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Storage and interaction diagrams: Extending the diagrammatic
framework of kinetic and free-body diagrams to other

conservation and accounting principles

Abstract

After defining a system for analysis, a rigorous process is taught to students in their Statics and
Dynamics courses on how to draw proper kinetic, free-body, and impulse-momentum diagrams.
While numerous techniques and mnemonics have been mentioned in literature, any experienced
instructor can tell a correct free-body diagram apart from an incorrect one. Unfortunately, this is
not the case when considering scalar properties such as mass, energy, exergy, and entropy.
Different fluid mechanics and thermodynamics texts have treated the diagrammatic representation
of these properties either very poorly, or in the case of the latter two, not at all. In this paper, the
concept of the storage and interaction diagrams is introduced as a graphical tool to represent the
aforementioned scalar properties. The storage and interaction diagrams combine the conservation
and accounting of extensive properties with a template similar to the kinetic, free-body, and
impulse-momentum diagrams. Three examples are provided to show the application of this
general diagrammatic approach to different types of problems that involve the change in multiple
properties. The impact of incorporating storage and interaction diagrams when introducing
conservation and accounting principles involving scalar properties is assessed through the
evaluation of student performance on exams and student feedback. A comparison of two cohorts
of students suggests that emphasizing drawing storage and interaction diagrams may help reduce
the ramp-up time that most students need to get acclimated to the conservation and accounting
principles problem-solving framework.

Introduction and Motivation

It is not an exaggeration to state that the primary learning objective in any Statics course is for
students to learn how to select a system and draw a proper free-body diagram (FBD), which
provides a visual representation of the external forces and couples that act on the system. In fact,
there have been numerous publications on different mnemonics1,2 and techniques3,4 that
instructors have used to improve their students’ ability to draw FBDs. Once students are
introduced to systems in motion in Dynamics, the kinetic diagram (KD)5,6 is introduced. This
diagram depicts the motion of the object through the mass times acceleration ma and mass
moment of inertia times angular acceleration JOα terms. An example of a generic KD-FBD pair
is shown in Figure 1. A less discussed, but equally important set of diagrams that are also
introduced in Dynamics involve the impulse-momentum principle. These diagrams are typically



Figure 1 KD-FBD pair of a generic object moving and rotating in space

introduced to show the change in momentum and the impulses involved during impact. An
example of a generic “Final-Initial-During” impulse-momentum trio is shown in Figure 2.

Figure 2 Final-Initial-During trio of diagrams of a generic object moving and rotating in space

One reason for the emphasis that instructors place on selecting correct systems and drawing
proper diagrams in Statics and Dynamics is because these diagrams allow for the student to first
visualize what is happening to the system and subsequently use the diagrams to simplify and
solve the equations. While the KD-FBD pair and Final-Initial-During trio of diagrams are
well-established and universally accepted in teaching Statics and Dynamics courses, there is less
formality, if any, to drawing diagrams involving properties that are conserved and need to be
accounted for in courses such as Fluid Mechanics and Thermodynamics. These include mass,
energy, entropy, and exergy.1

The diagrammatic treatment of the aforementioned properties varies in the five fluid mechanics
and three thermodynamics textbooks reviewed by the author. In terms of drawing a proper
free-body diagram, especially when dealing with open systems that have mass inflow and outflow,
both Çengel and Cimbala7 and Gerhart, Gerhart, and Hochstein8 do an excellent job of clearly
identifying the system using dashed lines and showing terms that have units of force such as the
force due to pressure PA or mass flow rate ṁV on their FBDs. Fox and Mitchell9 and White and
Xue10 clearly identify their system, while Hibbeler11 does not, but all three texts included

1Exergy is not an independent property, unlike mass, linear and angular momentum, energy, and entropy (at non-
relativistic speeds); it is defined by combining energy and entropy together. It is considered with the other five proper-
ties in this paper because of its significance in thermodynamics.



pressure and velocity terms on their FBDs which clearly do not have units of force. With regards
to the scalar property of mass, only Çengel and Cimbala7 and Gerhart, Gerhart, and Hochstein8

showed separate diagrams of mass flow rates entering and exiting the systems. The energy
diagrams were found to be lacking in all eight texts reviewed, which was especially glaring in the
thermodynamics texts that primarily deal with conservation of energy. Both Moran, Shapiro,
Boettner, and Bailey12 and Çengel, Boles, and Kanoğlu13 clearly identify their system using
dashed lines, but they do not draw a separate diagram from what is shown in the problem
statement. Most of the diagrams that were reviewed showed some heat transfer rate and power
terms, but not all of them, and in instances, only pressures and temperatures were shown on
diagrams, not terms with units of power. Bejan14 is an older textbook which does an excellent job
highlighting conservation and account principles, but is limited in terms of its diagrams. None of
the eight texts reviewed attempted a diagram of any kind for entropy and exergy.

The limitations of existing textbooks in the thermal-fluid sciences in providing students with
consistent diagrammatic support to solve engineering problems has motivated the exploration of a
straightforward unified approach to drawing these diagrams. With this in mind, the idea of using a
generalized accounting approach15,16 to draw storage and interaction diagrams is explored in this
paper.

Representation of Principles through Storage and Interaction Diagrams

Consider a generic object that is moving and rotating in space and is subjected to forces and
couples (moments) prior to colliding with a wall. We can consider two perspectives with respect
to time when studying the behavior of this object:

• If we are interested in understanding how this object moves in space at every instant in time
before it collides with the wall, we would consider a rate form analysis of the conservation
of linear momentum principle (better known as Newton’s second law). This is visualized
through the KD-FBD pair of diagrams shown in Figure 1.

• If we are only interested in looking at the properties of the object at any two instances in
time, we would consider the finite-time form of conservation of linear momentum (better
known as impulse-momentum principle). It is important to note that there is nothing new or
special about the finite-time form; it is simply the result of integrating the conservation
principle in rate form over time. The finite-time form of conservation of linear momentum
is represented by the Final-Initial-During trio of diagrams shown in Figure 2.

Due to the widespread acceptance of both perspectives and their respective sets of diagrams when
it comes to linear and angular momentum, perhaps the simplest approach to creating guidelines
for drawing diagrams of other properties such as mass, energy, entropy, and exergy would be to
essentially follow a similar set of rules.

In general, any property that needs to be “accounted” for during a process would lend itself well
to be represented visually. A summary of such properties, their definition, and the courses that
they are encountered in presented in Table 1. Before proceeding though, it is important to
establish the generalized accounting principle and define some nomenclature that will be used
throughout the rest of this work.



Table 1 Properties that can be accounted for, their definition, and course(s) in which they primar-
ily appear — Ek, Ep, Usys, Eother are kinetic, potential, internal, and other sources of energy in the
system; s is entropy per unit mass; T0 and P0 are the dead state (thermodynamic term) temperature
and pressure.

Property Mathematical definition Definition in words Course(s)

Mass msys = ρ∀sys density by volume Fluids,
Thermo

Linear
momentum

~Psys = msys
~Vsys mass by velocity Statics,

Dynamics,
Fluids

Angular
momentum

~LO,sys = ~r × ~Psys moment of linear momentum Statics,
Dynamics,
Fluids

Energy Esys = Ek + Ep + Usys + Eother sum of all forms of energy in
system

Dynamics,
Fluids,
Thermo

Entropy Ssys = msyss measure of degree of disorder
in system

Thermo

Exergy Asys = Esys − T0Ssys + P0∀sys maximum amount of useful
work produced by system rel-
ative to the environment

Thermo

Consider a generic extensive property as the system undergoes a process. The amount of the
property that is stored in the system will equal to the net amount that enters (what comes in minus
what leaves) plus the net amount that is generated within the system (what is created minus what
is destroyed). If the property that enters or exits the system involves mass, it is transported; if it
does not, it is transferred. A property that is neither generated nor destroyed is conserved.

Consider the KD-FBD pair in Figure 1 once more. The terms depicted in the kinetic diagram
represent the rate of change of linear and angular momentum in the object (storage term), while
the terms shown in the free-body diagram change the linear and angular momentum of the system
without changing its mass (transfer terms). This particular system is closed (no mass enters or
exits); if mass had been entering or exiting the system, the transport terms would appear on the
FBD as well. Similarly, when considering the Final-Initial-During trio of diagrams in Figure 2,
the final and initial momentum diagrams depict the storage term, while the impulse diagram
shows the transfer terms.

Based on this framework, a general rule for diagrams of properties other than linear and angular
momentum can be developed. When considering the rate form representation of a property in a



Table 2 Conservation and accounting of properties for open and closed systems (rate form)

Property Storage = Transfer + Transport + Generation

Mass dmsys

dt
= 0 +

∑
in

ṁ−
∑
out

ṁ + 0

Linear
momentum

d~Psys

dt
=

∑
ext

~F +
∑
in

ṁ~V −
∑
out

ṁ~V + ~0

Angular
momentum

d~LO,sys

dt
=

∑
ext

~MO +
∑
in

~r × ṁ~V −
∑
out

~r × ṁ~V + ~0

Energy dEsys

dt
= Q̇in,net + Ẇin,net +

∑
in

ṁe−
∑
out

ṁe + 0

Entropy dSsys

dt
=

∑
in

Q̇
Tb

+
∑
in

ṁs−
∑
out

ṁs + Ṡgen

Exergy dAsys

dt
=

∑
Ȧq,in − Ȧw,out,useful +

∑
in

ṁaf −
∑
out

ṁaf + −Ȧdes

system, one diagram will solely show the storage term, which will be labeled as the storage
diagram or SD, while the other diagram will depict the transfer, transport, and generation terms,
which will be called the interaction diagram or ID. The conservation and accounting expressions
of the properties listed in Table 1 is tabulated in Table 2 for the rate form analysis and the
respective SD-ID pair for each property is shown in Figure 3.

Figure 3 Rate form storage and interaction diagrams for (a) mass, (b) linear and angular momen-
tum, (c) energy, (d) entropy, and (e) exergy for a generic system



Table 3 Conservation and accounting of properties for closed system (finite-time form)

Property Final − Initial (storage) = During (transfer) + During (generation)

Mass msys,f − msys,i = 0 + 0

Linear
momentum

~Psys,f − ~Psys,i =
∑
ext

∫
~F dt + ~0

Angular
momentum

~LO,sys,f − ~LO,sys,i =
∑
ext

∫
~MO dt + ~0

Energy Esys,f − Esys,i = Qin,net +Win,net + 0

Entropy Ssys,f − Ssys,i =
∑
in

Q
Tb

+ Sgen

Exergy Asys,f − Asys,i =
∑
Aq,in − Aw,out,useful + −Ades

For a finite-time form analysis, the final and initial value of a property will be shown in the
Final-Initial diagrams (storage term), while the During diagram will include the transfer and
generation terms. While it is possible to consider the transport terms in a finite-time form
analysis, it is common to use a rate form approach for such problems. Expressions for the
conservation and accounting of properties in the finite-time form analysis of closed systems is
available in Table 3 and the interaction diagram for each property is shown in Figure 4.

In the next section, three examples are provided to demonstrate the application of interaction
diagrams in solving problems that involve more than just conservation of linear and angular
momentum.

Figure 4 Finite-time form storage and interaction diagrams for (a) mass, (b) linear and angular
momentum, (c) energy, (d) entropy, and (e) exergy for a generic closed system



Examples

EXAMPLE 1: RATE FORM ANALYSIS OF DIFFERENT CLOSED SYSTEMS An electric motor
of mass m, specific heat c, and surface area As is suddenly turned on and used to set a
rack-and-pinion pair of gears in motion as shown in Figure 5. The motor receives electric
energy at a known rate Ẇelec(t), loses heat to the ambient environment via convection (heat
transfer coefficient hconv and ambient temperature T∞), and supplies torque τ(t) (an
unknown) to a rigid massless shaft that is connected to the pinion. The internal circuitry of
the motor is known, which means that Ẇshaft = f

(
Ẇelec

)
is a known relationship. The

pinion, with mass moment of inertia JO and radius r, is in perfect contact with the rack,
which has a mass mr. The stiffness of the spring connected to the rack is k. The dead state
temperature is T0. Set up but do not solve the equations that can be used to determine the
following unknowns:

(a) the temperature of the motor, Tm(t);

(b) the rotational degree of freedom, θ(t), of the pinion;

(c) the translational degree of freedom, x(t), of the rack;

(d) the rate of entropy generation in the motor, Ṡgen, and

(e) the rate of exergy destruction in the motor, Ȧdes.

Figure 5 Example 1 - Electric motor connected to a rack-and-pinion pair of gears

EXAMPLE 1 SOLUTION The SD-ID pair for Parts (a)-(e) are shown in Figure 6. Since the
problem involves rates of change properties, the rate form formulation will be considered.

(a) The system is the motor for this part. The energy SD-ID for this system is shown in
Figure 8(a). Conservation of energy yields

dEsys

dt
= Q̇in,net + Ẇin,net +

���
���

���
�:0∑

in

ṁe−
∑
out

ṁe



�
�
���
0

dEk

dt
+
�
�
���
0

dEp

dt
+

dUsys

dt
= −Q̇out + Ẇelec − Ẇshaft (1)

The terms in (1) can be expanded as follows:

dUsys

dt
= mc

dTm
dt

(2)

Q̇out = hconvAs (Tm(t)− T∞) (3)

Ẇshaft = τ(t)
dθ

dt
(4)

Figure 6 Example 1 storage and interaction diagram pairs involving (a) energy of the motor, (b)
angular momentum of the pinion, (c) linear momentum of the rack, (d) entropy of the motor, and
(e) exergy of the motor.



Substituting (2), (3), and (4) into (1) results in

mc
dTm
dt

= Ẇelec − hconvAs (Tm(t)− T∞)− τ(t)
dθ

dt
(5)

(b) For this part, the system is the pinion. The SD-ID pair for angular momentum (also
known as the KD-FBD pair!) for this system are shown in Figure 6(b). Conservation
of angular momentum results in

d~LO,sys

dt
=
∑
ext

~MO +

���
���

���
���

��:0∑
in

~r × ṁ~V −
∑
out

~r × ṁ~V

In scalar form,

k̂ : JO
d2θ

dt2
= τ − rF (6)

(c) The system is selected as the rack in this case. The linear momentum SD-ID diagrams
are shown in Figure 6(c). Conservation of linear momentum yields

d~Psys

dt
=
∑
ext

~F +
���

���
��

��:0∑
in

ṁ~V −
∑
out

ṁ~V

Resolving the vector relation in the î coordinate leads to

î : mr
d2x

dt2
= F − kx (7)

It is important to note that the degrees of freedom in (6) and (7) are related through the
following kinematic relation:

x = rθ (8)

(d) For this case, the system is the motor. The entropy SD-ID pair for this system is
shown in Figure 6(d). Accounting of entropy results in

dSsys

dt
=
∑
in

Q̇

Tb
+
��

���
���

��:0∑
in

ṁs−
∑
out

ṁs+ Ṡgen

Ṡgen =
dSsys

dt
+
Q̇out

Tm
=

dSsys

dt
+
hconvAs (Tm − T∞)

Tm
(9)

The specific entropy of an incompressible substance (the motor) is solely dependent
on temperature. Therefore,

dSsys

dt
= m

ds

dt
= mc

d (ln (Tm))

dt
(10)

Substituting (10) into (9) leads to

Ṡgen = mc
d (ln (Tm))

dt
+
hconvAs (Tm − T∞)

Tm
(11)



(e) The exergy SD-ID pair for the motor is shown in Figure 6(e). Accounting of exergy
results in

dAsys

dt
= −Ȧq,out − Ȧw,out,useful +

��
���

���
���:0∑

in

ṁaf −
∑
out

ṁaf − Ȧdes

Ȧdes = −
dAsys

dt
− Ȧq,out − Ȧw,out,useful (12)

From the definition of exergy transfer rate due to heat transfer and work along with the
time rate of change of the exergy in the system,

Ȧq,out =

(
1− T0

Tm

)
Q̇out =

(
1− T0

Tm

)
hconvAs (Tm(t)− T∞) (13)

Ȧw,out,useful = Ẇout,net −
�
�
�
��>

0

P0
d∀sys
dt

= τ(t)
dθ

dt
− Ẇelec (14)

dAsys

dt
=

dEsys

dt
− T0

dSsys

dt
+
�
�
�
��>

0

P0
d∀sys
dt

= mc

[
dTm
dt
− T0

d (ln (Tm))

dt

]
(15)

Substituting (13), (14), and (15) into (12) and simplifying leads to

Ȧdes = T0

[
mc

d (ln (Tm))

dt
+
hconvAs (Tm(t)− T∞)

Tm

]

+

���
��

���
���

���
���

���
���

���
�:0[

Ẇelec −mc
dTm
dt
− hconvAs (Tm(t)− T∞)− τ(t)

dθ

dt

]
= T0Ṡgen (16)

There are 7 unknowns involved in this problem: Tm(t), τ(t), θ(t), x(t), F (t), Ṡgen(t), and
Ȧdes(t). The 7 equations needed to solve for these unknowns can be summarized as follows:

τ(t)
dθ

dt
= f

(
Ẇelec

)
(given in problem statement)

mc
dTm
dt

= Ẇelec − hconvAs (Tm(t)− T∞)− τ(t)
dθ

dt

JO
d2θ

dt2
= τ − rF

mr
d2x

dt2
= F − kx

x = rθ (kinematics)

Ṡgen = mc
d (ln (Tm))

dt
+
hconvAs (Tm − T∞)

Tm
Ȧdes = T0Ṡgen



This example demonstrates the utility of including the time-dependent storage term in its
own diagram. Due to the vector nature of linear and angular momentum, the importance of
the kinetic diagram is more pronounced compared to the storage diagram for scalar
properties such as energy, entropy, and exergy, but depicting the storage term associated
with each scalar property provides a visual check on the equations for the students and
allows them to always maintain the same general framework for drawing diagrams. A
problem involving the rate form formulation of conservation and accounting principles
under steady-state conditions will be considered next.

EXAMPLE 2: RATE FORM ANALYSIS OF THE SAME OPEN SYSTEM OPERATING AT STEADY STATE
A turbojet engine is fixed to a test stand as shown in Figure 7. Air enters and exits the test
stand under steady operation. The mass flow rate ṁ, inlet velocity V1, exit velocity V2, the
weight of the engine and the air inside msysg, the pressure and temperature at the inlet (P1

and T1) and at the outlet (P2 and T2), and the boundary temperature at which heat is added
to the air Tb are known. Model air as an ideal gas with constant specific heat cp and gas
constant R. The dead state temperature is T0. Assume that all the power produced in the
turbine is used to power the compressor. Determine:

(a) the relation between inlet and outlet mass flow rates;

(b) the reaction forces and couple at the support;

(c) the heat transfer rate to the air in the engine;

(d) the rate of entropy generation in the engine, and

(e) the rate of exergy destruction in the engine.

Figure 7 Example 2 - Turbojet engine test stand

EXAMPLE 2 SOLUTION The proper storage and interaction diagram pairs for Parts (a)-(e) are
shown in Figure 8. Since the engine is operating under steady-state conditions, the time
derivatives are zero for every property. The system for every part of this problem is the
turbojet engine, the air inside it, and the attaching rod.



Figure 8 Example 2 (a) mass, (b) linear and angular momentum, (c) energy, (d) entropy, and (e)
exergy storage and interaction diagram pairs

(a) The mass SD-ID pair for this system is shown in Figure 8(a). Conservation of mass
yields

�
�
��>

S.S.
dmsys

dt
=
∑
in

ṁ−
∑
out

ṁ

ṁ1 = ṁ2 = ṁ (17)



(b) The linear and angular momentum SD-ID pair (once again, this is just a KD-FBD pair)
for this system are shown in Figure 8(b). Conservation of linear momentum results in

�
�
���

S.S.

d~Psys

dt
=
∑
ext

~F +
∑
in

ṁ~V −
∑
out

ṁ~V

Resolving the vector relation in the î and ĵ coordinates leads to

î : Rx = ṁ2V2 − ṁ1V1 = ṁ (V2 − V1) (18)

ĵ : Ry = msysg (19)

Conservation of angular momentum yields

�
�
�
��>

S.S.
d~LO,sys

dt
=
∑
ext

~MO +
∑
in

~r × ṁ~V −
∑
out

~r × ṁ~V

In scalar form,

k̂ : MO = −l2msysg − l4ṁ1V1 + l4ṁ2V2 = −l2msysg + l4ṁ (V2 − V1) (20)

(c) The energy SD-ID pair for this system is shown in Figure 8(c). Conservation of
energy results in

�
�
���

S.S.
dEsys

dt
= Q̇in,net +��

��*
0

Ẇin,net +
∑
in

ṁ

(
h+

V 2

2
+ gz

)
−
∑
out

ṁ

(
h+

V 2

2
+ gz

)

Q̇in = ṁ2

(
h2 +

V 2
2

2

)
− ṁ1

(
h1 +

V 2
1

2

)
= ṁ

(
h2 − h1 +

V 2
2 − V 2

1

2

)
(21)

From the ideal gas substance model,

h2 − h1 = cp (T2 − T1) (22)

Substituting (22) into (21) leads to

Q̇in = ṁ

(
cp (T2 − T1) +

V 2
2 − V 2

1

2

)
(23)

(d) The entropy storage and interaction diagram pair for this system is shown in Figure
8(d). Accounting of entropy results in

�
�
���
S.S.

dSsys

dt
=
∑
in

Q̇

Tb
+
∑
in

ṁs−
∑
out

ṁs+ Ṡgen



Ṡgen = ṁ2s2 − ṁ1s1 −
Q̇in

Tb
= ṁ(s2 − s1)−

ṁ
(
cp (T2 − T1) + V 2

2 −V 2
1

2

)
Tb

(24)

From the ideal gas substance model,

s2 − s1 = cp ln

(
T2
T1

)
−R ln

(
P2

P1

)
(25)

Substituting (25) into (24) leads to

Ṡgen = ṁ

[
cp ln

(
T2
T1

)
−R ln

(
P2

P1

)
−
cp (T2 − T1) + V 2

2 −V 2
1

2

Tb

]
(26)

(e) The exergy SD-ID pair for this system is shown in Figure 8(e). Accounting of exergy
results in

�
�
���

S.S.
dAsys

dt
= Ȧq,in −����

���:0
Ȧw,out,useful +

∑
in

ṁaf −
∑
out

ṁaf − Ȧdes

Ȧdes = ṁ1af,1 − ṁ2af,2 + Ȧq,in = Ȧq,in − ṁ(af,2 − af,1) (27)

From the definition of exergy transfer rate due to heat transfer and the specific flow
exergy,

Ȧq,in =

(
1− T0

Tb

)
Q̇in (28)

af,2 − af,1 = h2 − h1 +
V 2
2 − V 2

1

2
− T0 (s2 − s1) (29)

Substituting (22), (23), (25), (28), and (29) into (27) and simplifying leads to

Ȧdes = ṁT0

[
cp ln

(
T2
T1

)
−R ln

(
P2

P1

)
−
cp (T2 − T1) + V 2

2 −V 2
1

2

Tb

]
= T0Ṡgen (30)

The results can be summarized as follows:

ṁ1 = ṁ2 = ṁ

Rx = ṁ (V2 − V1)→
Ry = msysg ↑

MO = −l2msysg + l4ṁ (V2 − V1) 	

Q̇in = ṁ

(
cp (T2 − T1) +

V 2
2 − V 2

1

2

)
Ṡgen = ṁ

[
cp ln

(
T2
T1

)
−R ln

(
P2

P1

)
−
cp (T2 − T1) + V 2

2 −V 2
1

2

Tb

]
Ȧdes = T0Ṡgen



This example demonstrates that when a system is operating under steady conditions, the
storage diagrams will all be empty. It is up to the individual instructor to decide whether
they would like their students to draw a diagram knowing that it will be empty, but this is
the author’s preferred approach for the same reasons as in Example 1: it is an additional
visual check on the equations and the same general framework for drawing diagrams is still
maintained. Also, as has been demonstrated through both Examples 1 and 2, the rate of
exergy destruction is directly proportional to the rate of entropy generation. This is because,
as mentioned earlier, exergy is simply a linear combination of energy and entropy.
Accounting of exergy has only been presented in Examples 1 and 2 for the sake of
demonstrating how it follows the same general guideline as other extensive properties. If
energy and entropy have already been considered, accounting of exergy will not provide
any new information. Next, a problem involving the finite-time formulation of conservation
and accounting principles will be considered.

EXAMPLE 3: FINITE-TIME FORM ANALYSIS OF DIFFERENT CLOSED SYSTEMS Block B of
mass mB sits atop a cylinder of cross-sectional area Ac which contains a gas as shown in
Figure 9. Block A of mass mA is dropped vertically from rest at a height z1 above Block B
and collides with it in a perfectly inelastic manner. The two blocks compress the gas
adiabatically from an initial height li such that P∀k = constant, after impact. The initial
pressure and temperature of the gas (Pi and Ti) are known. Assume the gas is ideal with
constant specific heat cv, gas constant R, and specific heat ratio k. Neglect air resistance
and assume the impact time between blocks A and B is very small. Also assume that the
change in the kinetic and potential energy of the gas is negligible. Determine:

(a) the velocity of block A just before impact;

(b) the velocity of blocks A and B just after impact;

(c) an expression for the height of gas in the cylinder under maximum compression;

(d) the temperature of the gas when it is subjected to maximum compression, and

(e) the entropy generated in the gas when it is subjected to maximum compression.

EXAMPLE 3 SOLUTION The Final-Initial-During diagram trios for Parts (a)-(e) are shown in
Figure 10. Since the beginning and end of processes is of interest, the finite-form
formulation will be considered.

(a) The system for this part of the problem is block A. The energy Final-Initial-During
diagram trio for this system is shown in Figure 10(a). Conservation of energy yields

Ek,2 −���*
0

Ek,1 +��
�*0

Ep,2 − Ep,1 +���
��:0

U2 − U1 =���
�:0

Qin,net +���
�:0

Win,net

1

2
mAV

2
2 −mAgz1 = 0

Thus,

V2 =
√
2gz1 (31)



Figure 9 Example 3 - Perfectly inelastic collision of blocks leading to the compression of a gas

(b) The system for this part of the problem is blocks A and B. The linear momentum
Final-Initial-During diagram trio (also known as the impulse-momentum diagram!)
for this system is shown in Figure 10(b). Conservation of linear momentum results in

~Psys,3 − ~Psys,2 =
�
��

�
��
�*≈ 0∑

ext

∫ t3

t2

~F dt

Note that since the impact time is assumed to be very small, the impulses involved in
the problem are assumed to be negligible. Resolving the vector relation in the ĵ
coordinates leads to

ĵ : V3 =
mA

mA +mB

V2 =
mA

mA +mB

√
2gz1 (32)

(c) The system for this part is still blocks A and B. The energy Final-Initial-During
diagram trio for this system is shown in Figure 10(c). Conservation of energy leads to

��
�*0

Ek,4 − Ek,3 + Ep,4 − Ep,3 +���
��:0

U4 − U3 =���
�:0

Qin,net +Win,net

−1

2
(mA +mB)V

2
3 − (mA +mB) g (li − lf) = −W3→4

The work out of blocks A and B is used to compress the gas. For a polytropic process
P∀k = constant, this work can be expressed as

W3→4 =
Pf∀f − Pi∀i
k − 1

=
PiAcli
k − 1

[(
lf
li

)1−k

− 1

]
(33)



Figure 10 Example 3 Final-Initial-During diagram trio involving (a) energy of block A until
before impact, (b) linear momentum of blocks A and B during impact, (c) energy of blocks A and
B post impact until maximum compression, (d) energy of gas until maximum compression, and (e)
entropy of gas until maximum compression.



Thus, a transcendental equation for lf is obtained as follows:

lf
li
+
PiAc/(k − 1)

(mA +mB) g

(
lf
li

)1−k

−

[
1 +

PiAc/(k − 1)

(mA +mB) g
+

(
mA

mA +mB

)2
z1
li

]
= 0 (34)

(d) The system for this part is the gas undergoing compression. The Final-Initial-During
diagram trio for this system is shown in Figure 10(d). Conservation of energy yields
that

���
���:

0
Ek,f − Ek,i +���

���:
0

Ep,f − Ep,i + Uf − Ui =���
�:0

Qin,net +Win,net

mgas (uf − ui) = W3→4 (35)

From the ideal gas substance model,

mgas =
Pi∀i
RTi

=
PiAcli
RTi

(36)

uf − ui = cv (Tf − Ti) (37)

Substituting (36), (37), and (33) into (35) leads to

Tf = Ti

(
lf
li

)1−k

(38)

(e) Similar to the previous part, the system is still the gas undergoing compression. The
entropy Final-Initial-During diagram trio for this system is shown in Figure 10(e).
Accounting of entropy requires that

Sf − Si =

�
�
�
��
0∑

in

Q

Tb
+ Sgen

Sgen = mgas (sf − si) (39)

From the ideal gas substance model,

sf − si = cv ln

(
Tf
Ti

)
+R ln

(
∀f
∀i

)
= cv(1− k) ln

(
lf
li

)
+R ln

(
lf
li

)
= 0 (40)

Substituting (36) and (40) into (39) leads to

Sgen = 0 (41)



The results can be summarized as follows:

V2 =
√
2gz1

V3 =
mA

mA +mB

√
2gz1

lf
li
+
PiAc/(k − 1)

(mA +mB) g

(
lf
li

)1−k

−

[
1 +

PiAc/(k − 1)

(mA +mB) g
+

(
mA

mA +mB

)2
z1
li

]
= 0

Tf = Ti

(
lf
li

)1−k

Sgen = 0

In this example, multiple systems were considered to solve for the variables of interest. In
each case, since the finite-time form formulation was applicable, the Final-Initial-During
diagram trio was implemented, which, once again, reinforces the consistency in utilizing
interaction diagrams to solve problems involving conservation and accounting principles.
An error that is often encountered in class with problems that involve perfectly inelastic
collisions such as this is that some students apply conservation of energy from when block
A is released to the point of maximum compression of the two blocks without accounting
for any additional heat transfer in the “During” diagram or a change in the internal energy
of the system through the “Final-Initial” diagrams. In a perfectly inelastic collision,
momentum is conserved, but kinetic energy is converted to other forms of energy such as
sound and heat.

Assessment

Perhaps the biggest impediment to assessing the usefulness of storage and interaction diagrams is
requiring rigor and consistency in drawing these diagrams across a wide scope of classes, as
outlined in Table 1, that are not necessarily prerequisites or co-requisites of one another. This may
require a significant undertaking for the faculty who teach these courses to retain a consistent
approach, especially if there are many of them involved. At the author’s current institution,
Rose-Hulman Institute of Technology, the Mechanical Engineering curriculum was redesigned in
the 1990s to add a centerpiece course called Conservation and Accounting Principles, or
ConApps for short, which the typical student would take in the Fall quarter of their sophomore
after completing Statics and the Physics and Calculus sequences15. In this course, the general
accounting principle is first introduced and applied to the mass, linear and angular momentum,
energy, and entropy properties throughout the course. In subsequent quarters, students build on
the principles they learn in ConApps in their Mechanical Systems (equivalent to Dynamics), Fluid
Systems, Applications of Thermodynamics (where exergy is introduced), and Analysis and
Design of Engineering Systems (equivalent to System Dynamics) courses. While there is
complete agreement among the faculty in the department about the importance of the principles
discussed in ConApps, there is less agreement on emphasizing the importance of diagrams for all
principles, especially in subsequent classes. A survey of the faculty involved in teaching these
classes indicated that only those who are involved in teaching Mechanical Systems emphasize



drawing both the storage and interaction diagrams in the form of the KD-FBD pair. All but one of
the faculty teaching the other aforementioned courses only required students to draw interaction
diagrams. One instructor did not require the drawing of any diagrams when discussing
conservation of energy in the context of the Analysis and Design of Engineering Systems
course.

The author has been teaching ConApps regularly since 2018. There is a strong emphasis in
defining systems and drawing interaction diagrams for every application of a conservation and
accounting principle by every course instructor. More recently, the author expanded the focus on
diagram drawing in their sections of the course to include both storage and interaction diagrams
as has been outlined in this paper. A comparison of two cohorts of students taught by the author
will be provided. Cohort A consisted of 37 students who completed the term and were only taught
to draw interaction diagrams. Cohort B consisted of 24 students who completed the term, but
were taught and asked to draw storage and interaction diagrams when solving problems. The
difference in the average grade point average (GPA) between the two cohorts was found to be
statistically insignificant, which if used as an indicator of the “strength” of a class would mean
that two cohorts may be assumed to have been fairly even at the beginning of the term. Both
cohorts were given four midterm exams and a cumulative final. The midterm exams were
different between the cohorts, but covered the same topics and were deemed to be similar in terms
of difficulty. The final exam was nearly identical between the two cohorts. Cohort averages and
standard deviations for these five exams are provided in Table 4. The two-tailed two-sample
unequal variance p-value for the exam scores of the two cohorts is also provided.

Table 4 Exam averages (standard deviation) comparison between Cohort A and Cohort B

Exam Principle covered Cohort A Cohort B p-value

Exam 1 Mass 76.5% (14.6%) 88.5% (5.8%) 4.34× 10−5

Exam 2 Linear momentum 80.3% (13.5%) 81.4% (12.6%) 0.748

Exam 3 Linear/angular momentum,
energy (closed)

83.6% (15.8%) 89.2% (8.0%) 0.070

Exam 4 Energy (open), mechanical
energy balance

85.9% (11.9%) 87.5% (15.6%) 0.673

Final Exam Cumulative 80.4% (14.1%) 80.3% (15.3%) 0.927

The scores in Table 4 suggest that Cohort B outperformed Cohort A in a statistically significant
manner on Exam 1 and marginally significantly on Exam 3. There was no significant difference
between the two cohorts on the remaining three exams, particularly on the cumulative final exam.
While it would be wise not to draw too many conclusions from a comparison of two relatively
small cohorts, the scores suggest that emphasizing the storage and interaction diagrams at the



beginning of the term, and especially for conservation of mass, may help reduce the ramp-up time
that most students need to get acclimated to the problem-solving framework that they encounter
for the first time in ConApps. Feedback received from the students in Cohort B suggests while
every student who commented on the diagrams found them to be helpful, there were a couple who
thought that drawing storage diagrams in rate-form problems became tedious after a few weeks.
A sample of some of this feedback is provided below:

“Having taken this course before, I can say that the diagram structure made a huge difference in
my learning. Having that set pattern was really helpful. In my opinion, it made me more
understanding of the left hand/right hand sides of the equations, and what I could do with
each.”

“The formal emphasis of the diagrams really helped me conceptualize the motivations of what I
was trying to solve within the problem sets. I think that it made using the conservation equations
easier since the skill was transferred from understanding a bunch of symbols to understanding a
physical representation of the system through the diagram.”

“I thought the focus on storage diagrams at the start of each topic was a good inclusion.
However, once you get multiple weeks in, they just start to become tedious. The finite-form
diagrams are more useful in my opinion.”

Conclusions and Future Work

In this work, a general framework to visualizing the conservation and accounting of properties
through storage and interaction diagrams in rate and finite-time form has been presented and its
utility is demonstrated with three examples. While students are typically introduced to a rigorous
treatment of the free-body diagram in Statics and the kinetic and impulse-momentum diagrams in
Dynamics, there seems to be little agreement on diagrammatically expressing the conservation
and accounting of scalar properties such as mass, energy, entropy, and exergy in other texts. The
idea behind storage and interaction diagrams is to use the KD-FBD pair (in rate form analysis)
and the Final-Initial-During diagram trio (in finite-time form analysis) for the conservation of
linear and angular momentum as a template for scalar properties. As such, for rate form analysis,
one diagram will represent the storage term (kinetic diagram), while the other will include
transfer, transport, and generation terms (free-body diagram). Similarly, in finite-form analysis,
the Final and Initial diagrams will represent the storage term while the transfer and generation
terms will be depicted in the During diagram. As the three examples in this paper show, the
consistency in representation of storage and interaction diagrams provides a useful visual tool for
students to solve problems that may at first seem complicated in a straightforward manner.

While student performance and feedback indicate that drawing storage and interaction diagrams
are a step in the positive direction, there is more to do. Both of the cohorts considered in Table 4
consist primarily of students who successfully completed the course in their first try. It would be
valuable to apply this approach to the off-sequence sections of the ConApps course to see
whether it would be useful in improving the performance of students who are repeating the
course. There was one such student in Cohort B whose comments suggest that this diagram
structure may be helpful. Furthermore, data suggests that student performance on exams later in



the term remains virtually the same irrespective of whether the storage diagram is introduced or
not. More data points will be collected to verify this observation.

Acknowledgment

The author would like to thank and acknowledge Dr. Don E. Richards, Professor Emeritus of
Mechanical Engineering, and his colleagues for developing the framework for the conservation
and accounting principles that have been outlined in this paper and implementing them at the
Rose-Hulman Institute of Technology. The author would like to also acknowledge Dr. Calvin Lui,
Associate Professor of Mechanical Engineering, for coining the term “interaction diagram”.

References

[1] K. N. Leipold and S. R. Ivancic, “Efforts to improve free body diagrams,” in 2018 ASEE Annual Conference &
Exposition, (Salt Lake City, UT), ASEE Conferences, June 2018.

[2] P. Cornwell and A. H. Danesh-Yazdi, “Good strategies to avoid bad FBDs,” in 2019 ASEE Annual Conference
& Exposition, (Tampa, FL), ASEE Conferences, June 2019.

[3] S.-L. Wang, “Free body diagrams with animated GIF files,” in 2016 ASEE Annual Conference & Exposition,
(New Orleans, LA), ASEE Conferences, June 2016.

[4] A. H. Danesh-Yazdi, “The exploded view: A simple and intuitive approach to teaching the free-body diagram,”
in 2017 ASEE Annual Conference & Exposition, (Columbus, OH), ASEE Conferences, June 2017.

[5] L. G. Kraige, “The role of the kinetic diagram in the teaching of introductory rigid body dynamics past, present,
and future,” in 2002 Annual Conference, (Montreal, Canada), ASEE Conferences, June 2002.

[6] Y. Tang, “Cognitive benefits of using the kinetic diagrams in teaching introductory dynamics,” in 2019 ASEE
Annual Conference & Exposition, (Tampa, FL), ASEE Conferences, June 2019.
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