generate the features for the newly proposed metrics. Next, we explore two
cases to illustrate the diversity of characteristics found in various feature combinations. Each
case study compares two examples from the same participant, one with High Cohesion and High
Granularity, the other with High Cohesion and Low Granularity.

Our initial investigation into design cohesion has led to the hypothesis that High-level Design
Cohesion paired with low levels of flowchart granularity demonstrates high levels of abstraction
in the initial flowchart design, which may point to under-designing by participants and/or lower
levels of metacognition. Comparatively, having high cohesion and granularity may point to over-
designing by the participant and often stems from a one-to-one mapping of flowchart nodes to
lines of code. Our results point toward a logical relationship between Design Cohesion and
students’ level of self-estimated skill, and we are confident that Design Cohesion will serve as
viable metric for understanding introductory programming metacognition.

1. Introduction
This paper presents our initial characterization of Design Cohesion and Granularity Level and
our case study approach to the qualitative exploratory coding process applied to the flowchart
and programming data collected as a exploratory study across 25 participants and 50 code
samples. We seek to explore these metrics as candidates for our five-dimensional model of
programming skill estimation and to determine if they are effective methods for characterizing
introductory programming metacognition. The Design Cohesion metric is an alignment metric
that proposes to classify the level of accuracy between a flowchart design and the code
implementation of a programming problem. It aims to accounts for the order of intended
program execution, the internal data of a flowchart node, and the number of nodes in the
flowchart that map to the code. The Granularity Level further characterizes design cohesion by
classifying the level of detail contained within a flowchart compared to the final program
solution.

Our research is motivated by a primary goal: the development of a model of programming skill
estimation for introductory programming grounded in effective learning theories. By applying
artificial intelligence and IDE-based learning analytics for collecting and analyzing programming
process data, we seek to provide real-time personalized metacognitive feedback to introductory
programming students on their current skill level.

By combining learning analytics methods with instrumented IDEs, we have the opportunity to
remove the labor-intensive task of providing individualized feedback to students on their
programming process. However, current IDEs (Integrated Development Environments) lack the
metrics to assess strategic knowledge effectively. Programming evaluation and teaching methods
seem to focus entirely on the syntactic and procedural level instead of the strategic level despite
the research showing that directly teaching metacognitive strategies and problem-solving
techniques improves student outcomes [10, 12, 13].

The design phase of a program solution, though encouraged, is almost entirely ignored and, as a
result, not captured within IDE-based environments or learning analytics platforms. In order to
begin assessing strategic knowledge, we need new methods to capture programming
metacognition. This includes the development of more meaningful metrics for identifying
metacognitive strategies. These metrics then need to be situated within a framework that relates
the evaluation of syntactic and procedural knowledge to the level of strategic knowledge. By
understanding students' approach to the design of a solution, we can determine if the difficulties
in completing a programming problem lie in conceptual understanding of the problem and
general programming constructs or if the issue lies with the programming language itself and the
ability to translate a design into a concrete programming solution.

Our approach to providing additional insight into student’s capacity to design is to develop
Design Cohesion as a new metric for understanding programming metacognition for introductory
programming using a custom web-based IDE as part of a broader study to generate new metrics
for IDE-based learning analytics. This study consisted of a series of surveys to understand active
programming knowledge and a set of programming exercises completed within our custom IDE
in a supervised lab environment.

1.1 Research Questions
This qualitative exploratory study seeks to answer the following research question: What metrics
can be developed for assessing students' level of design cohesion based on the alignment
between flowchart design and source code implementation of a programming exercise?

Additionally, we aimed to collect data that demonstrates the web based IDE as a proof of concept
for collecting programming processing data and if design cohesion is a viable IDE-based
learning analytic for programming metacognition.

The following sections lead with a discussion on the relevant background and related works on
IDE-based learning analytics and flowcharts in programming education. We then discuss the

methods for our study design and participant recruitment. This is followed by a detailed
walkthrough on the development of the alignment notation used to code the flowchart and
programming data to assist in the development for the codebook on design cohesion and the
classification process of each sample. We then present the codebook that was formulated as a
result of the coding process for Design Cohesion and Granularity Level. To further clarify the
application of this process we provide two case studies and close with a discussion on the results,
current limitations and future work.

2. Background and Related Works
For clarity and context the following section provides a brief overview of the relevant literature
and related work which touches on IDE-based learning analytics, a historic overview of
flowcharts in programming and a description of our model of programming skill estimation.

2.1 IDE-based Learning Analytics
Currently, students still face many challenges when learning to program, and instructors struggle
with the time-intensive process required to give students the appropriate level of feedback to
excel. These challenges have increased the need for automated tools and methods to gather and
analyze programming artifacts and understand student programming patterns in introductory
computing courses. Research indicates that students lack the problem-solving skills to apply
strategic knowledge to novel problems in real-world contexts. These challenges have led to a
need to automate methods to identify what programming concepts students struggle with,
identify at-risk students, and understand what metacognitive strategies and patterns students use
to solve programming problems [5, 12, 13]. By developing methods for early identification, we
can give instructors time to intervene and provide the appropriate level of feedback, improving a
student's ability to succeed during the most formative times in their computing education [6, 8].

There have been many attempts at developing novel approaches to support various aspects of
programming metacognition, improve self-efficacy, and provide automated feedback and
assessment for students in introductory programming courses [5, 6, 8]. Programming
metacognition can be broadly defined as how students think about programming and the
problem-solving strategies they employ to achieve a goal when given a programming task [9].
However, most of these methods have yet to be successfully scaled and applied in the classroom.
Previous studies suffer from issues such as being too small, difficult to validate or replicate, and
software that is not shared or is abandoned. Software developed as part of research efforts is
typically abandoned due to a lack of research funding or the high overhead of developing a
system to collect and analyze data on a large scale [6, 7, 8]. Despite the success of some
methods, advances have not been integrated into a cohesive platform where instructors can
automate the data acquisition process [7, 6]. Furthermore, no platform can capture a persistent
trace of the complete programming process, including the design phase.

Programming platforms and Integrated Development Environments (IDEs) also lack meaningful
feedback and skill estimation and still require extensive time from instructors to provide
individualized feedback. Typically, a programming assignment is graded on whether or not the

program generates the correct output. Little feedback is given on how the problem was solved or
how the code was structured. However, code is read more frequently than written, and the ability
to effectively debug, test, document, and write well-structured and maintainable code is a critical
professional skill. Unfortunately, these skills are only briefly discussed in a typical computer
science course [10]. Students are rarely evaluated on them, leading students to develop poor
habits that follow them into their professional careers. Additionally, educators cannot see the
effects of their interventions as they are affecting their classrooms in real time [6, 8]. This leaves
space for researchers to explore new approaches to instrumented IDEs and learning analytics for
programming education.

2.2 Flowcharts and Programming Education
Historically, flowcharts have been a widely accepted universal representation within the
programming process to communicate algorithmic design [19] without the complexity or
overhead of a programming language. From their introduction in the 1940s to the development
of the ANSI standards [19, 22] and integration into a wide variety of other fields [22], flowcharts
have been used within programming as a method for reducing cognitive load. There have been
multiple attempts at reducing the cognitive load within programming with the development of
mini-languages, Iconic Programming Languages, Pseudo-code, and Block based systems [17,
18]. Current research efforts [16] have shown that flowcharts are most useful when executed at
the proper granularity, which helps provide a higher-level overview of a program to assist with
metacognition, problem-solving, and the design process. While there is still some debate about
the utility of flowcharts within the programming process, there is significantly more evidence for
than against them. Studies continue to find improvements in various areas such as academic
achievement, self-efficacy, computational thinking, critical thinking, problem-solving, mental
simulation, problem decomposition, and code tracing. As students become more familiar with the
process and tools of flowcharting and as programming problems grow in complexity, the benefits
of flowcharts become more apparent. A recent and effective use case is that of an offline
educational tool to prevent students from defaulting to an 'act-first' over a 'think-first' approach to
aid in the problem-solving process by teaching one to effectively generate sub-problems and sub-
solutions [17]. Overall, flowcharts still present as a promising metacognitive strategy for
problem-solving irrespective of programming language.

In spite of the benefits, flowchart and diagramming tools in programming education have had
mixed success in being integrated into the classroom with the default being the use of static
diagramming tools. Tools range from the development of applications that can generate and
execute code from a flowchart such as Raptor and Visual Logic [19], which have largely fallen
out of favor due to lack of maintenance, to web-based diagramming tools that only generate
static flowcharts such as LucidChart, Cacoo and Dia [20]. Flowgorithm [21] is the only modern
cross-platform diagramming application our researchers found that was specifically designed for
introductory programming education that can also execute code in multiple languages such as
C#, Python, and Javascript. However, currently available tools do not provide a method to
capture the full design process, which limits the ability to analyze it beyond the final diagram.

This leaves significant room for developing additional metrics for understanding programming
metacognition from students' flowchart and design process.

2.3 The Model of Programming Skill Estimation
The development of Design Cohesion is one of the five dimensions of our current model of
programming skill estimation for introductory programming. For additional details and
information on each component we refer you to our previous work on this topic.

• Thinking Processes (TP) [2, 3, 11, 23]
• Organizational Strategies (OS) [1, 3]
• Design Cohesion (DC) [3]
• Skill Mastery (SM) [3]
• Timeline of Development (TD) [3, 4]

Together these five components form a comprehensive model of student programming behavior
and problem solving process.

3. Methods
In this section we present our methods for the study design, participant recruitment, and the
development and application of the alignment notation. We then present the codebook that was
formulated as a result of this coding process and two case studies that further demonstrate the
application of the coding process.

3.1 Study Design
The development of Design Cohesion is part of a broader study to generate new metrics for IDE-
based learning analytics. This study consisted of a recruitment survey, a prior programming
knowledge survey, two programming sessions, each consisting of a single programming problem
to be completed in Python and an exit interview. We worked with Alphaflow Labs to develop a
web-based IDE to use as the instrument for data collection.

Each programming session consisted of a design phase using a custom web-based drag and drop
flowchart diagramming tool and a programming phase with a custom IDE. Programming process
data was captured using an event compression system [3]. The flowchart editor uses a subset of
the standard ANSI flowchart symbols for start, process, conditionals, loops, input, output and
stop. The subset consists of the symbols that would be most used by introductory programming
students. Participants were required to complete a flowchart design prior to writing the code for
the solution to the exercise. Participants were not permitted to make changes to their flowchart
after submitting their design but were able to reference it while writing their code. Figure 3.1 and
Figure 3.2 show screenshots of the the web application show the interface that the participants
used to complete the programming exercises.

Over the course of two weeks, students scheduled one hour time slots for each of the two
programming exercises to be completed under the supervision of the facilitator in a research lab
using the instrumented web-based IDE. Each facilitator was required to follow the experiment
design checklist to ensure consistency. While the goal was to provide exercises that were simple

enough for an advanced beginner to complete within an hour, participants were not given a time
limit to complete the exercise. We also permitted participants to submit incomplete solutions if
they felt they could not complete the exercise.

3.1.1 Exercise A: Commission Rate
Exercise A was a simple exercise intended to be completed in the same one hour session of the
prior programming knowledge assessment in order to orient the users the software and the
process. The exercise consisted of instructions to create a program to calculate the total pay for
sales staff based on the base pay, the commission rate and the amount of sales made in a month.
Participants were provided with a table of sales amounts and their associated commission rate
percentages, and were given examples input and output. This exercise assumes an understanding
of functions, function arguments, function return values, calling functions, branching, if/elif/else
statements, variables, type conversions, input and output and output formatting.

3.1.2 Exercise B: Alternating Cipher
Exercise B was a more logically complex programming problem intended to take a beginner
programmer an hour to design and program. It assumes an understanding of the concepts in
Exercise A in addition to working with lists, loops, and working with strings. The alternating
cipher is a variation on the rail cipher and requires users to encrypt and decrypt input text by
placing each character of the message on alternating lines, ignoring spaces, and then creating a
single cipher text string by concatenating the two lines together. Students were given an input
and output examples as well as a visualization of the encoding and decoding steps.

3.2 Participant Recruitment
Our recruitment efforts resulted in twenty-five participants ranging from freshman to senior with
twelve freshmen, three sophomores, five juniors and four seniors. One participant was a graduate
student. Based on the recruitment survey participants ranged from the ages of 18 to 25 with a

Figure 3.1 The Flowchart Design Workspace used
within the Archimedes IDE

Figure 3.2 The Web-based IDE used to collect
programming data.

mean age of 19.8. Four participants identified as female and 21 as male. Participant majors
varied across eight disciplines. Fourteen were computer science, software engineering, or cyber
security. Nine were classified as electrical or computer engineering, and the remaining three
were from meteorology, chemistry and aerospace engineering, respectively. Additionally, we
gathered GPA information, but note that a majority of the participants had a GPA above 3.0 on a
4.0 scale with an average of 3.7, making it difficult to make any significant claim about
programming skill level based on grades. Participants were also required to have a minimum of
one semester of programming experience in Python, C or C++.

Using the prior programming knowledge assessment we classified each participant with a self-
estimated skill level (SE-Skill) as either Beginner, Intermediate, or Advanced in the context of
introductory programming concepts. After collecting the participant data we used a case study
approach to understand the initial characterization of Design Cohesion using an exploratory
coding process which has led to the development of an Alignment Notation and Design Cohesion
and Granularity Level as a new qualitative metrics.

3.3 Exploratory Coding Process for Classifying Design Cohesion
The classification of design cohesion requires a flowchart and its corresponding code. For
Exercise A and B for each participant, the flowchart is converted into a texted-based
representation of the chart. Each node in the flowchart (Figure 3.1) is represented by a number,
its type (i.e., input, output, process, etc.), and the data that is contained in that node using the
following structure: [number][type]:[data] as seen in Figure 3.2 for participant P05. To normalize
the node counts for each participant, Start and Stop nodes are not assigned a number unless they
contain data other than the default ‘start’ and ‘stop’ text. If edges are used for branching or
looping structures, they are included as Branch, and if there is a label such as True or False, the
branch is assigned accordingly as True Branch or False Branch.

After the chart is converted to its text representation, the code is also converted to a text
representation (Figure 3.3). Each line in the code is classified according to its appropriate
flowchart structure, such as an input statement of input(“Input monthly sales”) would be given a
class of [input]. An if-else structure would assign [conditional] to both the If Branch and the Else
Branch. Some lines can include more than one classification, such as lines 2 and 3 in Figure 3.4,
where input is assigned to a variable. The left side is classified as [process] and the right as
[input]. Another example is when a python list comprehension is assigned to a variable. List
comprehensions constitute a loop . Therefore, the left side is assigned [process] while the right is
assigned [loop]. When all lines have been classified, the code is manually inspected in
conjunction with the flowchart and the text-based representation of the flowchart. Next, each line
is assigned a symbol using an alignment notation. The alignment notation consists of five
symbols as described in Table 3.1. Applying the above-described classification method to
Exercise A - Commission Rate for participant P05 results in 6 - Equivalent, 0 - Changed, 15 -
Added, 0 - MissingNodes, and 6 - IgnoredLines for the example shown in Figures 3.1 - 3.4. Not
including Comments, this results in 22 lines for the code and six nodes for the flowchart.

Figure 3.2: P05 Flowchart Text-based Representation

Figure 3.1: P05 Flowchart Submission
Example

Figure 3.3: P05 Text Representation of Code annotated using
Alignment Notation

Figure 3.4: P05 Code Submission for Exercise
A: Commission Rate

Using this alignment notation in conjunction with an expert’s classification of how well the flow
of the chart matches the structure of code, a Cohesion Level and Granularity Level are assigned
to the participant for each exercise. Cohesion Level is a qualitative metric that takes into
consideration the correctness of the intended code execution path, the nature and correctness of
the data in each node of the flowchart, and how many of the nodes align with the final code
solution. Granularity Level provides a classification of the level of implementation detail
provided in the chart, where a high level of granularity would result in a close one-to-one
mapping of flowchart nodes to code lines and a low level of granularity would represent a
significant amount of encapsulation of functionality.

For the example presented in Figures 3.1 - 3.4, the classification process resulted in a Cohesion
Level of High and a Granularity Level of Low. This classification accounts for the fact that all
structures in the flowchart are implemented in the code but with a low level of implementation
detail. None of the intended structures were changed, and no nodes were missing. As a result, the
flow of the chart matches to a reasonable degree. However, the functionality of the calculatePay
function is encapsulated by a single node resulting in a reduction in the level of detail. Ideally, a
more accurate chart representation would use a second chart to represent the functionality and
branch conditions of the calculatePay function, as high levels of encapsulation or ‘black-boxing’

Name Symbol Description

Ignored [~] An Ignored line does not have a corresponding flowchart structure and is
assigned to lines such as comments, return statements, import statements,
pass, and try/except blocks. Comment lines are not included in line counts
when used in subsequent calculations, but the remaining structures are.

Added [+] Code lines are assigned the Added notation if there is no node in the chart
that the code line can be mapped to.

Equivalent [=] Equivalent lines are lines that map to at least one node in the flowchart text
representation. In our example, we see that lines 2, 3, 6, 29, 30, and 31 are
classified as equivalent and assigned a node number as they represent the
corresponding nodes in the text representation. It is important to note that a
single node can be equivalent to more than one line in the code, meaning
that Design Cohesion cannot be defined only by directly mapping nodes to
lines of code. Instead, the flowchart's level of detail, or granularity, must be
considered to reduce the number of lines that are considered Added to the
intended solution as initially represented by the flowchart.

Changed [*] A line is considered Changed if the data maps to a node in the flowchart but
the flowchart construct is different such as using an output node for a
process node, but the data assigns a variable.

Missing [x] Nodes that exist in the chart but have no code equivalent are counted as
Missing.

Table 3.1: Alignment Notation Symbols and Descriptions

can leave a lot of problem-solving to be completed in the coding phase where a participant may
need more time to complete the project or run into unanticipated problems.

3.4 Design Cohesion and Granularity Level
After applying the alignment notation to each of the exercise samples we determined that Design
Cohesion could be classified as low, medium, or high. A low level of design cohesion can
indicate a low level of metacognition and ability to plan prior to implementing a programming
solution. It may also represent a lack of attention to the planning phase, where a student prefers
to arrive at a solution through a trial and error approach, which is referred to as a ‘tinkerer’ [15].
A medium level of cohesion can represent a sufficient attempt at planning before the
programming phase but significant errors were made in the design phase or changes were made
to the final implementation after realizing that the initial plan was not sufficient. A high level of
cohesion will indicate that the student may have a high level of metacognition, and fully
understood the programming problem and the programming concepts needed to implement the
final solution. The data captured from the web application will be used to determine if we can
automatically classify students’ level of metacognition through their
level of design cohesion.

Similar to Design Cohesion Granularity Level can also be class as low, medium or high. This
metric was discovered as a result of our exploratory investigation and is a subclassifications of
Design Cohesion that helps us understand the level of detail contained within the flowchart. This
resulted in nine potential classifications for a sample (i.e. High Cohesion - High Granularity,
High Cohesion - Low Granularity, etc.) Definitions for each level of Design Cohesion and
Granularity are provided in our codebook in Table 3.2.

In the following sections, we discuss two case studies to further demonstrate the application of
the coding process. These two cases are from the same participant. The first case study looks at
Exercise A, which is classified as High Cohesion - High Granularity. The second case presents
Exercise B, classified as High Cohesion - Low Granularity.

3.5 Case Study: P12 - High-High vs High-Low - SE-skill Intermediate
The first cases study focuses on the data captured for Exercise A: Commission Rate from
participant P12. It is classified as High Cohesion-High Granularity, and Exercise B is classified
as High Cohesion - Low Granularity to make it clear why Granularity is a necessary feature. This
participant has a Self-Estimated Programming Skill of Intermediate, a Self-Estimated
Programming Experience in their primary language of C or C++ for 12 months and has a solid B
GPA of 3.2 out of 4.0. In addition, they scored 14 out of 20 on the Prior Programming
Knowledge Assessment (PPKA) for Python Programming.

3.5.1 Case Study A: Exercise A - Commission Rate - High-High
In Exercise A, there are 14 Nodes in the flowchart (Figure 3.5) and 16 lines in the code solution
(Figure 3.6). The participant took a total duration of 43 minutes (rounded) to complete the
exercise, with the design phase taking 17 minutes and the code phase 26 minutes. Each chart

node contains data that is very close to the Python code used in the solution, so the chart was
given a Chart Data Characterization Type of Code as opposed to Pseudocode, Natural Language,
or Mixed. With a high level of Granularity, we see that each line in the code maps almost one-to-
one with the chart, with 12 of 16 lines marked as Equivalent. Lines 8 and 22 are marked as
Changed as the conditional on line 8 was modified from “<” to “<=,” and line 22 is a Process.
However, the data in flowchart node three indicates a calculation of the commission rate but is
calculating total pay using the commission rate as determined by the conditional. Zero lines are
Ignored, and only two are Added, lines 24 and 26, for outputting the results, which are not
represented in the flowchart. No nodes were counted as missing from the flowchart. The final
annotated code is shown in Figure 3.7. As a result of all lines being accounted for by the chart
and all the nodes being accounted for in the code as well as the execution flow being mostly true
to the original intention, this exercise is classified as High Cohesion - High Granularity.

Table 3.2 Classification Criteria for Design Cohesion and Granularity Level

Figure 3.6: P12 Exercise A: Commission Rate Code Solution

Figure 3.5: P12 - Flowchart Submission and Text Representation for Exercise A: Commission Rate

3.5.2 Case Study B: Exercise B -Alternating Cipher - High-Low
In contrast to Exercise A, participant P12 seemed to alter their approach to the design phase for
Exercise B and spent significantly less time on design with a duration of 3 minutes (rounded).
The entire exercise duration was 32 minutes, and the code phase took 29 minutes. While the
overall project and design duration was shorter, the participant took slightly longer to complete
the second exercise. The short duration of the design phase is evident in the flowchart, which
only contains four nodes (Figure 3.8) and four lines in the text representation (Figure 3.9), with
the start node being ignored, so only three lines of code were mapped as Equivalent. The
remainder of the code, aside from a single Changed and Ignored line, is considered additional
without any node to map it to in the code. We consider this High Cohesion because all the nodes
map to the code but with Low Granularity, meaning the level of detail in the flowchart is so low
that it does not sufficiently document the intended design of the code. The tabulations of the
features used for understanding the Design Cohesion and Granularity Classification are given in
Table 3.4 and are applied in Figure 5.10 to the final solution shown in Figure 3.11.

Figure 3.7: P12 - Text Representation of Code with Alignment Notation

Figure 3.8: P12 Flowchart Submission for Exercise B: Alternating Cipher

4. Results and Discussion
In this paper we have demonstrated the application of the alignment notation and the codebook
for design cohesion which defines two new metrics: Design Cohesion and Granularity Level. In
doing so we have provided a new answer to our research question. We asked what metrics can be
developed for assessing students' level of design cohesion based on the alignment between
flowchart design and source code implementation and with this case study we have shown the
development of a Design Cohesion classification process to manually classify the alignment
between a flowchart and its associated code.

Using the newly developed metrics, we saw that one could have a High level of Cohesion and a
Low level of Granularity which characterizes a high level of abstraction and points to potential
under-design by the participant. In contrast, one could have High Cohesion and High
Granularity, which could represent over-designing. In this case, each node in the chart has
almost a one-to-one mapping to the code implementation. Medium Granularity is often more
desirable than High Granularity in a flowchart as its effectiveness as a design and documentation
tool works better at a reasonable level of abstraction than over or under-designing components.
Determining the appropriate level of detail and encapsulation is often a difficult balance for
Beginner and Intermediate students, with Beginners under-designing due to a possible lack of

Figure 3.9: P12 Exercise B Text
Representation

Figure 3.10: P12 Exercise B: Text Representation of Code with
Alignment Notation

Figure 3.11: P12 Exercise B:
Alternating Cipher Solution

programming knowledge and Intermediate students over-designing. Advanced users are much
more likely to have a Medium level of abstraction that encapsulates the finer implementation
details. With this, we answer our research question in that we can create a metric to assess
students' level of design cohesion as our analysis has resulted in two qualitative metrics: Design
Cohesion and Granularity Level.

4.1 Limitations
This work has made a significant effort to collect data and develop instrumentation for
establishing new metrics for IDE-based learning analytics for programming skill estimation.
However, we acknowledge that there were limitations to the study. The primary limitation to this
study was its size, but this was an effort to collect exploratory data to determine if using
flowchart data would be useful in determining a student’s level of metacognition and in the
development of Design Cohesion as a component of the Model of Programming Skill
Estimation. This data presents many fascinating questions and additional analysis and results for
this research effort is forthcoming as we continue to explore and collect additional data.
Additionally, we are working towards automation for classification of Design Cohesion and
Granularity Level as it is a time consuming process. This will allow us to further validate and
replicate our results as well as integrate it into our current model for providing automated
feedback as we continue to improve upon and expand our methods.

We would also like to recognize that there are limitations related to the current development of
the Design Cohesion metrics. Importantly, the analysis is limited because fewer students were
familiar with using flowcharts as a design tool than what was assumed at the time of the study
design. Previously, a flowchart design was required for all programming labs, but after
COVID-19, labs were no longer conducted in person. Flowcharts were only taught to some
sections of students and made optional for assignments, so many participants lacked experience
with flowcharts. To mitigate this, participants were provided additional information on an as-
needed basis on flowcharts, which may have biased or skewed results. At this time, it is difficult
to determine if poor flowchart design was due to lack of flowchart skill, lack of programming
skill, or lack of effort. In addition to the limitation related to participants’ limited knowledge of
flowcharts, the qualitative coding of the Design Cohesion level is further limited in that all the
classification was conducted by a single person, while the person conducting the classification
has significant expertise in programming, flowcharts, and design, additional raters would
strengthen the validity of the classification and could be used to establish trust with the
calculation of an inter-rater reliability.

4.2 Future Work
From our initial review we hypothesize that a participant with an Self-Estimated skill of
Beginner will have a higher likelihood of having either Medium or Low Cohesion while a
participant with a Self-Estimated Skill of Intermediate is more likely to have either medium or
High Cohesion. Secondly we also hypothesize that advanced participants have a higher
likelihood of having a Medium level of Design Cohesion. Our results also suggest that it is easier
to draw a boundary between Low and Medium Cohesion than between Medium and High
Cohesion and that it may be more beneficial to cluster the Medium and High into a single group
and use Design Cohesion to distinguish two groups instead of three. Finally, we hypothesize that
the actual skill as determined by the prior programming knowledge assessment (PPKA-Score)

relates to participants' Design Cohesion in that if a participant has a lower PPKA-Score, they are
more likely to have a Low level of Design Cohesion and if they have a high PPKA-Score they
are more likely to have either Medium or High Cohesion. Future work and additional data will
be used to to determine if these patterns are typical.

5. Conclusion
In this paper we presented our initial investigation into design cohesion as a metric for
understanding introductory programming metacognition. This has lead to the development of a
codebook that defines two new qualitative metrics: Design Cohesion and Granularity Level. To
clarify the development of these metrics we presented our alignment notation process and used
two case studies to demonstrate the reasoning behind our coding process. This has led to the
discovery that high-level Design Cohesion paired with low levels of flowchart granularity
demonstrates high levels of abstraction in the initial flowchart design. We postulate that this may
point to under-designing by participants and/or lower levels of metacognition (either due to lack
of effort or to a lack of understanding). Comparatively, having high cohesion and granularity
points to over-designing by the participant and often stems from a one-to-one mapping of
flowchart nodes to lines of code. Overall, our initial results point toward a logical relationship
between Design Cohesion and students’ level of self-estimated skill, and provide evidence that
Design Cohesion will serve as a viable metric for developing our understanding of introductory
students programming metacognition.

Acknowledgement
This material is based upon work supported by the National Science Foundation under Grant No.
DUE- 1612132. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

References
[1] P. J. Beck, M. J. Mohammadi-Aragh, C. Archibald, B. A. Jones, and A. Barton,
 “Real-time metacognition feedback for introductory programming using machine
 learning,” in 2018 IEEE Frontiers in Education Conference (FIE), IEEE, 2018, pp. 1–5.
 Available: https://ieeexplore.ieee.org/abstract/document/8658973/

[2] P. Beck, M. J. Mohammadi-Aragh, and C. Archibald, “An initial exploration of machine
 learning techniques to classify source code comments in real-time,” in 2019 ASEE Annual
 Conference & Exposition, 2019.. Available: https://peer.asee.org/an-initial-exploration-of-
 machine-learning-techniques-to-classify-source-code-comments-in-real-time.

[3] P. J. Beck and M. J. Mohammadi-Aragh, “Archimedes: Developing a Model of Cognition
 and Intelligent Learning System to Support Metacognition in Novice Programmers,” in 2020
 IEEE Frontiers in Education Conference (FIE), IEEE, 2020, pp. 1–5. Available:
 https://ieeexplore.ieee.org/abstract/document/9274133/.

[4] P. J. Beck and M. J. Mohammadi-Aragh, “Board 421: Using a Timeline of Programming
 Events as a Method for Understanding the Introductory Students’ Programming Process,” in
 2023 ASEE Annual Conference & Exposition, 2023. Available: https://peer.asee.org/
 board-421-using-a-timeline-of-programming-events-as-a-method-for-understanding-the-
 introductory-students-programming-process

[5] P. Blikstein, M. Worsley, C. Piech, M. Sahami, S. Cooper, and D. Koller, “Programming
 Pluralism: Using Learning Analytics to Detect Patterns in the Learning of Computer
 Programming,” Journal of the Learning Sciences, vol. 23, no. 4, pp. 561–599, Oct. 2014,
 doi: 10.1080/10508406.2014.954750.

[6] C. D. Hundhausen, D. M. Olivares, and A. S. Carter, “IDE-Based Learning Analytics for
 Computing Education: A Process Model, Critical Review, and Research Agenda,” ACM
 Trans. Comput. Educ., vol. 17, no. 3, pp. 1–26, Sep. 2017, doi: 10.1145/3105759.

[7] P. Ihantola et al., “Educational Data Mining and Learning Analytics in Programming:
 Literature Review and Case Studies,” in Proceedings of the 2015 ITiCSE on Working Group
 Reports, Vilnius Lithuania: ACM, Jul. 2015, pp. 41–63. doi: 10.1145/2858796.2858798.

[8] A. Luxton-Reilly et al., “Introductory programming: a systematic literature review,” in
 Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology
 in Computer Science Education, Larnaca Cyprus: ACM, Jul. 2018, pp. 55–106.
 doi: 10.1145/3293881.3295779.

[9] E. R. Lai, “Metacognition: A literature review,” Always learning: Pearson research report,
 vol. 24, pp. 1–40, 2011.

[10] T. J. McGill and S. E. Volet, “A Conceptual Framework for Analyzing Students’ Knowledge
 of Programming,” Journal of Research on Computing in Education, vol. 29, no. 3,
 pp. 276–297, Mar. 1997, doi: 10.1080/08886504.1997.10782199.

[11] M. J. Mohammadi-Aragh, P. Beck, A. K. Barton, and B. A. Jones, “A Case Study of Writing
 to Learn to Program: Codebook Implementation and Analysis,” in 2019 ASEE Annual
 Conference & Exposition, 2019. Available: https://peer.asee.org/a-case-study-of-writing-to-
 learn-to-program-codebook-implementation-and-analysis

[12] S. Rum and M. Ismail, “Metacognitive awareness assessment and introductory computer

https://ieeexplore.ieee.org/abstract/
https://peer.asee.org/an-initial-exploration-of-
https://ieeexplore.ieee.org/abstract/document/9274133/
https://peer.asee.org/
https://peer.asee.org/a-case-study-of-writing-to-

 programming course achievement at university,” Int. Arab J. Inf. Technol.(IAJIT), vol. 13,
 pp. 667–675, 2016.

[13] S. N. M. Rum and M. A. Ismail, “Metocognitive support accelerates computer assisted
 learning for novice programmers,” Journal of Educational Technology & Society,
 vol. 20, no. 3, pp. 170–181, 2017.

[14] V. Rus, M. Lintean, and R. Azevedo, “Automatic Detection of Student Mental Models
 during Prior Knowledge Activation in MetaTutor.,” International working group on
 educational data mining, 2009, Available: https://eric.ed.gov/?id=ED539089

[15] S. Turkle and S. Papert, “Epistemological pluralism and the revaluation of the concrete,”
 Journal of Mathematical Behavior, vol. 11, no. 1, pp. 3–33, 1992.

[16] J. H. Zhang, B. Meng, L.-C. Zou, Y. Zhu, and G.-J. Hwang, “Progressive flowchart
 development scaffolding to improve university students’ computational thinking and
 programming self-efficacy,” Interactive Learning Environments, vol. 31, no. 6,
 pp. 3792–3809, Aug. 2023, doi: 10.1080/10494820.2021.1943687.

[17] R. Smetsers-Weeda and S. Smetsers, “Problem Solving and Algorithmic Development with
 Flowcharts,” in Proceedings of the 12th Workshop on Primary and Secondary Computing
 Education, Nijmegen Netherlands: ACM, Nov. 2017, pp. 25–34.

[18] T. Crews, “Using a flowchart simulator in a introductory programming course,” Computer
 Science Teaching Centre Digital Library, Western Kentucky University, USA. http://www.
 citidel.org/bitstream/10117/119/2/Visual.pdf, 2001, Available: https://citeseerx.ist.psu.edu/
 document?repid=rep1&type=pdf&doi=1f84050f88708298c672301822efc9e29c243c99.

[19] D. Hooshyar, R. B. Ahmad, M. H. N. M. Nasir, S. Shamshirband, and S. J. Horng,
 “Flowchart-based programming environments for improving comprehension and problem-
 solving skill of novice programmers: a survey,” IJAIP, vol. 7, no. 1, p. 24, 2015,
 doi: 10.1504/IJAIP.2015.070343.

[19] N. Chapin, “Flowcharting With the ANSI Standard: A Tutorial,” ACM Comput. Surv.,
 vol. 2, no. 2, pp. 119–146, Jun. 1970, doi: 10.1145/356566.356570.

[20] F. Vazquez Penaloza and C. R. Jaimez Gonzalez, “Towards a web application to create
 flowcharts for supporting the teaching-learning process of structured programming courses.,”
 2019, Available: http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/297.

[21] R. R. Gajewski and E. Smyrnova-Trybulska, “Algorithms, programming, flowcharts and
 flowgorithm,” E-Learning and Smart Learning Environment for the Preparation of New
 Generation Specialists, pp. 393–408, 2018.

[22] B. Shneiderman, R. Mayer, D. McKay, and P. Heller, “Experimental investigations of the
 utility of detailed flowcharts in programming,” Commun. ACM, vol. 20, no. 6, pp. 373–381,
 Jun. 1977, doi: 10.1145/359605.359610.

[23] M. J. Mohammadi-Aragh, P. J. Beck, A. K. Barton, D. Reese, B. A. Jones, and M. Jankun-
 Kelly, “Coding the coders: A qualitative investigation of students’ commenting patterns,” in
 2018 ASEE Annual Conference & Exposition, 2018. Available: https://peer.asee.org/coding-
 the-coders-a-qualitative-investigation-of-students-commenting-patterns

https://citeseerx.ist.psu.edu/
https://peer.asee.org/coding-

