
Paper ID #41088

Board 108: Low-Cost Hardware-in-the-Loop Real-Time Simulation Platform

Aaron Fan, New Jersey Institute of Technology
Milad Shojaee, New Jersey Institute of Technology

MILAD SHOJAEE (Graduate Student Member, IEEE) received the B.S. degree in electrical engineering
from the Hamedan University of Technology, Hamedan, Iran, in 2012, and the M.S. degree in electrical
engineering from the University of Tehran, Tehran, Iran, in 2016. He is currently pursuing the Ph.D.
degree with the Department of Electrical and Computer Engineering, New Jersey Institute of Technology,
Newark, NJ, USA. His research interests include modeling, robust control, decentralized control, fault
diagnosis, renewable energies, and machine learning.

Dr. Mohsen Azizi, New Jersey Institute of Technology

Mohsen Azizi is an assistant professor in the School of Applied Engineering and Technology at New
Jersey Institute of Technology (NJIT). He received the M.Sc. and Ph.D. degrees in electrical and computer
engineering from Concordia University, Montreal, Canada, in 2005 and 2010, respectively. From 2010 to
2013, he was an R&D engineer at Aviya Tech Inc. and Pratt & Whitney Canada Inc., Longueuil, Canada,
where he designed and developed control and fault diagnosis systems for jet engines. His research has
been focused on decentralized control and fault diagnosis techniques in microgrids, renewable energy
systems, mechatronics, and aerospace.

©American Society for Engineering Education, 2024

1

Low-Cost Hardware-in-the-Loop Real-Time Simulation Platform

Abstract

In this paper, the design and development of a low-cost laboratory-scale hardware-in-the-loop
(HIL) simulation platform for power systems is presented by employing a Raspberry Pi and three
Arduino UNOs. HIL simulations are vital in system design and prototyping and offer a safe and
efficient method to test hardware and software systems within a simulated operational context.
The proposed platform leverages a Raspberry Pi to emulate the dynamic model of a three-area
power generation system, with the three Arduino UNOs performing as three individual local
controllers. This cost-effective approach minimizes the need for physical prototypes, leading to
substantial cost savings and enhanced scalability. The platform functions as an educational tool
for understanding closed-loop control systems, which eliminates the necessity for costly
industrial hardware. The implemented three-area power generation system includes synchronous
generators, in which the impacts of renewable energy sources and energy storage systems are
considered as disturbances. Initially, the closed-loop power system is modeled and tested using
MATLAB as a benchmark, and then simulated and implemented on the developed low-cost HIL
platform. The HIL simulation results exhibited negligible deviations from the anticipated
MATLAB outcomes, which suggest the platform’s potential to be used in other industrial
applications including but not limited to aerospace, automotive, and mechatronics systems in
future investigations.

Introduction

HIL simulation is a method of testing and debugging hardware and embedded software systems
by simulating the environment in which they are expected to operate. This type of simulation has
been extremely popular as it allows engineers to test their products accurately and efficiently,
without having to build all parts of the physical prototypes. In addition, HIL simulations can be
used across a wide variety of fields including but not limited to power systems, aerospace, and
automotive systems. There are many advantages to using HIL for the system design and
prototype, including safety, cost savings, and scalability [1].

HIL simulations are typically performed by combining and connecting the mathematical model
of a system with real hardware components. The models created can include any combination of
software components such as the dynamic models of industrial systems, controllers, embedded
processors, sensors, actuators, etc., which are connected through networks and integrated into the
simulation environment. This environment is then used to accurately simulate and represent the

2

characteristics of the overall physical system under various operating conditions, which provides
engineers with useful data on the system performance and behavior [2].

To create accurate HIL closed-loop control system simulations, engineers first develop detailed
mathematical models encompassing every aspect of the dynamic system that could affect its
behavior. This includes technical considerations such as sensor noise and power consumption
levels, all of which must be taken into account when constructing an accurate simulation
environment. Additionally, engineers create proper control algorithms, which can help optimize
the performance of the system under different feasible scenarios, while still maintaining safety
standards.

The significance of HIL simulations is in their safety and cost effectiveness. Engineers rely on
HIL simulations to rapidly prototype networks and test closed-loop control systems without
expensing budgets on the real physical system production or exposing themselves to hazards.

Safety is the foremost concern when testing any industrial system. By using HIL simulations,
engineers can create realistic scenarios, in which their products must operate accurately, while
controlling potentially hazardous environments or situations. This allows them to test the product
without being exposed to potential risks. Additionally, since there is no physical environment
and system aside from computing devices involved in a HIL simulation, it eliminates the need
for costly safety precautions such as fire suppression system or special protective clothing.

Cost saving is another major advantage of using HIL simulations. By eliminating expensive
environment system prototypes and instead creating virtual models that interact with the product
hardware, companies can save large amounts of money on development costs. Moreover, due to
advances in computing power and commercialization of HIL simulation tool sets such as
MATLAB/Simulink, businesses can successfully perform control system tests with very limited
budgets. In addition, the cost savings can lead to increased scalability, which is an important
factor when considering HIL simulations for product design and prototype purposes. With HIL
simulations, it is possible to quickly scale up tests from small components to larger systems
without having to invest in additional physical components each time, which would be
prohibitively difficult with traditional prototyping methods due to budget constraints.
Furthermore, they allow multiple users to simultaneously work together on different parts of the
same project, enabling faster development cycles, while significantly reducing cost overheads
associated with hiring additional staff for a single project.

Real-time operation is another important feature of HIL simulation as it enables accurate and
timely interaction between the simulated system model and the physical hardware under test. In
real-time HIL simulations, the simulation cycle time of the system and controller models takes
place in step with the real-life sampling time, with minimal leading or lagging. The

3

(compensated) simulation time cycle refers to the time interval in which (i) the system and
controller dynamic model calculations are updated, (ii) the system outputs are measured, (iii) the
communications are made among all connected entities (Raspberry Pi and Arduino in this paper)
of the HIL simulation platform, and (iv) the idle (compensation) time is calculated and executed
to go in step with the (real) sampling time. Therefore, the (compensated) simulation time cycle
must last long enough to accommodate the execution of all calculations, measurements, and
communications, while it must not exceed the (real) sampling time.

In this paper, the objective is to design and develop a low-cost laboratory-scale platform for HIL
simulation of a three-area power generation system. This project provides students with a user-
friendly platform to learn about HIL simulations and implement them for different industrial
applications including but not limited to power systems, aerospace, and automotive systems.

Literature Review

In [3], a low-cost real-time control system platform is implemented by using an Arduino board
and a Raspberry Pi. The platform allows the students to design their control scheme in Simulink
and then run in a real-time simulation. In [4], a simple real-time simulation framework is
designed for a single-phase inverter model using a Raspberry Pi for the inverter model, and an
Arduino for the control algorithm computation. In [5], a hardware test application on the min-
max algorithm is used to regulate a two-axis turbofan engine’s fuel. This technique employs an
Arduino microcontroller that uses a nonlinear model based on the min-max control scheme to
control the fuel consumption of a turbofan.

In [6], a low-cost autonomous vehicle is designed, which is based on the combination of a
Raspberry Pi, an Arduino, and a Zumo track-driven robot chassis. The control law is calculated
on the Arduino in a real-time manner, while the Raspberry Pi performs additional computations,
web interfacing, and wireless data streaming for tuning and debugging purposes. A control
system based on the adaptive neuro-fuzzy inference system is studied in [7], which is
implemented by using a Raspberry Pi and applied to control an inverted pendulum system. In
[8], the design and implementation of hardware and software frameworks are studied for a basic
mobile robot moving with radio frequency identification system. The hardware is based on a
Raspberry Pi and an Arduino, where the former is used for sending commands to actuators and
receiving data from sensors, and the latter is used for the control algorithm calculation.

In this paper, the real-time HIL simulation platform is developed for the first time by utilizing
Raspberry Pi and Arduinos. As compared with similar works in the literature, they have used
custom prototyped boards instead of the low-cost Arduino microcontroller used in this paper. It
should be noted that their codes were developed by using MATLAB/Simulink and C++
environments on each device [9], which are similarly explored in this paper.

4

Hardware Setup

The hardware used in this project includes one Raspberry Pi 4 and three Arduino UNOs. In
general, the Raspberry Pi can be used to simulate the mathematical model of the entire dynamic
system, and the three Arduino UNOs can be used to simulate three local controllers. In the case
of the power system considered in this paper, the Raspberry Pi is used to simulate the
interconnected three-area power generation system, and the three Arduinos act as the local
proportional-integral (PI) controllers for the three generators. The Raspberry Pi performs all the
calculations for the dynamic model of the power system, while each Arduino performs
calculations and responds to the Raspberry Pi with the control command for its associated
generator, as depicted in Figure 1.

The Raspberry Pi performs calculation for the time evolution of the power system dynamic
equation, which is represented by 𝐹𝐹(.) in Figure 1 (the details are presented later in equations (2)
and (4)). Each Arduino performs calculation for one of the three local controller equations,
which is represented by 𝑓𝑓𝑖𝑖 (𝑖𝑖 = 1, 2, 3) in Figure 1 (the details are presented later in equation
(3)). The Raspberry Pi broadcasts a unique value of 𝑦𝑦𝑖𝑖 and 𝑝𝑝𝑖𝑖 to each Arduino. The Arduino then
performs basic arithmetic and responds with the new value of 𝑢𝑢𝑖𝑖. The Raspberry Pi then
performs the calculations necessary to update the 𝑦𝑦𝑖𝑖 values. These steps continue for a certain
number of iterations specified by the user.

Figure 1. Diagram of the communication between Raspberry Pi and three Arduinos.

Communication Protocols and Setup

The main challenge in this project is to determine a communication protocol that is both fast and
resource efficient. Due to the limited number of pins on the Raspberry Pi, the communication
protocols may need external multiplexing modules to service multiple Arduinos at the same time.
In the next section, three communication protocols will be reviewed and compared. They will be

5

used for communication and data transmission between Raspberry Pi and Arduinos, and the most
effective one will be chosen based on the communication speed and scalability performance.

Three wired communication protocols are presented for communication between the Raspberry
Pi and three Arduinos: Serial Peripheral Interface (SPI), Universal Asynchronous
Receiver/Transmitter (UART), and Inter-Integrated Circuit (I2C). All three protocols involve
physically wiring the devices together, although each protocol requires a different wiring
scheme.

SPI protocol requires four wires: Serial Clock (SCLK), Master Out Slave In (MOSI), Master In
Slave Out (MISO), and Slave Select (SS). The Master device controls the clock line and selects
which Slave device to communicate with by driving the appropriate SS line low. In this paper,
multiple Arduinos communicate with a Raspberry Pi, so each Arduino would need its own SS
line, which means that the Raspberry Pi would need as many SS lines as the number of
Arduinos. This can quickly consume all of the general-purpose input/output (GPIO) pins on the
Raspberry Pi. This is not feasible in our model using three Arduinos. Therefore, SPI is ruled out
due to its hardware limitation.

UART is a form of serial communication that is simple and easy to implement. It requires only
two wires (transmit and receive), which makes it ideal for point-to-point communication. It is
asynchronous, so the sender and receiver do not need to synchronize their clocks before
communication can occur. However, the two devices must agree on the same data rate (baud
rate) beforehand. Multiplexing must be used in the case of communication between a Raspberry
Pi and multiple Arduinos. However, achieving the multiplexing mechanism is simple. In
addition, communication speed is quite fast since communication happens independently for
each Arduino through an individual USB connection. Hardware wise, connecting the Arduinos to
the Raspberry Pi is made simple by utilizing USB connections.

I2C is a serial communication protocol that uses two wires: Serial Data (SDA) and Serial Clock
(SCL). Unlike UART, I2C supports multi-master and multi-slave communication, which makes
it suitable for connecting multiple Arduinos to a Raspberry Pi. The key advantage of I2C is that
many devices can be connected using just two wires. Each device on the I2C bus has its own
address, and the Raspberry Pi can talk to individual Arduinos by addressing them directly. In the
case of a single Raspberry Pi communicating with a single Arduino, the results show that I2C is
the fastest protocol, but scaling up to multiple Arduinos, the results show a significant lag.
Therefore, compared to UART and SPI, I2C is generally slower in the case of multiple Arduinos.

In UART protocol, the connections are made through the USB ports, while in I2C and SPI the
connections are made through the GPIO pins and, hence, their voltage levels must be equalized.
The Raspberry Pi pins are designed for 3.3(v), while the Arduino pins are designed for 5(v).

6

Connecting Arduino pins directly to Raspberry Pi pins could cause damage. Therefore, I2C and
SPI require additional voltage level shifter modules to interface the two GPIO pins.

In this paper, the UART communication protocol is chosen as depicted in Figure 2. The most
important factors in making this decision include communication speed, hardware limitation, and
scalability as discussed above.

Figure 2. Hardware connection between Raspberry Pi and Arduinos using UART communication

protocol and USB ports.

Dynamic Equations of the Power Generation System and the Three Controllers

The system studied in this paper is a stand-alone three-area power generation system that
consists of synchronous generators [10]. The block diagram of this system is illustrated in Figure
3, where the effects of renewable energy resources, energy storage systems, and local loads are
modelled by the external disturbance 𝑑𝑑𝑖𝑖 for the area #i (i=1,2,3), which are all set to 0.1 (𝑝𝑝𝑢𝑢). In
this figure, 𝑦𝑦𝑖𝑖, 𝑝𝑝𝑖𝑖, 𝑢𝑢𝑖𝑖, and 𝑒𝑒𝑖𝑖 are the frequency deviation, the tie-line power deviation, the control
signal of PI controller, and the area control error of area #i. The area control error 𝑒𝑒𝑖𝑖 is defined
by a linear combination of 𝑦𝑦𝑖𝑖 (with coefficient 𝐵𝐵𝑖𝑖) and 𝑝𝑝𝑖𝑖 (with coefficient 1) as follows:

𝑒𝑒𝑖𝑖 = 𝐵𝐵𝑖𝑖𝑦𝑦𝑖𝑖 + 𝑝𝑝𝑖𝑖 (𝑖𝑖 = 1, 2, 3) (1)

7

Figure 3. Block diagram of the three-area power generation system.

The details of the calculation of the tie-line power 𝑝𝑝𝑖𝑖 in Figure 3 are demonstrated in Figure 4.

Figure 4. Tie-line power calculations.

8

The continuous system defined in Figures 3 and 4 are discretized by using the Tustin method
with the sampling time of 𝑇𝑇𝑠𝑠 = 0.02 (𝑠𝑠). The discretized equations are represented in equations
(2)-(4) for the three areas #i (i=1, 2, 3).

𝑦𝑦𝑖𝑖(𝑘𝑘) = 𝑦𝑦𝑖𝑖1(𝑘𝑘) + 𝑦𝑦𝑖𝑖2(𝑘𝑘)

𝑦𝑦𝑖𝑖1(𝑘𝑘) = � 𝑎𝑎𝑖𝑖1
𝑗𝑗 𝑦𝑦𝑖𝑖1(𝑘𝑘 − 𝑗𝑗)

6

𝑗𝑗=1
+ � 𝑏𝑏𝑖𝑖

𝑗𝑗𝑢𝑢𝑖𝑖(𝑘𝑘 − 𝑗𝑗)
6

𝑗𝑗=0

𝑦𝑦𝑖𝑖2(𝑘𝑘) = � 𝑎𝑎𝑖𝑖2
𝑗𝑗 𝑦𝑦𝑖𝑖2(𝑘𝑘 − 𝑗𝑗)

4

𝑗𝑗=1
+ � 𝑐𝑐𝑖𝑖

𝑗𝑗[𝑝𝑝𝑖𝑖(𝑘𝑘 − 𝑗𝑗) + 𝑑𝑑𝑖𝑖(𝑘𝑘 − 𝑗𝑗)]
4

𝑗𝑗=0

(2)

𝑢𝑢𝑖𝑖(𝑘𝑘 + 1) = 𝑢𝑢𝑖𝑖(𝑘𝑘) + 𝑓𝑓𝑖𝑖1 𝑒𝑒𝑖𝑖(𝑘𝑘 + 1) + 𝑓𝑓𝑖𝑖0 𝑒𝑒𝑖𝑖(𝑘𝑘)
𝑒𝑒𝑖𝑖(𝑘𝑘 + 1) = 𝐵𝐵𝑖𝑖 𝑦𝑦𝑖𝑖(𝑘𝑘) + 𝑝𝑝𝑖𝑖(𝑘𝑘) (3)

𝑝𝑝𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖1(𝑘𝑘) + 𝑧𝑧𝑖𝑖2(𝑘𝑘) + 𝑧𝑧𝑖𝑖3(𝑘𝑘)
𝑧𝑧𝑖𝑖1(𝑘𝑘) = 𝑧𝑧𝑖𝑖1(𝑘𝑘 − 1) + 𝑔𝑔𝑖𝑖11 𝑦𝑦1(𝑘𝑘 − 1) + 𝑔𝑔𝑖𝑖12 𝑦𝑦1(𝑘𝑘 − 2)
𝑧𝑧𝑖𝑖2(𝑘𝑘) = 𝑧𝑧𝑖𝑖2(𝑘𝑘 − 1) + 𝑔𝑔𝑖𝑖21 𝑦𝑦2(𝑘𝑘 − 1) + 𝑔𝑔𝑖𝑖22 𝑦𝑦2(𝑘𝑘 − 2)
𝑧𝑧𝑖𝑖3(𝑘𝑘) = 𝑧𝑧𝑖𝑖3(𝑘𝑘 − 1) + 𝑔𝑔𝑖𝑖31 𝑦𝑦3(𝑘𝑘 − 1) + 𝑔𝑔𝑖𝑖32 𝑦𝑦3(𝑘𝑘 − 2)

(4)

The values of the coefficients in the discrete equations (2)-(4) are illustrated in Tables 1-9.

Table 1. The values of 𝑎𝑎𝑖𝑖1
𝑗𝑗 coefficients in equation (2).

i j 1 2 3 4 5 6
1 5.73 -13.67 17.39 -12.44 4.7 -0.75
2 5.8 -14.01 18.06 -13.09 5.06 -0.81
3 5.77 -13.87 17.78 -12.82 4.92 -0.78

Table 2. The values of 𝑎𝑎𝑖𝑖2

𝑗𝑗 coefficients in equation (2).
 i j 1 2 3 4

1 3.86 -5.59 3.59 -0.87
2 3.89 -5.69 3.69 -0.9
3 3.88 -5.65 3.65 -0.88

Table 3. The values of 𝑏𝑏𝑖𝑖
𝑗𝑗 coefficients in equation (2).

i j 0 1 2 3 4 5 6
1 9.3e-7 1.3e-7 -2.7e-6 -2.5e-7 2.5e-6 1.19e-7 -8.1e-7
2 6.6e-7 6.6e-8 -1.9e-6 -1.3e-7 1.8e-6 6.3e-8 -5.9e-7
3 8.6e-7 9.8e-8 -2.5e-6 -1.9e-7 2.4e-6 9.3e-8 -7.6e-7

Table 4. The values of 𝑐𝑐𝑖𝑖
𝑗𝑗 coefficients in equation (2).

 i j 0 1 2 3 4
1 -9.99e-4 0.0019 1.31e-4 -0.0019 8.67e-4
2 -0.0012 0.0024 1.21e-4 -0.0024 0.0011
3 -0.0012 0.0024 1.39e-4 -0.0024 0.0011

9

Table 5. The values of 𝑓𝑓𝑖𝑖
𝑗𝑗 coefficients in equation (3).

i j 0 1
1 0.099 -0.101
2 0.099 -0.101
3 0.099 -0.101

Table 6. The values of 𝐵𝐵𝑖𝑖 in equation (3).

i 1 2 3
𝑩𝑩𝒊𝒊 20.6 16.9 18.93

Table 7. The values of 𝑔𝑔𝑖𝑖1
𝑗𝑗 coefficients in equation (4).

i j 1 2
1 0.04 0.04
2 -0.02 -0.02
3 -0.02 -0.02

Table 8. The values of 𝑔𝑔𝑖𝑖2

𝑗𝑗 coefficients in equation (4).
i j 1 2

1 -0.02 -0.02
2 0.04 0.04
3 -0.02 -0.02

Table 9. The values of 𝑔𝑔𝑖𝑖3

𝑗𝑗 coefficients in equation (4).
i j 1 2

1 -0.02 -0.02
2 -0.02 -0.02
3 0.04 0.04

Software Architecture

The Raspberry Pi first establishes connections with all three Arduinos. It performs the
handshakes by waiting for the controllers to send the string “READY”. Once all three controllers
are connected, the simulation starts to execute. As indicated in Figure 5, first the Raspberry Pi
calculates all the 𝑦𝑦𝑖𝑖 (𝑖𝑖 = 1, 2, 3) values as per equation (2) and sends the calculated 𝑦𝑦𝑖𝑖 and
(previous) 𝑝𝑝𝑖𝑖 values to the respective Arduinos #i. The Arduinos use these values to calculate 𝑒𝑒𝑖𝑖
and 𝑢𝑢𝑖𝑖 as per equation (3) and send the new 𝑢𝑢𝑖𝑖 values back to the Raspberry Pi (as indicated in
Figure 6). Once all these 𝑢𝑢𝑖𝑖 values are received, the Raspberry Pi calculates new 𝑝𝑝𝑖𝑖 values as per
equation (4). Then, in order to meet the 0.02 (s) sampling time interval, the Raspberry Pi
intentionally executes an idle (compensation) time.

10

Figure 5. Flow chart of the program on Raspberry Pi

Figure 6 illustrates the flowchart for the Arduino controllers #i (𝑖𝑖 = 1, 2, 3). On each Arduino,
once the 𝑦𝑦𝑖𝑖 and 𝑝𝑝𝑖𝑖 values are received, the controller calculates the 𝑒𝑒𝑖𝑖 and 𝑢𝑢𝑖𝑖 values as per
equation 3, and sends the new 𝑢𝑢𝑖𝑖 value back to the Raspberry Pi.

Figure 6. Flow chart of the program on each Arduino.

11

Real-Time Closed-Loop Simulation of the Three-Area Power Generation System

In this HIL simulation, the sampling time 𝑇𝑇𝑠𝑠 = 0.02 (𝑠𝑠), which is presented earlier in this paper
to discretize the dynamic models as per equations (2)-(4), is chosen to be bigger than the
maximum communication time 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 for all iterations #𝑛𝑛 (𝑛𝑛 = 1, 2, 3, … , 1000), which is
defined as the time interval for the Raspberry Pi and Arduinos to send, process, and receive data
per each iteration #𝑛𝑛 of the simulation. It is crucial that 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 does not exceed (or fall behind) 𝑇𝑇𝑠𝑠
at each sampling time window; otherwise, the simulation will be delayed and no longer real-
time. As demonstrated in Figure 7 and Table 10, 𝑇𝑇𝑠𝑠 is normally chosen to be much bigger than
𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 to provide enough margin. The communication protocol chosen, UART, ensures that
transmission and receiving of data to and from the controllers will not serve as a bottleneck.

On the other hand, the real-time simulation should not fall ahead of the real elapsed time
(cumulative sampling time) 𝑛𝑛𝑇𝑇𝑠𝑠 with 𝑛𝑛 representing the number of iterations. Therefore, in order
to compensate for this elapsed time error, an intentional idle time 𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛 is added to 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 for all
simulation cycles #𝑛𝑛 (𝑛𝑛 = 1, 2, … , 1000) as demonstrated in Figure 7. As a result, the
compensated simulation time cycle 𝐶𝐶𝑦𝑦𝑐𝑐𝐼𝐼𝑒𝑒𝑛𝑛, which is defined as the summation of 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛, 𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛,
and 𝐷𝐷𝑒𝑒𝐼𝐼𝑛𝑛, goes in step with the 𝑛𝑛𝑇𝑇𝑠𝑠 to realize the real-time simulation. The time chart of real-
time simulation is demonstrated in Figure 7 and Table 10.

Figure 7. Time chart of the real-time simulation (notations defined in Table 10).

Table 10. Definitions of the notations used in Figure 7.

𝑇𝑇𝑠𝑠 Sampling time with which the real-time simulation should be in step
𝑛𝑛𝑇𝑇𝑠𝑠 Real elapsed time (cumulative sampling time)
𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 Communication time (cumulative sending, processing, and receiving time)
𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛 Idle (compensation) time intentionally executed to follow real elapsed time
𝐷𝐷𝑒𝑒𝐼𝐼𝑛𝑛 Undesired delay as a result of timing inaccuracies in the calculation and execution

of 𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛
𝐶𝐶𝑦𝑦𝑐𝑐𝐼𝐼𝑒𝑒𝑛𝑛 Compensated simulation time cycle (𝐶𝐶𝑦𝑦𝑐𝑐𝐼𝐼𝑒𝑒𝑛𝑛 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 + 𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛 + 𝐷𝐷𝑒𝑒𝐼𝐼𝑛𝑛)

The software program follows the steps in the algorithm in Table 11 to simulate the system in a
rea-time manner.

12

Table 11. Software algorithm for real-time simulation.
Step Function Part of

1 Start the first iteration 𝑛𝑛 = 1. 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
2 Raspberry Pi calculates new 𝑦𝑦𝑖𝑖 values by using equation (2). 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
3 Raspberry Pi sends 𝑦𝑦𝑖𝑖 and 𝑝𝑝𝑖𝑖 values to three Arduinos. 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛

4 Arduinos use 𝑦𝑦𝑖𝑖 and 𝑝𝑝𝑖𝑖 values to calculate 𝑢𝑢𝑖𝑖 values by using equation (3)
and send them back to Raspberry Pi. 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛

5 Raspberry Pi receives 𝑢𝑢𝑖𝑖 values back from three Arduinos. 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
6 Raspberry Pi calculates 𝑝𝑝𝑖𝑖 values by using equation (4). 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛

7

Elapsed Time Error Compensation: Raspberry Pi executes an idle time
𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛 to compensate for the elapsed time error, which is the difference
between the real elapsed time 𝑛𝑛𝑇𝑇𝑠𝑠 and the simulated elapsed time
𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 + ∑ 𝐶𝐶𝑦𝑦𝑐𝑐𝐼𝐼𝑒𝑒𝑘𝑘𝑛𝑛−1

𝑘𝑘=1 . Therefore, 𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛 = 𝑛𝑛𝑇𝑇𝑠𝑠 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 − ∑ 𝐶𝐶𝑦𝑦𝑐𝑐𝐼𝐼𝑒𝑒𝑘𝑘𝑛𝑛−1
𝑘𝑘=1 .

𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛
and
𝐷𝐷𝑒𝑒𝐼𝐼𝑛𝑛

8 Increment iteration 𝑛𝑛 = 𝑛𝑛 + 1 and go to Steps 2 if 𝑛𝑛 ≤ 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚. -

Elapsed Time Error Compensation by Idle Time

As per Step 7 of the algorithm in Table 11, the “elapsed time error compensation” not only takes
into account the current cycle’s communication time 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 but also the compensated simulation
time cycle of all the previous cycles, that is ∑ 𝐶𝐶𝑦𝑦𝑐𝑐𝐼𝐼𝑒𝑒𝑘𝑘𝑛𝑛−1

𝑘𝑘=1 . The Raspberry Pi keeps idle for a time
window of 𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛 so that the simulated elapsed time 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 + ∑ 𝐶𝐶𝑦𝑦𝑐𝑐𝐼𝐼𝑒𝑒𝑘𝑘𝑛𝑛−1

𝑘𝑘=1 catches up with the
real elapsed time 𝑛𝑛𝑇𝑇𝑠𝑠. However, the timing inaccuracies in the calculation and execution of 𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛
are represented and captured by the undesired delay 𝐷𝐷𝑒𝑒𝐼𝐼𝑛𝑛 at each iteration #𝑛𝑛.

Figure 8 illustrates the communication time 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 only, which excludes the idle (compensation)
time 𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛 and undesired delay 𝐷𝐷𝑒𝑒𝐼𝐼𝑛𝑛. This figure shows that 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 values are on average around
0.008 (s) and have an upper limit of 0.012 (s), which is used to determine that the sampling time
𝑇𝑇𝑠𝑠 = 0.02 (𝑠𝑠) is a proper choice (𝑇𝑇𝑠𝑠 = 0.02 (𝑠𝑠) > 0.012 (𝑠𝑠)).

Figure 8. Communication time 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛.

13

Figure 9 illustrates the idle time 𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛, which is an intentionally executed wait time to
compensate for the elapsed time error, which is the difference between the real elapsed time 𝑛𝑛𝑇𝑇𝑠𝑠
and the simulated elapsed time 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 + ∑ 𝐶𝐶𝑦𝑦𝑐𝑐𝐼𝐼𝑒𝑒𝑘𝑘𝑛𝑛−1

𝑘𝑘=1 . Therefore, 𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛 = 𝑛𝑛𝑇𝑇𝑠𝑠 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 −
∑ 𝐶𝐶𝑦𝑦𝑐𝑐𝐼𝐼𝑒𝑒𝑘𝑘𝑛𝑛−1
𝑘𝑘=1 . This figure shows that timing inaccuracies (in the calculation and execution of

𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛) do not accumulate over time due to the “elapsed time error compensation” in Step 7 of the
algorithm in Table 11.

Figure 9. Elapsed time error 𝑛𝑛𝑇𝑇𝑠𝑠 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 − ∑ 𝐶𝐶𝑦𝑦𝑐𝑐𝐼𝐼𝑒𝑒𝑘𝑘𝑛𝑛−1

𝑘𝑘=1 compensated by idle time 𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛.

Figure 10 demonstrates the graph of the compensated simulation time cycle 𝐶𝐶𝑦𝑦𝑐𝑐𝐼𝐼𝑒𝑒𝑛𝑛 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 +
𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛 + 𝐷𝐷𝑒𝑒𝐼𝐼𝑛𝑛, which includes the idle (compensation) time 𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛. This figure shows that on
average each cycle takes 0.02 (𝑠𝑠), which is equal to the sampling time 𝑇𝑇𝑠𝑠 = 0.02 (𝑠𝑠), with
maximum deviations of ±0.00075 (𝑠𝑠). This disparity is negligible since the spike in one
iteration of the simulation is canceled out during the following iteration by another spike of the
same magnitude in the opposite direction, so 𝐶𝐶𝑦𝑦𝑐𝑐𝐼𝐼𝑒𝑒𝑛𝑛 will always maintain an average value of
0.02 (𝑠𝑠). This is due to the “elapsed time error compensation” in Step 7 of the algorithm in
Table 11.

Figure 10. Compensated simulation time cycles 𝐶𝐶𝑦𝑦𝑐𝑐𝐼𝐼𝑒𝑒𝑛𝑛 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 + 𝐼𝐼𝑑𝑑𝐼𝐼𝑒𝑒𝑛𝑛 + 𝐷𝐷𝑒𝑒𝐼𝐼𝑛𝑛.

14

Simulation Results of the Three-Area Power System

In this section, the simulation results of the three-area power system in Figures 3 and 4 and
equations (1)-(4) are presented. These results include the MATLAB and HIL simulations, whose
graphs are overlaid for the purpose of comparison. Figure 11 illustrates the frequency deviations
of the three-area power system when a disturbance of 𝑑𝑑𝑖𝑖 = 0.1 (𝑝𝑝𝑢𝑢) occurs at 𝑡𝑡 = 2 (𝑠𝑠). This
figure shows that all the frequency deviations converge to zero. Figures 12 and 13 demonstrate
the three control signals from the PI controllers and the tie-line power deviations of the three-
area power system, which converge to zero. Moreover, these figures verify that the graphs
resulting from the HIL simulation setup (Raspberry Pi and Arduinos) completely match the ones
from MATLAB simulation.

Figure 11. Frequency deviations of the three-area power system in Figures 3 and 4.

Figure 12. Control signals of the three-area power system in Figures 3 and 4.

15

Figure 13. Tie-line power deviation of the three-area power system in Figures 3 and 4.

Educational Impact

This project was conducted at New Jersey Institute of Technology (NJIT). One undergraduate
student from the Electrical and Computer Engineering Technology (ECET) program was
awarded the Provost Undergraduate Research and Innovation (URI) Summer Research
Fellowship to work on this project for ten weeks in Summer 2023. The undergraduate student
collaborated with a PhD student and gained significant research experience. The project was
showcased to graduate and undergraduate students at NJIT and gained significant attention from
the students from different engineering disciplines. Moreover, the developed simulation platform
in this project has been used as a case study in two courses, Embedded Systems I and II, and
provided the students with a real engineering application of embedded systems and the HIL real-
time simulation skill, which is in-demand in industry.

Conclusions

In this project, a hardware-in-the-loop simulation platform was designed and developed based on
Raspberry Pi and Arduino UNO and used to demonstrate the real-time simulation of the closed-
loop control system for a three-area power generation system. Three Arduinos simulated the
three local controllers and communicated with the Raspberry Pi with negligible communication
latency. In addition, the simulation platform produced outputs identical to those generated by
MATLAB as a benchmark.

16

References

[1] N. Brayanov and A. Stoynova, “Review of Hardware-in-the-Loop – A Hundred Year Progress in the

Pseudo-Real Testing”, Electrotechnica & Electronica (Е+Е), vol. 54, pp. 3-4, 2019.
[2] F. Mihalič, M. Truntič, and A. Hren, “Hardware-in-the-Loop Simulations: A Historical Overview of

Engineering Challenges”, Electronics, vol. 11, no. 15, pp. 2462, 2022.
[3] J. Sobota, R. PiŜl, P. Balda, and M. Schlegel, “Raspberry Pi and Arduino Boards in Control

Education”, IFAC Proceedings, vol. 46, no. 17, pp. 7-12, 2013.
[4] S. A. Zulkifli and A. Hamzah, “Understanding Real-Time Simulation on Single-Phase Inverter Using

Low-Cost Microcontroller for Undergraduate Level”, IEEE 13th International Colloquium on Signal
Processing & its Applications (CSPA), pp. 144-148, 2017.

[5] M. Davoodi and H. Bevrani, “A New Application of the Hardware in The Loop Test of the Min‐Max
Controller for Turbofan Engine Fuel Control”, Advanced Control for Applications: Engineering and
Industrial Systems, vol. 5, pp. 138, 2023.

[6] R. Krauss, “Combining Raspberry Pi and Arduino to Form a Low-Cost, Real-Time Autonomous
Vehicle Platform”, American Control Conference (ACC), pp. 6628-6633, 2016.

[7] H. Khati, H. Talem, R. Mellah, M. A. Touat, and M. A. Nehmar, “Processor-In-the-Loop Simulation
of a Neuro-Fuzzy Controller on Raspberry Pi 3 board”, 19th International Multi-Conference on
Systems, Signals & Devices (SSD), Sétif, Algeria, pp. 146-151, 2022.

[8] I. Akli, H. Boukari Alidou, A. Chekir, and S. Ouazine, “Basic Mobile Robot Prototyping Using
RFID”, 3rd International Conference on Embedded & Distributed Systems (EDiS), Oran, Algeria, pp.
102-107, 2022.

[9] J. Walter, M. Fakih, and K. Grüttner, “Hardware-based Real-Time Simulation on the Raspberry Pi”,
Proceedings of the 2nd Workshop on High Performance and Real-time Embedded Systems, Vienna,
Austria, vol. 20, 2014.

[10] M. Shojaee and S. M. Azizi, “Decentralized Robust Controller Design for Strongly Interconnected
Generators”, IEEE Access, vol. 11, pp. 16085-16095, 2023.

