
Paper ID #41142

Circuit Troubleshooting Techniques in an Electrical and Computer Engineering
Laboratory

Mr. Michael Kinsel, University of Virginia

Electrical Engineering Student at the University of Virginia

Caroline Elizabeth Crockett, University of Virginia

Caroline Crockett is an assistant professor at the University of Virginia in the Electrical and Computer
Engineering department. She received her PhD degree from the University of Michigan in electrical
engineering. Her research interests include image processing and conceptual understanding.

Dr. Natasha Smith, University of Virginia

Dr. Smith is a Professor at the University of Virginia

Dr. George Prpich, University of Virginia

Professional Skills and Safety are my main pedagogical interests. I use the Chemical Engineering laboratory
to implement safety training to improve safety culture, and to adapt assessment methods to enhance
development of students’ professional skills. I am an Assistant Professor of Chemical Engineering at the
University of Virginia and I hold a B.Sc. (University of Saskatchewan) and Ph.D. in Chemical Engineering
(Queen’s University). Complimenting my pedagogical research is an interest in bioprocess engineering,
environmental engineering, environmental risk management, and I have authored &gt;40 peer reviewed
publications in these fields. I’m also active in developing workforce development initiatives, specifically
within the biopharmaceutical manufacturing space. Beyond academia, I have 7+ years of international
consulting experience working with the U.K. government, European Union, and the United Nations.

©American Society for Engineering Education, 2024



Circuit Troubleshooting Techniques in an
Electrical and Computer Engineering Laboratory

Abstract

This research investigates what troubleshooting methods undergraduate electrical and com-
puter engineering students employ when working with breadboarded circuits. While the lit-
erature in computer science clearly lays out many debugging strategies for coding, there are
few equivalents in electrical and computer engineering (ECE) for hardware troubleshooting
strategies. Thus, the purpose of this research is to identify troubleshooting methods in ECE,
with the goal of helping educators evaluate and eventually improve students’ troubleshoot-
ing ability in an engineering laboratory. This qualitative, observational study documents the
approaches sophomore-level ECE students use while troubleshooting a circuit with faults in-
tentionally added. The circuit contained resistors, operational amplifiers, power supplies, and
a diode. To succeed, students had to understand the system, test the circuit, locate the faults,
fix the faults, and then assess the fixes. Overall, 41% of students fixed all the faults. The most
commonly used troubleshooting strategies were tracing, full system testing, gaining domain
knowledge, and pattern matching. The most uncommon strategies were analytical reasoning
and rebuilding.

1 Introduction

Lab instructors generally agree that troubleshooting is a vital skill for student success [1] because
mistakes are inevitable and part of the learning process. Although instructors typically agree trou-
bleshooting is important, it is often not an explicit course learning goal and it is not taught as a
separate skill beyond the mechanics of using a specific troubleshooting tool [2], [3]. Understand-
ing the skills and methods that students employ while troubleshooting, along with the obstacles
they confront, can provide helpful insights for troubleshooting instruction going forward.

Michaeli and Romeike [4] define troubleshooting as “the process of locating the reason for a
system malfunction and the subsequent repair or replacement of the faulty component.” Thus,
troubleshooting requires students to draw on broader skills such as gathering sensory informa-
tion, forming predictive models, using appropriate instrumentation, and analyzing data [5]. Trou-
bleshooting is broadly relevant in a variety of domains and professional contexts [6]. This paper
is primarily concerned with two domains: electrical and computer engineering (ECE) and com-
puter science (CS). To differentiate the two, we use “troubleshooting” to refer to identifying and
resolving physical issues within electrical circuits, while we use “debugging” to refer to detecting
and fixing logical errors in software code to ensure proper program functionality. Further, we use
“faults” to refer to hardware errors in circuitry and “bugs” to refer to logic errors in software.

One common place that ECE students first encounter troubleshooting in their major courses is in
a circuits or electronics lab course. Working with circuits can be difficult for ECE students be-
cause it requires many different types of knowledge [6] as well as the simultaneous application



of new skills with still-developing intuition. For example, students must understand the operation
and expected output of the intended circuit, have general domain knowledge of each component,
know common faults and constraints, and be able to use troubleshooting approaches and equip-
ment. Most novices’ awareness and knowledge of these things are weak, making troubleshooting
challenging and frustrating for many. Estrada and Atwood [7] found difficulties with equipment
and troubleshooting were the most common source of student frustration in physics laboratories
(over twice as common as students reported being frustrated by theoretical concepts or confusing
lab documents). In another study, Burkholder et al. [8], found significant gaps between experts’
and novices’ abilities to employ predictive frameworks when problem-solving.

There are many more studies on debugging code than troubleshooting ECE circuits. These CS
studies categorize common debugging strategies, which is helpful in both research and instruc-
tional contexts. The purpose of this paper is to identify and illuminate novice circuit trou-
bleshooting strategies. We focus on novice strategies to discover opportunities for helping stu-
dents develop more mature attitudes and techniques. Thus, the purpose of this work is to aid
troubleshooting assessment with the ultimate goal of improving troubleshooting instruction.

In the following sections, we provide background on processes and strategies defined in the lit-
erature before presenting our study of a troubleshooting activity given to second-year students in
a circuits lab. This methodology includes the development of a codebook to characterize student
strategies and an analysis of how these strategies correlate to success. We conclude with a summary
of our findings and a vision for future work.

2 Background

Novice and expert troubleshooters exhibit distinct approaches rooted in their varying levels of ex-
perience and expertise within the technical domain. Novice troubleshooters are characterized by
their minimal experience and their tendency to possess a limited understanding of system workings
[9]. Their conceptual models are often less refined, reducing their ability to effectively diagnose
complex issues [6]. Novices typically engage in broad, surface-level assessments of problems be-
fore diving into detailed examinations of specific system faults [10]. Overall, their troubleshooting
approach lacks the systematic and comprehensive perspective seen in experts, resulting in a less
structured and at times erratic problem-solving process [11].

In contrast, expert troubleshooters possess a wealth of domain-specific knowledge and extensive
experience. Their conceptual models are well-developed and finely tuned, enabling them to quickly
grasp the nuances of system behavior and potential fault states [6]. Experts adopt a systematic
and holistic approach when troubleshooting, beginning with a broad assessment of the problem
and a thorough comparison of error scenarios [6], [10]. They then proceed to conduct in-depth
investigations into the system’s function and structure, enabling them to formulate well-informed
hypotheses about the root causes of errors and devise effective solutions.

Overall, the disparity between novice and expert is largely due to the extent to which they take a
systematic approach to their problem-solving processes, which enables them to use their domain
knowledge efficiently to diagnose and resolve technical issues.

Structured frameworks have been devised to aid novice individuals in troubleshooting, a skill of-



ten not explicitly taught in educational settings. While many possess an innate understanding of
troubleshooting from activities such as household repairs, frameworks prove valuable for novices,
assisting them in developing systematic problem-solving abilities [12]. One widely recognized
troubleshooting framework, applicable regardless of domain expertise, condenses the process into
five steps (often performed iteratively) [9]:

1. System comprehension
2. Testing
3. Locating error localization
4. Error rectification
5. Error evaluation

This structured approach to troubleshooting, with its general applicability, proves advantageous in
training novices, especially in the absence of practical experience. Research has demonstrated that
it enhances both the quantity and quality of problems resolved [13]. Analogous to algorithms or
structured processes, this explicit instructional framework steers novice troubleshooters through a
sequence that experts instinctively navigate with less conscious effort.

Novices tend to struggle most with the first three troubleshooting steps [9], and particularly in
locating the error, or “finding the problem.” Many troubleshooting strategies focus on completing
these first few steps; some the key strategies that transcend domains include [6]:

• Trial and Error: Novices often employ this method, systematically trying different solu-
tions until the problem is resolved.

• Exhaustive: This strategy involves thorough examination and testing of all possible causes
to pinpoint the issue.

• Topographic: This strategy focuses on understanding the system’s structure and compo-
nents to trace the source of the problem.

• Split-Half: To use this strategy, you divide the system into parts and isolate the problem by
testing each section separately. This is often referred to as chunking.

• Discrepancy Detection: This strategy emphasizes the identification of discrepancies or de-
viations from expected system behavior to locate faults.

Of these strategies, researchers have observed that novice programmers tend to resort to trial and
error when debugging software programs [13]. Understanding and mastering additional, more
systematic troubleshooting strategies could aid novices in improving their troubleshooting abilities
in various domains.

3 Methodology

To identify circuit troubleshooting techniques, we conducted an exploratory, qualitative study. The
study involved the following primary steps:

1. Based on the background research and student responses to a homework problem, we devel-
oped an a priori codebook of possible ECE troubleshooting strategies.



2. Based on feedback from teaching assistants and student work, we refined the codebook.

3. We designed a circuit with four faults of varying difficulties, with the goal of eliciting a range
of troubleshooting strategies.

4. Using think-aloud interviews, we observed the circuit troubleshooting process of n=53 ECE
students, each of whom were individually asked to find and repair the faults in a circuit to
achieve an expected output waveform.

5. We coded all troubleshooting strategies and quantized the observational data for analysis.

The following sections describe each of these steps in more detail.

3.1 Initial Codebook Design

Coding qualitative data consists of assigning a label to a data “chunk” to capture some underlying
meaning. Coding is a form of data analysis, not simply data preparation, i.e., the act of coding
helps the researcher to uncover themes and trends in their data [14]. The codebook design was
critical to achieving both good data collection and analysis because we did not record the think-
aloud interviews. Instead, the observers captured students’ troubleshooting strategies in real-time.
While the observers included free-hand notes in their field notes, they relied on the categories
outlined in the codebook as a shorthand that allowed them to keep pace with the students.

We started the codebook development process by drawing parallels with the well-established cor-
pus of computer science literature. This literature review allowed us to hypothesize that the fol-
lowing seven debugging strategies from the field of computer science were transferable to ECE
[13], [15], [16].

Gaining Domain Knowledge: In the computer science context, gaining domain knowledge involves
gathering the required information to make an educated attempt at solving a programming problem
or fixing a bug. In an ECE context, this strategy involves interpreting schematics, datasheets,
or expected results to have the knowledge needed to make an educated attempt to fix a fault in
circuitry.

Tracing: Developers commonly use debugging techniques such as code tracing or error tracking to
look into the intricacies of code and find the root cause of errors, e.g., by adding print statements
throughout the code, stepping through with a debugger, or by manually following along with the
code execution on paper [13], [16]. Hardware troubleshooting may parallel this concept, with
engineers using tools like oscilloscopes and multimeters to analyze electrical signals along a signal
flow path to identify the source of malfunctions in circuits or systems.

Testing (System Level): In both CS and ECE, system-level tests may take the form of verifying the
expected output for sample input values, sometimes as given by the specifications for the system
[13]. In CS, the output is often verified using print statements, while in a circuits laboratory, it may
involve taking measurements of a waveform on an oscilloscope.

Isolation: Computer scientists can isolate specific modules or functions to identify the source of
errors by selectively commenting out code, utilizing debugging tools, or conducting unit tests [13].



Electrical and computer engineers adopt a similar approach by physically isolating sections of a cir-
cuit to observe the impact on overall system behavior, aiming to pinpoint the faulty element.

Pattern Matching: Computer scientists leverage pattern recognition to identify common issues,
such as missing braces, or recurring problems in code, facilitating a more efficient resolution pro-
cess [13]. Similarly, electrical and computer engineers may apply pattern matching to recognize
common failure modes in electrical circuits, such as an op amp operating too close to its power
supplies or a diode installed backward.

Considering Alternatives: In both the computer science [13] and ECE context, considering alter-
natives involves evaluating different possible sources of a bug or fault.

Understanding: In a computer science setting, Murphy et al. [13] noted that all students read the
code to understand what it did, though only one explicitly noted this was their goal. In a circuit
laboratory, understanding could take the form of reviewing the physical circuit, reading datasheets,
and examining schematics to understand the purpose of each component before testing.

3.2 Refining the Codebook

We piloted and iteratively refined the codebook and the faulty circuit through practice think-aloud
interviews with undergraduate ECE Teaching Assistants (TAs). This allowed us to garner addi-
tional real-world data, and incorporate in vivo codes, thus achieving a more comprehensive rep-
resentation of troubleshooting strategies. Another benefit of the pilot think-aloud interviews was
practicing using the codebook in real-time.

We also refined the codebook by studying student responses elicited from the following homework
prompt given in the studied course:

Imagine your group member asks for help troubleshooting their circuit because the
gain and cutoff frequency are not what they expect. After quickly looking over all the
connections, you do not see any obvious errors in the wiring. Besides checking all
component values, name three troubleshooting steps you would suggest taking to try
to figure out what the error is.

Based on the think-aloud pilot interviews and the student homework responses, we introduced the
following additional codes.

Random & Directed Tinkering: Murphy et al. [13] defines tinkering as a student making “fairly
random and usually unproductive changes” to software in the debugging process. While refining
the codebook with teaching assistants, we found two variations of this strategy emerge. Random
tinkering describes when a student does not know the source of the fault, so starts making arbitrary
changes with the hope of solving the problem through luck. Directed tinkering refers to when a
student locates a fault but does not know how to fix it, so makes arbitrary changes within a specific
subsystem with the hopes of fixing the fault.

Analytical: While refining the codebook, some of the TAs noted that the faulty circuit lent itself to
analytical analysis, particularly surrounding the nonlinear characteristics of the diode in the circuit
and the op amp’s gain resistors.



Rebuilding: While refining the codebook, one TA decided to clear the breadboard of its compo-
nents and to rebuild the circuit from scratch. Although students could similarly recode an algorithm
from scratch, we had not seen this in the CS debugging literature.

The TA and student feedback ultimately rendered the codebook clearer and more contextually
relevant, as it allowed us to make the definitions and descriptions of troubleshooting techniques
more accurate and reflective of student actions. Tab. 1 summarizes the final codebook.

3.3 Exercise Design

Following Van De Bogart et al. [17], we designed an authentic troubleshooting exercise with pre-
set faults of varying difficulty. We started with a circuit similar to that used in [17], but added
components and faults in an attempt to elicit a wider range of troubleshooting strategies.

Fig. 1 depicts the correct circuit diagram. This circuit can be split into three main parts. The first
stage is an operational amplifier (op amp) configured as a voltage follower, meaning the output
should exactly track the input within the limits of operation. When functioning properly, this stage
does nothing to the input signal, but the voltage follower is an important design component as it
acts as a buffer by providing a near-infinite input resistance and near-zero output resistance. The
second stage is a diode, which we generally model as rectifying the input signal1.

F2: Op amp
installation

F1: Power supplies

F3: Diode
installation

F4: R1 and R2 flipped

Figure 1: Schematic of the (correct) circuit with the four faults labeled.

Finally, the third stage is an inverting op amp stage with a gain of g = −R2

R1
. When operating

properly, the output of an inverting op amp is proportional to the input of the op amp with pro-
portionality constant g. Students have built multiple circuits with each of these sub-blocks and we
expect them to recognize their standard operation immediately.

We included four faults in the circuit, ordered here by location in the circuit:

(F1) Power supplies turned off. The power supply functionality was not enabled in the Wave-
forms software. To fix this, participants must click the run button on the supplies screen.

1Rectification involves setting any negative values to 0 and thus only keeping only the positive portion of an input
signal. A more accurate (but still approximate) model is the threshold model–the diode is “off” for any input less
than an approximately 0.7V threshold and drops 0.7V for any larger input, resulting in an input-output relationship
described as y(t) = max(x(t)− 0.7, 0) where y(t) is the output and x(t) is the input.



However, until (F2) is fixed, the protection circuitry in the AD2 will automatically turn
off the power supply.

(F2) First op amp installed upside-down. The first op amp (U2A in Fig. 1) was installed
reverse from the conventional direction, meaning that pins 5-8 were in the locations of
where pins 1-4 should be and vice versa. This creates an overcurrent condition, which

Code Definition Example Actions or Quotes
Tracing Reviewing the flow of voltage and current

in the circuit, referencing the schematic
• Visually inspecting components
• Visually inspecting wires

Testing
(system-level)

Using an oscilloscope to view an output
signal

• Placing an oscilloscope probe on out-
put voltage node

Gain Domain
Knowledge

Reviewing specifications, reexamining
the desired output, or reviewing analyti-
cal derivations to gain insight

• Reading schematics
• Reading expected outputs

Pattern
Matching

“Fixing” something that does not look
“right”, such as adjusting a component
because the reference designator is mis-
oriented, or cross referencing between ex-
perimental and expected outputs

• “This op amp looks flipped.”
• “I don’t think the diode is supposed to

look like this”

Understanding Looking through the schematic to figure
out what each stage of the circuit is sup-
posed to do

• “This is some kind of half wave recti-
fier because of the bias of the diode.”

• “This is definitely an inverting ampli-
fier”

Directed
Tinkering

Making educated, but still indiscriminate
changes to a portion of the circuit. Often
involves taking action ‘on a hunch’

• “I think the incorrect output has some-
thing to do with the resistors. I am go-
ing to flip them to see what happens"

Considering
Alternatives

Considering possible reasons why a spe-
cific issue is occurring

• “I don’t get why my output is distorted.
I wonder if it’s the wiring.”

Random
Tinkering

Making arbitrary actions towards trying
to solve the circuit. Often involves taking
an action “just because” or “to see what
happens”

• “I’m going to flip this diode to see what
happens”

Isolation Isolating one or more systems of the cir-
cuit to test its function

• Observing the output of the diode when
the diode is connected to the op amp

Using Tools Using external tools to make adjustments
or make measurements

• Adjusting oscilloscope range
• Using multimeter

Rebuilding Taking apart the whole circuit or a section
of the circuit in an attempt to rebuild it
correctly

• Completely taking apart the inverting
amplifier in an attempt to rebuild it

Analytical Explicitly using mathematical derivations
or reasoning to find discrepancies

• Doing scratchwork on paper

Table 1: Codebook of troubleshooting strategies, listed from most to least commonly used among the sample
student population.



automatically turns off the power supply. The orientation of the chip is denoted by a
small circle near pin 1.

(F3) Diode installed backward. The diode (D1 in Fig. 1) was installed with the cathode facing
the first op amp rather than the second. This fault will result in negative voltages/currents
passing from the first half of the circuit rather than positive voltages/currents. Participants
had to rotate the diode to correct this fault.

(F4) Gain resistors flipped. The gain resistors (R1 and R2 in Fig. 1) were switched, leading
to a gain of 0.5 rather than 2 for the inverting op amp stage. This is similar to the first
fault analyzed in [17].

3.4 Course Context and Data Collection

This study considered students in ECE 2066: Fundamentals of ECE II in spring 2023 at the Uni-
versity of Virginia (UVA). The three-course fundamentals (“FUN”) sequence covers materials tra-
ditionally taught in circuits, electronics, and signals and systems courses. All three courses, ab-
breviated FUN 1, FUN 2, and FUN 3, are four credit, six contact hour, studio-style courses, with
students completing labs in groups during class time using the same Analog Discovery 2 and the
corresponding Waveforms software [18] that we used in this research. Thus, students have many
hours of experience working with the specific hardware set-up used in this study. The FUN 2 course
is required for ECE majors and minors and the majority of the students are in their second-year of
study. Ref. [19] further details the ECE fundamentals curriculum.

The troubleshooting exercise was given as an in-class assignment at the end of the semester, with
students receiving full credit for attempting the exercise. Over the course of three course meetings,
during which students were otherwise working on their semester projects, two of the course TAs
pulled students out individually to attempt the exercise. To explain the exercise, the TAs read the
following script:

Today you are going to be doing a circuit troubleshooting exercise. Please do not
open the folder or uncover the circuit until time starts. Given the components on the
board, you will be tasked to fix this circuit to achieve an output that matches the ones
given in the folder. You will not need any additional components to complete this task.
Throughout this exercise, as you troubleshoot this circuit, please speak your thought
process out loud. As the exercise continues, you may be reminded to continue to speak
aloud. The time limit is 10 minutes. Lastly, I will likely not be able to communicate
during this exercise, so questions will generally not be answered. Thank you.

Each student was then handed the circuit schematic and expected output and given 10 minutes to
try to find and correct the faults.

Following standard think-aloud protocols [20], the TAs minimized interaction during the exercise
and only requested participants to continue to talk aloud if they remained silent for an extended pe-
riod of time. While the participant worked on the circuit, the TAs recorded their actions according
to the codebook in Tab. 1. The TAs additionally noted which specific component or sub-circuit the
student was working on at any given time and any strategies that did not fit the codebook.



Of the 89 students enrolled in FUN 2, n=53 students agreed to participate in the study. There
was no incentive to participate in the research. All recruitment procedures and interaction was
approved by the UVA institutional review board.

Data analysis primarily involved quantitative analysis of the frequency of each code. After tran-
scribing and collecting data from handwritten notes into a spreadsheet, we used a python script
to analyze code frequency and the relationship between a particular troubleshooting strategy and
whether the student was successful in finding the faults in the circuit.

4 Results

Considering each of the four faults in the circuit, 83% of students fixed (F1) power supplies turned
off, 91% of students fixed (F2) op amp installed upside down, 75% of students fixed (F3) diode
installed backward, and 58% of students fixed (F4) gain resistors flipped. In total, 41% (22/53)
students successfully fixed all four faults in the provided time.

The most commonly used strategies by both successful and unsuccessful students were testing,
tracing, pattern matching, and gaining domain knowledge. Analytical troubleshooting was the
least used strategy, with only one student using this strategy. Represented in Fig. 2, successful stu-
dents had slightly higher usage rates of strategies like testing, tracing, and pattern matching, while
having lower or almost equal usage rates for every other strategy. Fig. 2 shows that more students
employed tinkering strategies, both random and directed, instead of performing any component
isolation strategies; students would often do things “on a hunch” then test the final output to “see
what happens,” rather than complete systematic intermediate steps.

We found that many students, both who succeeded and failed the exercise, faced significant diffi-
culties in recognizing the hardware issues on the board. This is most apparently reflected by the
strategy of random tinkering, as this strategy had the highest failure rate of 85% (only 3 of the 20
Students who used this strategy were successful at completing the circuit). Surprisingly, students
who spent time employing the strategy of trying to “understand” the circuit had a failure rate of
71% (31 students used this strategy, and 9 were successful). These subsections of students glar-
ingly represent the shortcomings of students in finding and identifying sources of faults. Fitzgerald
et al. [9] corroborates this finding, which found that students consistently named “finding the prob-
lem” as the more difficult troubleshooting stage (more than understanding the code, testing, and
fixing the problem) and that for many students, the difficulty of troubleshooting is not in repairing
the error, but rather understanding the system, testing the system, or locating the error.

Fig. 2 shows the results regarding the strategy of “understanding” somewhat juxtapose what com-
puter science debugging literature proposes, showing that taking time to understand the relevant
system is not a very effective troubleshooting technique, as most of the students who tried to fully
understand the function of the circuit failed to complete the exercise. The 10-minute time limit
of the exercise likely also contributed to this discrepancy. Some students were able to understand
what each part of the circuit is supposed to do when analyzing the schematic. However, translating
understanding from the schematic to physical hardware fixes may not be as seamless as it may be
for the methodological equivalent in computer science.



Figure 2: Troubleshooting strategy use for all students (n=53)

5 Discussion

Our findings offer insights into methodologies students employ when troubleshooting electronic
circuits, directly addressing the main research question (What are the strategies undergraduate ECE
students employ to troubleshoot hardware?) of this work. In our study, students used 12 unique
troubleshooting strategies to fix faults in a circuit, most of which paralleled debugging strategies
outlined in Fitzgerald et al. [9] and Murphy et al. [13].

We found that a majority of the students used testing, tracing, gaining domain knowledge, and
pattern matching as primary strategies during the troubleshooting process. Conversely, there were
very few students who used an analytical approach to troubleshooting, rebuilding the circuit, or
using tools to troubleshoot the circuit. The strategies of isolation, random tinkering, direct tinker-
ing, understanding, and considering alternatives were moderately used strategies. There was no
clear strategy that was a marker for success, but strategies such as rebuilding and random tinkering



were observable markers for failure, as less than 20% of the students who used those strategies
were successful at completing the circuit. Further, students generally found it more difficult to find
the faults within the circuit than to take action to fix the faults. This would often lead students to
engage in strategies that were not conducive to success, such as random tinkering or considering
alternatives. Students also did not use the strategy of isolation to find faults in the circuit, with
only 34% of students (18/53) employing this strategy during the exercise. These findings corrob-
orate the findings of Fitzgerald et al. [9] and Michaeli and Romeike [4], bringing consistency and
credence to our findings. For example, [9] also observed the use of pattern matching, isolating the
problem, and tracing as debugging trends among novice computer science students.

Unit testing in computer science debugging literature is one of the predominant strategies to fix
bugs in a computer program. A majority of students either use or acknowledge this debugging
approach [9], [13], [16]. The troubleshooting equivalent to unit testing would be the strategy
of isolation in the context of this work. We found that for troubleshooting hardware, isolating
components was not a commonly used strategy by students. Out of 53 students in this study,
only 34% (18/53) students tried to use isolation to locate and fix faults in the circuit. Instead,
students continually used pattern matching and full system testing on the circuit, without isolating
intermediate portions of the circuit.

6 Future Work

Beyond the results of this study, one of the notable achievements of this work is the development
of the codebook and validation of the process for conducting troubleshooting experiments. We
intend to expand the research with additional experiments to elicit whether aspects of the study
design, e.g., types of faults introduced, time constraints, teaming vs. individual performance,
or pedagogical interventions, affect the troubleshooting techniques used. In addition, we would
like to study upper-level students and experts to identify how techniques vary with expertise. For
example, in the programming context, Fitzgerald et al. [9] found that experts are more likely to take
a breadth-first approach rather than a depth-first approach when debugging and are more likely to
try to understand the code before trying to correct it. Meanwhile, Jonassen and Hung [6] identifies
the distinguishing feature of expert troubleshooting as the ability to generate rich mental models
of the system. It would be interesting to see whether similar differences exist for troubleshooting
hardware.

The ultimate goal for this line of research is to determine effective ways to improve troubleshooting
ability. Current suggestions from the literature focus on helping students recognize troubleshoot-
ing as a distinct skill. Fitzgerald et al. [9] suggests explicitly teaching it as a skill by, for example,
having students stop and consider alternatives, having students practice identifying issues in out-
puts, and encouraging meta-cognition about the process so students see when they are not making
progress. Another suggestion is to encourage more student autonomy by emphasizing how to find
the problem, not what the problem is [3]. Other ideas include: combining procedural training (i.e.,
step-by-step guidance) with instruction system structure and concepts, using simulations and/or in-
telligent tutoring systems, and explicitly teaching troubleshooting strategies [6], [21]. In addition
to implementing appropriate pedagogical interventions, a natural next step is to explicitly assess
students based on their demonstrated troubleshooting skill.



7 Conclusion

Dounas-Frazer and Lewandowski [1] showed that developing students’ ability to troubleshoot
problems and emphasizing the expectation that students should expect that nothing will work the
first time is essential to learning and being ‘useful’ in the lab. In this study, 53 ECE students
attempted to correct a circuit with a series of intentional faults to determine the troubleshooting
strategies they would use. Their activities were recorded and coded based on a taxonomy of strate-
gies gleaned from prior work in the context of computer science. The study found a few differences
in the strategies between successful and unsuccessful students, namely that unsuccessful students
were more likely to use random tinkering or to rebuild the circuit from scratch. However, both
groups widely used strategies such as tracing, testing, gaining domain knowledge, and pattern
matching.

The codebook included in this paper draws parallels between computer program debugging strate-
gies and circuit troubleshooting strategies. For researchers involved in the complexities of hard-
ware development, this codebook can be a structured and systematic guide to troubleshooting. In
instructional contexts, such as classrooms or online learning environments, this codebook can be
a resource for novice students as a practical guide to hardware troubleshooting. Moreover, the
codebook allows for enhanced reproducibility and collaboration in future work.

Having a list of local troubleshooting strategies that are specific to the discipline can aid instructors
in explicitly teaching and assessing troubleshooting skills. This first study concentrated on novices
to see what strategies they are already using as these may be easiest to incorporate in low-level
courses. Future work is planned to assess the impact of pedagogical interventions on improving
students’ troubleshooting skills and to study how their approaches change as they grow in both
domain knowledge and practical experience.
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