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Enhancing High-Level Language Concept Comprehension through a Notional
Machine Approach of Assembly Language Education

Abstract

In computer science curricula, the inclusion of assembly language programming is commonplace
regardless of students' focus on computer science (CS) or computer engineering (CE) majors. The key
objective within our university's(University of California, Santa Cruz) foundational "Computer Systems
and Organization" (CSE12) course is dual-fold: to cultivate a deep understanding of machine
architecture's programmer model and to seamlessly prepare both CS and CE undergraduates for the
advanced concepts in the subsequent "Computer Architecture" (CSE120) course.

Current literature also highlights the merits of teaching assembly language, positing that it enables
proficiency in higher-level programming languages. However, transitioning from an introductory
high-level language-based programming to assembly language can be jarring due to the stark contrast in
instruction paradigms. In response, we have reimagined assembly language assignments within CSE12.
Leveraging the open-source RARS assembly language runtime emulator, we have reshaped lab exercises
to better emulate scenarios akin to those encountered in high-level language programming. This
transforms RARS into a Notional Machine that bridges the gap between high-level language
abstractions and low-level assembly implementation. Gathering quantitative and qualitative feedback
from course surveys, our study reaffirms the effectiveness of this pedagogical strategy. Preliminary data
suggest that students not only gain a deeper comprehension of machine architecture but also exhibit
improved readiness for subsequent courses, underscoring the notional machine's role in facilitating a
smoother transition between programming paradigms. This abstract encapsulates our ongoing efforts to
refine computer science curricula, highlighting the promising impact of RARS in enriching students'
educational experiences.

1 Introduction

In computer science and computer engineering curricula, assembly language programming holds a
significant position. Its inclusion not only offers practical applications but also plays a pivotal role in
laying the foundation for understanding machine operations in-depth. At our university, the CSE12
course, 'Computer Systems and Organization', serves as a gateway for both CS and CE majors into the
world of assembly language programming, emphasizing the RISC-V architecture and specifically the
RV64I variant. This course is designed to equip students with the necessary skills and knowledge to
transition seamlessly to the advanced 'Computer Architecture' course, CSE120, in their junior year.
However, the leap from high-level language programming to assembly language presents cognitive
challenges. Numerous students in the CSE12 course grapple with reconciling the paradigms of
high-level language programming with that of assembly. These challenges and the resulting student
frustrations prompted a reconsideration of the assembly language assignments within the course. This
paper discusses our specific approach to addressing this pedagogical challenge.

This paper is organized as follows: Section 2 outlines the background and relevant works. Section 3
details our Notional Machine approach in CSE12 in W23 and S23 quarters. In Section 4, we present our
data collection and feedback from W23, S23. Section 5 details our Notional Machine approach in F23



quarter and Section 6 provides the data collection and feedback from that quarter. Section 7 delves into
discussion and analysis, while Section 8 concludes our findings and future directions.

2 Background and Related Work

In computer science, assembly language programming extends beyond its immediate practicalities, such
as direct hardware manipulation and optimized performance. When students juxtapose high-level
programming with assembly, they deepen their understanding of how abstract data types, like linked lists
or queues, materialize at the machine level. For instance, the direct interaction with memory addresses in
assembly language provides a tangible grasp of pointers, often considered abstract in high-level
languages [1]. Assembly language also exposes students to crucial engineering trade-offs, such as
balancing code efficiency with maintainability [1]. Additionally, its understanding is indispensable for
advanced topics, including compiler construction, operating systems, and computer design [2].

However, the transition from high-level languages to assembly isn't always smooth. A challenge that
repeatedly emerges in courses like CSE12 at our university is the cognitive dissonance reported by
students. The gulf between high-level programming concepts and assembly paradigms often results in
frustrations and doubts about the necessity of studying assembly programming in the first place. This
sentiment isn't just confined to our institution; many educational settings globally have noted similar
observations [3], [4], [5]. Many students entering CSE12 have only had prior programming experience
in an introductory Python course (CSE20) that was taught at a very high level of abstraction.
Furthermore, students anchored in high-level language (HLL) paradigms frequently misjudge the
complexity underlying the conveniences offered by the higher abstraction [6]. Confronted by the
intricate details of the ISA, students might adopt a fragmented learning strategy, focusing more on
individual instructions rather than comprehending an integrated machine model. This shallow approach
directly contrasts with the primary objectives of assembly language courses [6].

Several attempts have been reported in the literature to enable a smoother transition from HLL into
assembly. For example, [3] proposes a unique classification system for assembly instructions in a small
microcontroller, presented in reference tables based on functionality, allowing students to easily match
actions with appropriate mnemonics. Instead of first attempting complex projects, students replicate core
high-level programming constructs in assembly, such as flow control and modular techniques to
familiarize themselves with a one-to-one mapping between HLL and assembly. [4] suggests a blend of
assembly with C, C++, or Java, leveraging standard tools and compilers rather than specialized,
course-supplied interfaces as a bridge between high-level and low-level abstraction. [6] proposes using
the assembly course exercises as the foundation to acquaint students with the models of computer
systems, as relevant to operating systems or the runtime environment. [7] advocates the inclusion of
debugging exercises, debugging logs, development logs/memos, and collaborative assignments to foster
familiarity with assembly language.

While the literature offers a myriad of strategies to familiarize students with the transition from
high-level languages to assembly, our approach must cater to the unique pedagogical challenges posed
by the structure of our university-specific curriculum. CSE12, a 7-credit course running over a
condensed 2.5-month quarter, stands as the primary touchpoint for assembly language within our
Computer Science (CS) and Computer Engineering (CE) tracks. It serves as a crucial bridge, introducing
students to the foundational intricacies of computer systems, from digital logic and computer



architecture to the mechanics of compiling and the symbiosis of hardware and software. The course first
delves separately into digital logic and foundational hardware design before jumping into computer
organization through assembly language coding. Given the emphasis on C in the subsequent follow up
course CSE13, including embedded systems, and the reality that most students won't grapple with
assembly language post-CSE12, there's a pressing need to reconceptualize how we introduce these
concepts. Moreover, diving deep into advanced topics pertinent to operating systems or runtime
environments might dilute the core objective of this course. Contemporary operating systems, operating
at a much higher level of abstraction, often decouple students from the raw machinations of computer
processes.

This paper introduces a paradigm shift, suggesting a novel perspective on assembly language
programming as a vehicle to impart foundational computer science concepts. Recognizing the primary
exposure of many students to programming through abstract languages like Python, we posit that diving
directly into assembly might be too overwhelming for students. Instead, leveraging the timeless
principles of the von Neumann architecture, we propose a 'notional machine' [8] approach. This didactic
tool will act as an intermediary, conceptual bridge: a model of computation that distills the essence of
computing to its most basic form, i.e., the orchestrated transaction of data between CPU registers and
memory. Through this lens, students are enabled to perceive the universality of computational processes,
understanding that the various algorithms and applications they encounter are various manifestations of
this fundamental sequence of data transaction. By presenting assembly language through this notional
machine approach, we acknowledge that it is but another perspective to programming concepts that
students learn from HLL. While HLLs like Python are powerful tools to teach core computing concepts
to beginners, assembly language through a notional machine approach can provide another crucial
dimensionality to a novice’s holistic learning of computing. This approach can help bridge the gap
between the abstract and concrete, allowing such students to appreciate the intricate interplay between
high-level abstractions and low-level implementations. It's important to note that diverse teaching
methods, alongside the notional machine approach, can collectively contribute to a richer and more
comprehensive understanding of computing, ultimately preparing students for the multifaceted
challenges of the computer science landscape.

In the literature on computing education, the central hurdle of guiding novice programmers to determine
'where to look' within the fabric of code has driven educators to investigate inventive pedagogical
approaches, including the utilization of 'notional machines' (NMs)[9]. Originating in the work by Gibson
[8], notional machines offer a solution to the complexity inherent in learning programming. A notional
machine functions as a representation or analogy that directs attention to key aspects of code, making
visible otherwise concealed behaviors. In essence, notional machines are designed to illuminate what
may remain obscured, guiding learners toward the essential variables, constructs, and interactions that
underpin the logic of a program [9]. Building upon the foundation laid by Gibson's work [8] and the
insights provided in [9], we propose an innovative approach that leverages the concept of a notional
machine to bridge the cognitive gap between high-level programming and assembly language
paradigms. By distilling the complexities of the von Neumann architecture into a comprehensible
framework that mirrors the orchestrated data transactions between CPU registers and memory, we aim to
provide students with a profound understanding of the fundamental principles underlying computational
processes.



3 Methodology for the Winter 2023 and Spring 2023 quarters

For the lab assignments, the course Computer Systems and Organization (CSE12) uses Digital[10] for
digital design and RARS [11] for assembly language coding. Starting from the winter 23 quarter, the
approach to teaching computer organization underwent a significant change. It structured assembly
coding comprehension on a notional machine framework to impart the fundamental concept of
programming. In transitioning from digital design to assembly language coding mid-quarter, students are
first introduced to the basic Von Neumann architecture [Figure 1], encompassing main memory, CPU
with registers, and 1/O. This forms the core visualization of the Notional Machine (NM). We juxtapose
this with an image in the lecture: the CPU module engaged in a cash transaction (symbolizing data) with
the Memory module [Figure 2]. This serves as a visual metaphor conveying that programming
condenses to guided data transactions between CPU registers and memory, guided by program code
within the same memory (a key Von Neumann feature). We explicitly inform students that this new
programming perspective employs the “notional machine” concept. We are now poised to introduce the
assembly labs, closely paralleling our lecture content. Guided by the foundational principles of our
developed notional machine in CSE12, we have thoughtfully structured the educational outcomes
stemming from the lab experience. These outcomes are grounded in the four definitional characteristics
of a notional machine as outlined in [9],

Pedagogical Purpose: NMs aid student learning in computational concepts by simplifying actual
concepts or skills.

Function: NMs reveal insights about programming, computers, or computation, highlighting aspects not
evident in student-used artifacts.

Focus: NMs concentrate on specific aspects of program behavior and the role of computers in
development, execution, and storage.

Representation: NMs use selective representation to emphasize certain focus aspects while possibly
omitting others.

Prior to beginning the assembly labs, we thoroughly acquainted the students in our lab sections with the
workings of RARS including supported instructions, system calls, assembler directives, compile time
and runtime placement of data in memory, and runtime breakpoints.

MMIO
" Memory MMIO
Address Data
| I
Processing Unit
Input ALU Registers Output
(keyboard) I (monitor)
o Control Unit
PC

Figure 1: The basic Von Neumann architecture which forms the crux of the Notional Machine as the
conceptual model for programming.
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Figure 2: A4 visual metaphor provided to students to emphasize programming as the guided data
transaction between CPU registers and memory.

In the following subsections, we detail our notional machine approach in designing lab assignments for
CSE12. The initial lab focuses on creating text file character patterns, similar to early exercises in
High-Level Language (HLL) courses. Subsequent labs progress to more complex functions, akin to
typical introductory HLL coding tasks. Lab assignment 3.1, a staple in all CSE12 iterations, introduces
assembly language (Lab 3). Labs outlined in sections 3.2, 3.3, and 3.4 correspond to Lab 4 in the W23,
S23, and F23 quarters, respectively.

3.1 Introduction to Assembly Language through the Lens of the Notional Machine

In the initial assembly coding lab, students create character patterns from user input using nested loops,
written to a text file, in line with notional machine characteristics from [9]. Pedagogically, the lab
introduces the fundamental Von Neumann architecture (CPU, registers, memory), the basis of our
notional machine, illustrating computing as data transfers between registers and memory. A visual
metaphor of cash transactions between CPU and memory helps students conceptualize programming as
controlled data exchanges, reducing cognitive load in the RARS environment. The lab focuses on
conditional loops and system calls for I/O, highlighting data placement in memory—a critical
programming aspect. This aligns with the concept of data transactions in our notional machine. To
reinforce these principles, the lab provides detailed examples and instructions.Instructor provided
macros like 'write to buffer' and 'fileWrite' [Figure 3] demonstrate data transactions, aiding in
visualizing register-memory interactions. Their use in representing data placement is shown in examples
[Figure 4].
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146 #D0 NOT use the registers a@, al, a7, t6, sp a here in your code.
147

148 Hevvasnorvaarennan your code Starts Neresssessssessssassrrassrrsassnsassnsassannns
149

150 write_to_buffer(@x2a)

151 write_to_buffer(@x20)

152 write_to_buffer(@x2a)

153 write_to_buffer(@x2a)

154 write_to_buffer{0x2a)

155 write_to_buffer(@x2a)

156 write_to_buffer(@x@a)

157

158

159

160 S VOUF €008 @NUS NEr€. s as st assaaeiaaasssaasaeeansnnsanannns
161

162 #END YOUR CODE ABOVE THIS COMMENT

163 #0on't change anything b his comment!

164 Exit:

165 #write null character to end of file

166 write_to_buffer(@x@e)

167

168 #write file buffer to file

169 filewrite(t6, @x10048008,0x10040000)

178 addi t5, a@, @

Figure 3: Starter code illustrating the use of scaffolded macros for data manipulation at a designated
memory location.
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Figure 4: Visual depiction of data placement in the memory in the Data Segment of RARS after program
execution.

3.2  Developing a Paint Application

In the lab, students develop a simple "Paint" application on an emulated RISC-V system, akin to initial
graphical projects in HLL courses. This application uses keyboard inputs to create Bitmap display
patterns, with color addresses representing pixels. The task involves setting a starting pixel and using
keyboard commands for drawing, reflecting basic HLL logic operations and control flows. This lab's
structure is in line with notional machine principles as described in [9], sharing pedagogical purposes
with lab 3.1. With regards to the Focus aspect, the lab's main goal is teaching assembly functions aligned
with the RISC-V calling convention, emphasizing caller/callee saved registers. This parallels nested
function calls in HLLs, fostering an understanding of data placement in memory—a key concept in both
assembly and HLLs. Regarding representation, the lab provides clear function call examples, mirroring
introductory HLL methods. It includes scaffolded code, such as a polling function in the RARS RISC-V
emulator for user input, with comprehensive comments. This structure mirrors HLL environments,
easing students' transition to these languages. Students engage more in understanding code relationships
and less in writing extensive code, focusing on converting pixel coordinates to memory addresses and
cursor movement based on keystrokes [Figure 5]. This method, central to our notional machine
approach,gives students a perspective for future HLL courses.
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Figure 5: Generating a pattern on the Bitmap Display through the virtual MMIO keyboard.

3.3  CSV File Analysis

This lab involves processing a CSV file ('data.csv') that details annual returns from an investment
portfolio, with columns for stock names and returns. In the RARS environment, students perform tasks
like determining file size, calculating total income from stocks, and identifying stocks with highest and
lowest returns. Similar to the Paint lab, the main educational goal is mastering the RISC-V function
calling convention and handling CSV data in memory. This approach links assembly with higher-level
language tasks, echoing foundational logic and control flows in HLLs and aligning with notional
machine principles as in [9], with pedagogical aims akin to labs 3.1 and 3.2. The focus of this lab as NM
is to teach assembly functions following RISC-V conventions and pointer referencing/dereferencing,
crucial for transitioning to languages like C. Students analyze CSV file columns, using reference
pointers for data alignment, linking assembly concepts with high-level programming paradigms and
laying groundwork for advanced software engineering tasks.

In terms of NM representation, the lab is an interactive learning experience. Using resources like
function call examples and provided macros to allocate file records, students learn data placement in
memory. Visualizing data from the CSV file in RISC-V memory, with pointers referencing each entry
[Figure 6], underscores the notional machine's focus on data transactions between registers and memory,
enhancing understanding for high-level language concepts. This approach underpins the philosophy of
using assembly education to bolster high-level language skills, mainly pointers.

Figure 6: (Top)Visual depiction of csv file data placement in the memory in the RARS Data Segment and
(Bottom)pointer reference table to column data after program execution.



4 Survey and Results from W23 and S23 quarters

To assess the impact of our notional machine approach in "Computer Systems and Organization"
(CSE12), course exit surveys were initially undertaken at the end of W23 and S23 quarters.

W23 Quarter Feedback:

Statement 1: "A background in C/C++ would have enhanced my assembly language comprehension."
Agree: 82%
Disagree: 17%

Statement 2: "Assembly Labs provided a comprehensive view of programming, emphasizing the
low-level essence of assembly."

Strongly/Agree: 70%
Somewhat Agree: 21%
Somewhat/Strongly Disagree: 5%

S23 Quarter Feedback:

Statement 1: (Similar to W23)
Agree: 75%
Disagree: 24%

Statement 2: "Labs in CSE12 effectively embodied the notional machine, illustrating computation as
guided data interplay between CPU and memory."

Strongly/Agree: 69%

Somewhat Agree: 25%

Somewhat/Strongly Disagree: 5%

Anecdotal Feedback:

Feedback from Student Experience of Teaching surveys was highly favorable. From W23, comments
highlighted the pivotal nature of labs, their clear documentation, and the enrichment of learning. In S23,
remarks accentuated the labs' facilitation of hands-on understanding and their relevance to real-world
applications. Notably, students moving from CSE12 in W23 to Computer Architecture (CSE120) in S23
expressed better readiness and underscored the advantages of the RISC-V notional machine in helping
them be better prepared for subsequent ISA and microarchitecture topics in CSE120.

5 Enhanced NM based Learning in F23 Quarter: Merging Sorted Linked Lists

Following the implementation of "Computer Systems and Organization" (CSE12) in the W23 and S23
quarters, the course was further refined and offered again in the F23 quarter. Building upon the previous
experiences and feedback, this iteration included an enhanced evaluative framework to more rigorously



assess the impact of our notional machine approach on student learning outcomes. This new Lab4
focused on the practical application of merging sorted linked lists in a RISC V assembly environment.
The core objective was for students to gain proficiency in implementing functions in RISC V assembly,
adhering to RISC-V register conventions, and understanding the architecture and operations of linked
lists.

Students were tasked with writing code for three assembly files newNode.asm, print list.asm,
insertSorted.asm, and mergeLinkedLists.asm. These files, initially incomplete, were to be filled in and
submitted. The lab involved creating two distinct linked lists, A and B, with specific sequences of keys,
and then merging these lists using the mergeLinkedLists function (Figure 7). Scaffolded code was
provided to students to help start their specific code contributions. The course TAs and tutors were
provided solutions beforehand and instructed to assist students in arriving at the pseudocode solutions .
If the student themself was unable to arrive at the pseudocode, it would be revealed and taught to them.
The lab's educational outcome aimed at not just teaching how to write assembly code for functions but
also at providing a deep understanding of linked lists within the Von Neumann architecture memory.
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Messages | Run O |

printing listc A:

-7, -6 , -1, 10, 2& ,
printing list B:

-206 , -206 , 10 , 31 , 36 , €06 , end of list
now merging A and B sorted into list A....

26 , end of list

Clear

printing merged list A:

-206 , -20¢ , -7 , -6, -1, 10 , 10 , 26 , 26 , 26 , 31 , 3¢ , 606 , end of list
printing list B:
-206 , -20& , 10 , 31 , 36 , €06 , end of list

Figure 7: Output of testbench assembly file when it was compiled and executed with correct student
code to merge sorted linked lists.

To effectively bridge the gap from arrays to linked lists, the lab introduced the concept of the Linked
List by using an engaging and narrative-driven method utilizing cartoon characters (Figure 8) to
facilitate students' transition from the static nature of arrays to the dynamic structure of linked lists. This
narrative approach not only highlighted the adaptability, ease of modifications, and efficiency of linked
lists but also aligned with the Notional Machine principles by simplifying complex concepts into
relatable metaphors. Each cartoon character, hailing from a unique universe with a given key value and
represented by a node in the linked list, served as a vivid illustration of the linked list's operational
mechanics.
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Figure 8: Cartoon depiction of the Linked List with key pattern 24— 10—23—100. The location of these
keys in the visual metaphor are no longer actual memory locations but shown as actual cities inhabited
by a cartoon with a specific key. A cartoon living in a city points to the city location of the next cartoon
in the list.
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Figure 9: Cartoon depiction of deletion of node from Linked List and a new node insertion. List
24—10—23—100 now reads as 24— 10—23—99. Note that cartoon with key 100 is not shown as
physically deleted but simply now existing as a “floating” node

After familiarizing students with this cartoon precedent, the actual tangible implications of a Linked List
residing in the heap memory section of a bare RISCV machine is demonstrated as a contrast. For Lab4,
each node was composed of 8 bytes, 4 bytes to hold the key and the next 4 bytes to hold the next node
memory address. HEAD node was the only node having 4 bytes, as shown in Figure 10.
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(a) (b)

Figure 10: (a) List 24—10—23—100 represented in RISC V heap memory. (b)List changed to
24—10—23—99 by adding a new node and adjusting the pointer reference of node N3(key=23).

This lab's pedagogical purpose was multi-faceted: firstly, to reinforce understanding of the Von
Neumann architecture and its implications for data structures within memory, and secondly, to
contextualize the abstract concept of memory management in assembly language. By engaging with the
cartoon narrative, students could grasp the practicalities of memory allocation and data linkage in a more
tangible manner, resonating with the 'Representation’ characteristic of the Notional Machine.
Furthermore, the lab focused on the application of RISC-V function calling conventions and pointer
operations, essential for understanding both low-level assembly language and high-level programming
concepts. This focus catered to the 'Drawing Attention' aspect of the Notional Machine, guiding students
to appreciate the intricacies of pointer referencing and dereferencing—a foundational skill in computer
programming.

By integrating a hands-on programming task with an imaginative storyline, the lab sought to demystify
the complexities of assembly language and data structures. This approach not only facilitated a deeper
understanding of the material but also aimed to enhance students' readiness for more advanced topics in
computer science, aligning with the overarching goals of the Notional Machine framework.

The lab's structure and narrative, therefore, served to make abstract concepts accessible, preparing
students for future challenges in the realm of software development and high-level language
comprehension. This method of instruction underscores the effective application of Notional Machine
principles in teaching complex computational concepts through relatable and engaging contexts.



6 Methodological Framework for Pretest-Posttest Likert Scale Surveys in F23

To deepen our understanding of the course's effectiveness for F23, a pretest-posttest survey based on the
Likert scale was conducted among 209 students. The pretest was administered before Lab 3, marking the
commencement of assembly programming assignments, while the posttest followed the completion of
Lab 4 on Linked Lists, the final lab assignment. This structure remained consistent with the blueprint
established in the W23 and S23 quarters. The following section delves into the detailed survey process,
detailing the specific pretest and posttest survey questions, and discussing the statistical methodologies
used for analysis. A significant aspect of this analysis is the implementation of a paired t-test, which
provides a more nuanced and statistically robust evaluation of the course's NM approach effectiveness as
opposed to the initial surveys taken in W23 and S23. The findings from the F23 quarter offer insights
into the evolving pedagogical impact of the course, enhancing understanding of how students interact
with and benefit from the notional machine approach in assembly language learning. Both the pretest
and posttest surveys consisted of a blend of Likert scale questions, designed to quantitatively measure
students' perceptions and understanding, and open-ended questions aimed at capturing qualitative
feedback. The 5 point Likert scale(1=Strongly Disagree to 5=Strongly Agree) portion included questions
to gauge familiarity with the Von Neumann architecture, comfort with assembly language concepts, and
expectations regarding the practical application of these concepts. The specific pretest and posttest
Likert scale questions were as follows:

Pretest Survey Questions:

Pretest Q1:1 am familiar with the basic concepts of the Von Neumann architecture.

Pretest_(2:] understand the role of memory, CPU, and registers in the Von Neumann model.
Pretest_(Q3:1 am comfortable with the concept of stored program concepts in computer systems.
Pretest_(Q4:1 have prior experience or knowledge of assembly language programming.

Pretest 05:1 can see the relationship between high-level programming languages and assembly
language.

Pretest_Q6:1 believe understanding assembly language is crucial for a deeper understanding of
computer systems.

Pretest Q7:Learning assembly language will enhance my skills in higher-level programming languages.
Pretest_Q8:1 think using a notional machine, like RARS, will aid in understanding the practical
applications of the Von Neumann architecture.

Pretest_ 09:1 am confident in my ability to apply theoretical concepts of computer architecture in
practical assembly language tasks.

Posttest Survey Questions:
Posttest Q1:My understanding of the Von Neumann architecture has improved after Pretest Q1:I am

familiar with the basic concepts of the Von Neumann architecture.the labs.
Posttest_Q2: 1 am now more comfortable with assembly language programming.



Posttest Q3: The labs helped me in making connections between high-level programming languages
and assembly language.

Posttest Q4: 1 have a better understanding of how theoretical concepts of computer architecture apply in
practical tasks.

Posttest_ Q5: The use of RARS as a notional machine aided my understanding of the practical
applications of the Von Neumann architecture.

To evaluate the effectiveness of the instructional approach and the labs themselves, a paired t-test was
planned. The pairs were carefully chosen to match pre-lab expectations with post-lab outcomes,
ensuring that each pretest question corresponded with a related posttest question, as detailed in the
following pairing scheme:

Paired T-test Reference Scheme:

Pretest Q1 < Posttest Q1 : test 1
Pretest Q2 <« Posttest Q4 : test 2
Pretest Q3 «» Posttest Q3 : test 3
Pretest Q4 « Posttest Q2 : test 4

Pretest Q5 « Posttest Q3 : test 5
Pretest Q6 « Posttest QS5 : test 6
Pretest Q7 «> Posttest QS5 : test 7
Pretest Q8 « Posttest QS5 : test 8
Pretest Q9 « Posttest Q4 : test 9

The selection of paired questions for the pretest-posttest survey was intentional, aiming to directly
compare specific concepts and perceptions before and after the lab assignments. This pairing strategy
allows for a focused evaluation of students' growth in understanding and confidence related to the Von
Neumann architecture and assembly language programming.

The use of the paired t-test in analyzing Likert scale data, despite some contention in statistical
discourse, has been prevalent in research. Critics often point out that Likert scales produce ordinal data,
which may not fulfill the interval data assumptions of the t-test. However, when Likert scales are used in
a way that assumes equal intervals between response options, the t-test has been applied extensively. For
instance, [12] discusses the use of the t-test in analyzing Likert scale data, highlighting its widespread
acceptance and application despite the ongoing debate. It's acknowledged that the Wilcoxon signed-rank
test is often recognized as more appropriate for Likert scale data due to its non-parametric nature,
making fewer assumptions about the distribution of the data [13]. However, in this study, we opted for
the paired t-test because we dealt with a dependent sample where the same respondents took both the
pretest and the posttest. This dependency in the sample is a prerequisite for the paired t-test, which is
designed to compare two related groups or conditions. Additionally, it should be noted that Likert scales
can be interpreted as interval scales, especially when they are symmetric and balanced. This



interpretation allows for mean values to be calculated and differences to be assessed through parametric
tests like the paired t-test. Furthermore, the central limit theorem suggests that for large sample sizes,
such as 209 student respondents in our case, the distribution of the sample means will approximate a
normal distribution, thereby meeting one of the key assumptions of the paired t-test. In light of the above
considerations, the decision to use the paired t-test was made with a thorough understanding of the
sample characteristics and the research design, and with precedents in existing literature that validate
such an approach.

In addition to the Likert scale questions, the survey included open-ended questions to provide insights
into students' subjective experiences and nuanced understanding of the material. The open-ended
questions from the pretest and posttest surveys sought to explore students' expectations, concerns, and
perceived benefits or challenges associated with the labs. While the quantitative data derived from the
Likert scale questions were the primary focus for the paired t-test analysis, the qualitative responses
from the open-ended questions were also collected. The intention for the qualitative data is to inform
future iterations of the course through a thematic analysis, aiming to identify common threads and
unique perspectives that can enhance the lab experience. However, due to the extensive nature of the
qualitative data, the analysis of these responses is acknowledged as part of the scope for future work.

7 Analysis of Paired T-Test Outcomes from F23

It is promising to witness the predominantly positive direction in student learning and understanding.
This section presents a detailed examination of the results, offering a statistical perspective on the
efficacy of our teaching methods.

Test 1: Von Neumann Architecture Understanding

T-value: -10.75

P-value: ~1.22e-21

Interpretation: A statistically significant improvement, suggesting enhanced student understanding
post-intervention.

Test 2: Memory, CPU, Registers in Von Neumann Model

T-value: -6.49

P-value: ~6.31e-10

Interpretation: Significant positive impact, indicating improved student comprehension after the
intervention.

Test 3. Stored Program Concept

T-value: -6.51

P-value: ~5.66e-10

Interpretation: Statistically significant results, pointing to better student understanding post-intervention.

Test 4. Assembly Language Programming



T-value: -17.80
P-value: ~1.80e-43
Interpretation: A highly significant improvement, reflecting substantial enhancement in students' skills.

Test 5: High-Level vs. Assembly Language

T-value: -1.34

P-value: ~0.183

Interpretation: No significant change, indicating an area for potential growth and exploration.

Test 6. Assembly Language Importance

T-value: 3.77

P-value: ~0.000214

Interpretation: Significant, but unexpected change in belief about assembly language understanding
post-intervention.

Test 7: Enhancing Higher-Level Programming

T-value: 2.44

P-value: ~0.01546

Interpretation: Significant results, but in an unexpected direction, suggesting a mismatch between
expectations and outcomes.

Test 8: Practical Application of Von Neumann Architecture

T-value: 0.80

P-value: ~0.424

Interpretation: Inconclusive results, highlighting a need for instructional strategy refinement.

Test 9: Applying Theoretical Concepts

T-value: -8.71

P-value: ~1.05e-15

Interpretation: A very significant improvement, indicating enhanced confidence in applying theoretical
concepts in practical tasks.

These outcomes not only validate the effectiveness of certain aspects of our intervention but also
illuminate areas requiring further attention and adjustment. The overall trajectory is promising,
suggesting a positive impact on student learning, while also guiding us towards targeted improvements
in our teaching methodologies.

8 Conclusion

Our exploration of the Notional Machine pedagogical approach in the CSE12 curriculum has progressed
significantly since its inception in W23. Initially, as a pilot project, the feedback from the W23 and S23
quarters provided foundational insights into the preliminary impact of this initiative. These initial
surveys indicated a promising direction, particularly in how students transitioned from CSE12 to



subsequent courses like Computer Architecture (CSE120), suggesting a potential enhancement in their
readiness for more advanced topics.

Building upon these initial insights, the results from the F2023 paired t-tests offer a more nuanced
understanding of the approach's effectiveness. The significant improvements in key areas, as evidenced
by the negative t-values in Tests 1, 2, 3, 4, and 9, underscore the positive impact of the intervention on
students' comprehension of complex concepts like the Von Neumann architecture and assembly
language programming. This aligns with earlier anecdotal feedback highlighting the labs' role in
enriching learning and facilitating hands-on understanding.

However, the mixed results from Tests 5, 6, 7, and 8 highlight areas for further refinement. The lack of
significant improvement in some areas, and the unexpected direction of change in others, suggest the
need to re-evaluate our strategies, particularly in how we introduce and integrate the notional machine
concepts across the curriculum.

The integration of Notional Machine-guided labs in CSE12, including new assignments on Linked Lists
and Hash Maps, reflects our ongoing commitment to this pedagogical approach. As we plan to expand
these labs to include more complex data structures, it is crucial to balance the depth and breadth of these
concepts without overwhelming the students. While the direction in CSE12 has been promising and
aligns with our initial observations, continuous refinement of the lab assignments and statistical tests,
robust data collection, and feedback-driven iterations are essential. Our journey in enhancing the
efficacy of the Notional Machines approach is ongoing, and we remain dedicated to adapting our
methods to meet the diverse learning paths of our students and the evolving demands of computer
science education.
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