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A Qualitative Study of Engineers’ Perception of Variability as “Error”

Abstract

Variability is an unavoidable reality: People have different heights, built parts have different
dimensions, and manufactured components have different material properties. It is common in
statistics to refer to certain variations as “error;” however, the term “error” has very different
meanings across disciplines. This work was motivated by a concerning observation of some
statisticians: a refusal to accept other, non-statistical perceptions of the term “error.” As part of a
larger study of practicing engineers (n=24), we used qualitative methods to investigate their
interpretation of the term “error” and their ensuing approach to analyzing data. We find that the
term “error’ tends to erode trust in the data (11/24 participants) and can lead to a more dangerous
interpretation of variability (2/24 participants). These results have important implications for
communication on interdisciplinary teams and teaching statistics to engineering students.

Introduction

Variability is ubiquitous in engineering but its impact is often ignored, sometimes to dangerous
effect. For example, in the 1940s the U.S. Air Force had serious issues with uncontrollable
aircraft: At the height of this calamity 17 pilots crashed in a single day [1]. The standard at the
time was to design aircraft for “the average man,” with non-adjustable controls assuming fixed
human dimensions. Gilbert Daniels [2] studied the measurements of 4063 pilots, and found that
precisely zero were average. The Air Force fixed this problem by designing adjustable seats to
account for the observed pilot variation [1].

While variability in human dimensions is now considered obvious and easily handled, other
sources of variability are still neglected or mishandled. In aerospace engineering, enormous
resources are dedicated to quantifying the variability in material strength, but other properties
such as elasticity are designed using average values [3]. This treatment of variability leads to a
variance deficit that undermines structural safety.

Statistics is considered unique as a discipline that focuses on understanding variability [4]. For
instance, Makar and Rubin assert that mathematical convention inherently emphasizes certainty
[5]. In contrast, variability is core to statistical thinking [6]. Thus, Statistics has useful tools and
ideas to help others (including engineers) reason about variability. However, the language of
statistics is different from the languages of mathematics and engineering—terms such as “error”
are highly overloaded, hence interpreted differently across disciplines. Some statisticians even
refuse to adapt their terminology when communicating with other specialists, an orientation we
call a “non-communicative stance.” This study focuses on engineers’ interpretation of the term
“error” in the context of data variability.
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Thus, we set out to study how engineers interpret “error” in a data analysis context exhibiting
variability, with a focus on the impact on design decisions. The following sections review
requisite Background, Frameworks, and Methods and summarize the key Results. We conclude
with a Discussion including implications for collaborators on multidisciplinary teams, and for
training engineering students to interpret statistical ideas.

Background & Frameworks

In this section we review relevant definitions of the term “error” and detail our theoretical and
conceptual frameworks.

Definitions of error

In mathematics, error is often defined as the accuracy of an approximation against a well-defined
true value [7]. However, error and other sources of uncertainty are not a strong focus in
mathematics. For instance, a recent review of mathematics in engineering-related work found
only 2 out of 5466 articles that discussed “uncertainty” or “error” [8]. This view of error as
“unimportant” has deep roots; Salsburg [9] describes a common practice in the 1800’s,

One way was to keep the precise mathematical formulas and treat the deviations between
the observed values and the predicted values as small, unimportant error. [12, p. 15]

Thus, it is common in mathematics to view error as negligible and unimportant. In contrast,
statistics as a field of study takes variability as the core object of study [6]. Wild and Pfannkuch
articulate the orientation of statisticians towards understanding variability,

Statisticians look for sources of variability by looking for patterns and relationships
between variables ("regularities"). If none are found, the best one can do is estimate the
extent of variability and work around it. [6]

Frequently, unexplained variability is modeled using an error term. This endemic terminology is
far enough from common parlance that introductory texts carefully note the meaning, for
instance, this except from Online Statistics Education,

It is traditional to call unexplained variance error even though there is no implication that
an error was made. [10]

Other statistical texts similarly attempt to extract the “human error” from “statistical error.” For
instance, the following excerpt comes from a prominent text on Biometry,
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It is not an error in the sense of someone having made a mistake, but in the sense of
providing you with a measure of the variation you have to contend with when trying to
estimate significant differences among the groups. [11]

The term error in statistics has such a specialized meaning that there are documented cases of
miscommunication. In a footnote, Salsburg [12, p. 239] recounts a case where a senior executive
of the U.S. Food and Drug Administration refused to allow the term “error” to appear in an
official report. Instead, Salsburg consulted other colleagues for an alternative term and selected
“residual” instead.

Corroborating the motivation behind this study, Salsburg admits his distaste for adjusting
technical language when communicating to a non-statistical audience,

'How can we admit to having error in our data?' he asked, referring to the extensive
efforts that had been made to be sure the clinical data were correct. I pointed out that this
was the traditional name for that line. He insisted that I find some other way to describe
it. He would not send a report admitting error to the FDA. … It seems that no one, in the
United States at least, will admit to having error. [12, p. 239]

Note the divergence in meaning: The FDA executive is clearly highlighting the fact that “error”
will connote “human error” to the intended audience, while Salsburg insists that “error” has a
different statistical meaning. While the statistician in this case acquiesced to an authority, he
expresses frustration that others will not acknowledge variability in the precise statistical
language of error. This is a documented example of the “non-communicative stance” that
motivates this work.

In engineering, the term “error” has yet other meanings, depending on subdiscipline. For
instance, Thunnissen [12] reviews uncertainty classification systems across engineering
disciplines. Civil Engineering uses multiple frameworks to categorize uncertainties; the leading
framework associates the term “error” with “human error” [13].

In this work, our goal is not to settle a normative definition of error nor to assess the degree to
which participants’ beliefs align with a particular definition. Rather, we are interested in the
variation in participant interpretations and responses to observed “errors”—their practical
response to “error.”

Theoretical framework: Knowledge-in-Pieces

To guide this work we adopt the knowledge-in-pieces (KiP) theoretical framework [14], [15].
KiP asserts that knowledge is not monolithic; rather, it is composed of smaller—sometimes
contradictory—elements that an individual uses contextually to reason about scenarios.
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These knowledge elements act by being recognized in a scenario. Thus, a person may be aware
of a particular phenomenon, but a lack of recognition or closer alignment with a different
knowledge element may prevent activation. For instance, a person might be aware that
variability arising from manufacturing can lead to a lower-than-nominal strength, but viewing
variability as unimportant “error” may convince them to neglect that variability in
decision-making. Further, knowledge elements differ in their sensitivity to activation, called
cuing priority. KiP thus guides the design of our interview protocol (we present multiple tasks
with varied contexts) and our analysis of participant responses (we expect elements of the
context to cue different responses).

Conceptual framework: Consequences and Reification

Here we detail the ideas that constitute our conceptual framework [16]. In short, we are
interested in the consequences of variability [17] and the reification of summaries [18].

While mathematics frequently treats variability as unimportant [9] and statistics treats variability
as the central object of study [6], an often neglected aspect is the consequence of variability.
Wild and Pfannkuch [6] present a unique taxonomy of variability, decomposing variability into
real and induced sources. To avoid confusion with phenomena that an engineer would consider
real (e.g., induced drag or induced current), we use the terms real and erroneous variability [19].

A source of real variability is any phenomenon that can affect the quantity under study. A source
of erroneous variability leads to mischaracterization of that quantity, often through measurement
imperfections. Figure 1 illustrates an example in material property characterization:
Imperfections in the material are a source of real variability. However, slipping of the testing
apparatus leads to a mischaracterization of strength, causing erroneous variability. The
real/erroneous dichotomy enables an articulation of the consequences of variation.
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Figure 1. Examples of real and erroneous sources of variability. Imperfections in a material lead
to real variability, while slippage during mechanical testing leads to erroneous variability. Image

drawn by Alana Huitric.

Further complicating the interpretation of variation is the behavior of reification. Gould [18]
defines reification as “the mental conversion of a person or abstract concept into a thing.”
Originally introduced in Marxist theory by Georg Lukács [20], reification describes a kind of
“forgetting” where the reified interpretation precludes other interpretations. Reification is
therefore considered problematic: Gould treats it as the central problem of his book Full House,

This book treats the even more fundamental taxonomic issue of what we designate as a
thing or an object in the first place. I will argue that we are still suffering from a legacy as
old as Plato, a tendency to abstract a single ideal or average as the "essence" of a system,
and to devalue or ignore variation among the individuals that constitute the full
population.

Based on the definitions cited above, reification of the mean seems to be associated with treating
variability as erroneous. While we have seen that “error” in statistics does not only connote
erroneous variability, it is common to interpret “error” as deviations from a true value for the
purposes of statistical inference. For instance, consider this passage from an introductory
statistics textbook,

Theoretically, the true score is the mean that would be approached as the number of trials
increases indefinitely. An individual response time can be thought of as being composed
of two parts: the true score and the error of measurement. [10]
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In this example, the mean is reified as a “true value;” the goal of inference is then to reject
variations from the mean. This particular reification of the mean will enter into our data analysis,
detailed below.

Given this background, our research questions are:

1. How do engineers interpret variability if it is described as “error”? Do they associate
“error” with real/erroneous sources, or some other meaning?

2. What—if any—effect does interpreting variability as “error” have on engineers’ decision
making when using data for design?

Methods

Recruitment and Data Collection

This work was completed under an exempt protocol approved by the Brandeis IRB (protocol
number #22134 R-E). This investigation was part of a larger study of practicing engineers’
understanding of variability [17]. Potential participants were recruited via the last author’s
professional network. Participants were then selected to have an engineering background, at least
2 years of professional experience, and to balance representation across race, gender, and
subfield. Compared with degrees awarded in 2020 [21], our sample is relatively diverse in
gender (sample Female 29% vs 2020 degree share 24%), race (sample white 33% vs 2020 degree
share 56%), and nationality (including participants residing in Canada, Turkey, and the
Philippines). Aligned with the goals of the larger study, participants were drawn from Aerospace,
Civil, and Mechanical engineering disciplines. Demographics are summarized in Table 1.

Our sample size of n=24 is in line with recommendations for qualitative research [22], and is
comparable with other peer-reviewed qualitative research projects [23], [24], [25].

Table 1. Summary of participant demographics.

Experience 2 years: 3 3 years: 2 4 years: 8 5+ years: 11

Race Asian: 10 Black: 2 White: 8 Other: 4

Subfield Aerospace: 5 Civil: 9 Mechanical: 9 Other: 1

Gender Male: 17 Female: 7

Interviews were conducted on Zoom by the authors and four additional research assistants
following a common protocol (described next). Interviews lasted between 45 to 90 minutes and
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were recorded then professionally transcribed. These interviews followed a semi-structured
protocol.

Interview protocol

All interviews followed a semi-structured protocol: All interviewers started from a common set
of prompts, but followed-up on participant responses following ideas from intensive interviewing
[26]. We used these follow-up questions to understand the participant’s perspective, meaning,
and experience. The structured portions of the interview had participants study small datasets of
measured material properties and answer questions about how they would make decisions with
the data. The protocol began with a short review of relevant concepts, including stress-strain
curves and material property definitions. We also presented participants with an image clarifying
the nature of the observed data: that values come from independent specimens rather than
repeated measurements on the same specimen (see Appendix A1). This was to highlight the
possibility of real variability, without directly naming that concept. The protocol then moved on
to semi-structured questions about specific datasets.

The full interview considered a variety of material properties and scenarios [17]; the data
analyzed in this project concerns participant responses in reaction to using a dataset of material
strength values to design a simple structure. In this analyzed section, participants were first asked
how they would use the data to help design a simple structure: a rod hung vertically from a fixed
support. In this setting, a “normative” approach is to select a lower strength value to use in sizing
the rod; in particular, federal regulations for aerospace design would require such an approach in
order to ensure structural safety [3]. The use of a central summary (such as the mean or median)
for design would result in a less-safe structure.

Participants were then asked,

Researcher: In the written documentation for the data, the original collector of the data
describes the observed variability as ‘error’. What do you think this means?

This prompt was deliberately vague, aligned with the “non-communicative” stance described in
the Introduction. Further details on the interview protocol, including earlier prompts, images &
data presented to the participants, and suggested follow-up questions, are given in Appendix A1.

Open Coding

To analyze the interview data, we used two cycles of coding [27]. These included initial and
focused coding to develop our initial understanding, and analytic memo writing to further
develop our understanding and to produce a closed coding scheme. While we entered this study
with preconceived ideas of real/erroneous variability and reification of summaries, we balanced
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this prior orientation by grounding ourselves in the particulars of participant responses [26].
Through these methods, unexpected aspects of participant reasoning emerged from the data,
including an interpretation of “error” as “all variability.”

We chose to study two aspects of participants’ reaction to variability as “error”: their
Interpretation of the meaning of the term, and their Approach to design. The two authors
collaboratively assigned Approach codes through iterative rounds of focused coding, and
developed a closed coding scheme to categorize Interpretations.

To illustrate our interview and open coding process, we present a short excerpt. The following
starts from the beginning of the analyzed portion of the data. The researcher reads the formal
prompt and gently guides the participant towards the intended interpretation of the question,

Researcher: Let's think about the following. In the written documentation for this data,
the original collector of the data describes the observed variability as error. What do you
think that means?

Participant 4: In the written documentation for that? As the original collector of the
data, describes the observed variability as error. We have different tensile strengths in the
difference. He described it as errors, right?

R: Yes. Whoever collected this data, they describe this variability as being due to error.

The participant goes on to describe her interpretation of what “error” means in this context. To
illustrate our open coding approach, we interleave codes in [square brackets] in the transcript.

P4: I might think, for example, it's because he might be implying that if everything is
done perfectly, that means this thing might have been smaller or vanished [variability
could be eliminated]. It might be related to the procedures of testing [considering the
accuracy of the testing procedure], it might be related to the variability in the specimen
[recognizing imperfect manufacturing]. I believe that's what he's trying to hit. He's
indicating maybe there should be a true value [referencing a “true value”], but because
of certain factors, error is introduced into the collected data.

Through multiple rounds of initial and focused coding, we identified recurring and incisive codes
across all 24 transcripts. These served as useful data to develop the closed coding scheme for
participant Interpretations (described below).

Skipping ahead to the next scripted follow-up, we see a prompt designed to connect the
participant’s understanding of “error” to engineering design decisions.

https://www.zotero.org/google-docs/?QP5u1K


R: Knowing that the observed variability is error, would this change how you would use
the data set to help design the rod?

P4: Yes. Still, it's uncertainty. I have to account for it. Whatever could be a source for
those variabilities or error, I still need to account them in my design.

Since the participant does not change her approach, we code this as [trust in their understanding
of the data]. While the participant answers “yes” to the question above, it is evident that she
plans to account for the observed variability in her analysis. Her previous approach was a
conservative accounting for the observed variability: to use the 5th percentile strength of the data
following Canadian Civil Engineering practice [28]. While her interpretation of the data has now
been updated in response to the “error” prompt, her approach to designing using the data as input
has not changed. In this sense, she trusts her understanding of the data.

Closed Coding

Above, we introduced the concepts of real and erroneous sources of variability as a means to
design the interview protocol and anticipate potential responses. However, we also sought to
operationalize the real/erroneous concept as a reusable closed coding scheme to describe
participant Interpretations of “error.” We used analytic memo writing [26] and discussion among
the author team to develop the codes, indicators, and interrelations of the scheme. The first
author conducted multiple readings of the data, wrote memos to develop intermediate forms of
the coding scheme, and met with the second author to discuss. Once we arrived at a prototype
form of the coding scheme, we split the data into randomized halves, applied the scheme
independently, and returned to compare responses. We used disagreements to clarify codes and
adjust the scheme, then coded the remaining data independently. We assessed interrater
reliability as being substantial (Cohen’s kappa=0.77, n=48) [29]. Satisfied with the reliability of
the coding scheme, we resolved all remaining differences in the codes for the corpus—the
finalized codes and closed coding scheme are described in the Results below.

Results

Interpretation (Closed coding results)

The closed coding scheme describes a participant’s Interpretation of “error” using four
independent boolean codes: real variability, erroneous variability, human error, and all
variability. Figure 2 reports Interpretation (and Approach) codes for all participants. A full
description of the indicators in the scheme is given in Appendix A2; as an example, we return to
the excerpt from Participant 4.

P4: I might think, for example, it's because he might be implying that if everything is
done perfectly, that means this thing might have been smaller or vanished. It might be
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related to the procedures of testing [mentions a protocol or procedure], it might be related
to the variability in the specimen [variability inherent in a material]. I believe that's what
he's trying to hit. He's indicating maybe there should be a true value, but because of
certain factors, error is introduced into the collected data [machines or from
measurement].

Here we see indicators for real variability [variability inherent in a material], erroneous
variability [machines or from measurement], and human error [mentions a protocol or
procedure]. This response illustrates some of the complexities of practicing engineers’
interpretation of “error” without clarification—”error” to some engineers can connote a mixture
of real and erroneous sources.

Through open coding of the data, we found that the concepts of real and erroneous sources, while
relevant, did not adequately capture the variation in participant Interpretations. For some
participants, the concepts of real and erroneous variability did not adequately describe their
Interpretation. Far more common was an interpretation of “error” involving a human.

P17. I think this means that this person might need to take a statistics course or
something. I'm thinking back to some real-world situations where it's not too dissimilar.
They observed variability as error, error in what? I actually don't know what it means. I
would assume that it means that they messed up and they don't want to redo it [statement
synonymous with “someone messed up”]. I don't know.

While our framing of real/erroneous is focused on the consequences of variability, an
Interpretation of human error is more focused on its cause, irrespective of consequences. This
indicates further complexity to the interpretation of “error:” a complex mixture of consequences
and causes.

Six participants interpreted “error” as encompassing all variability. For instance,

P13. Let's say you have a steel rebar, you have 430 megapascals quality steel but when
you do testing, … they will have dispersion and the error will mean the difference
between any of the tests expected result. [explicitly defines error as synonymous with
variability]

Participant 13 is a Civil Engineer with 5+ years of experience. Thus, he is accustomed to
working with materials that are designated by a nominal strength value—here “430 megapascals
quality steel.” This reified value serves as a natural reference by which to judge observed values;
compared with the target value of the steel designation, all other values are “error” to this



participant. Crucially, Participant 13 lists no physical reasons in his interpretation “error”—to
him, all variations away from the nominal are “error.”

While the “all variability” Interpretation often coincided with a lack of stated physical reasons
(Fig. 2), Participant 11 offers a contrast. He listed a variety of physical mechanisms, but when
asked if the “error” information would change his design process, he responded,

P11: [silence] I would say no because I don't really distinguish-- maybe I'm still not
really distinguishing how that error is different than what, up to this point, I had been
thinking of variability.

From Figure 2, we see large variation in participant interpretations of “error.” The
most-frequently occurring Interpretation was human error (18/24), followed by erroneous
variability (13/24). Interpretations of real variability were very rare; only 4/24 participants’
responses indicated such an interpretation.

These results are aligned with the analysis of statistical interpretations of “error” discussed in the
Background: An interpretation of erroneous variability occurs far more frequently than real.
However, these results also underscore the difficulties of insisting on a statistical definition of
“error” devoid of human influences; for our participants, “error” has a much stronger connotation
of human error than any other interpretation.



Figure 2. Finalized “error” Interpretation and Approach codes for all participants. Interpretation
codes are boolean, while Approach codes are categorical. Participant 19’s Approach was
uncodable due to an operational issue (the relevant follow-up was not asked).

Approach (Open coding results)

The Approach codes describe the actions participants would take in response to “error.” Broadly,
when participants were asked if they would change their analysis in response to the “error”
prompt, they tended to trust or distrust the data. The following section describes the trust-related
Approach codes reported in Figure 2; the remaining distrust-related codes are described in
Appendix A3.

Trust in Their Understanding of Data (TI)
The participant did not change their approach in response to the “error” prompt, representing
trust in their understanding of the data. For instance, Participant 4 interprets “error” as including
both real and erroneous variability. Participant 4 previously used the conservative value of 5th
percentile strength to summarize the data (a standard in Canadian Civil Engineering) [28]. She
describes a complementary, conservative understanding of the data,

P4: Still, it's uncertainty. I have to account for it. Whatever could be a source for those
variabilities or error, I still need to account for them in my design.
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Clearly, her understanding of the data comes from a defensive stance; while she does not trust
the data to provide perfect information, she trusts in her conservative understanding of the data.
Note that participants whose Approach was coded TI varied widely in their Interpretation (and
approach to analyzing the data); however, they shared a similarity in trusting their particular
understanding of the data.

Only Trust a “True” Value (Internal to the Data) (TV)
The participant revised their approach to use a central value derived from the data, and treated it
as a “true” value. All participants associated with this code interpreted “error” as including
erroneous variability, two of whom (Participants 3 and 14) interpreted “error” as exclusively
erroneous. For Participant 3, this justified a change from using a lower value for design to using
the average.

P3:Well, if the variability is considered to be error, I guess that would mean that the
mean value would be seen as the true value that you could then use to design the rod and
not have to worry about standard deviation since if the variability was errored, then there
wouldn't really supposed to be a deviation, I suppose.

This interpretation of “error” bears a striking similarity to the “true score” interpretation of the
population mean common in inferential statistics (e.g. [10]). In this episode, the term “error”
cues an Interpretation of variability as erroneous and encourages reification of the mean. For
Participant 3, this also reduces the cuing priority of other knowledge elements, as evidenced by
her switch from a conservative analysis to using the average.

Participant 14 also initially used a conservative value. She switched to a central value (the
median), but contextualizes her response to the “error” prompt,

P14: It might make me slightly more likely to pick the more median value than a
minimum but not hugely. … If I know that the measurement variability is error, then I
know that it's unlikely that the actual yield strength of the material is on the lower end of
what has been reported. Therefore the median value might be sufficient. Now, if I were
actually designing this, I would never choose a factor safety so low that this mattered,
and then it would become largely irrelevant.

Again we see a reified value, this time as the “actual yield strength” of the material. Participant
14 gives a statistically sophisticated differentiation between this target of inference and an
estimate (“the median value might be sufficient”). However, this reified “actual” value
de-prioritizes a conservative approach.
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Germane to this episode (but outside the scope of this study) is the use of safety factors. Here,
Participant 14 admits that the particulars of data analysis (use of the median or a conservative
value) would be irrelevant when a safety factor is employed. Safety factors seem to be another
phenomena that reduce the cuing priority of data analysis knowledge.

The TV code highlights a dangerous interpretation of “error:” Participants 3 and 14 initially used
a conservative lower-value approach to analyze the data, but were inclined to use a central value
upon interpreting the variability as “error.” In the presence of a “non-communicative stance”
about “error,” this elevates the possibility of risk in engineering design.

Distrust of the data (DD Codes).
While 11 of 24 participants trusted the data (whether TI or TV), an equal number (11/24)
distrusted the data upon hearing the “error” prompt. We describe these codes in detail in
Appendix A3; in short, participants who distrusted the data either requested a repeat of the
experiment (DD: Rep., 7/24), would consult a “true” value external to the provided data (DD:
Extern., 2/24), or would re-analyze the data themselves (DD: An., 2/24). Among those
participants who distrusted the data, all but two had an Interpretation of “error” that included
human error.

While their specific approaches varied, for all 11 of these participants, hearing the variability in
the data was “error” eroded their trust in the data. This presents a challenge for interdisciplinary
teams that include both statisticians and engineers: While statisticians may accept “error” as a
normal feature of data and analysis, insisting on using the term “error” in collaborations may
introduce unnecessary communication challenges when communicating results to engineering
colleagues. While a statistician may feel comfortable describing variation from an experiment as
“error,” eleven of our participants rejected otherwise trustworthy data when it was thought to
have variability due to “error.”

Discussion

This project sought to understand how practicing engineers understand the term “error” in the
context of variability in data. We were particularly interested in their interpretation of the term,
and their approach to data analysis and design in the face of “error.” This project was inspired by
observed and documented technical communication challenges: A wide diversity of meanings to
the term “error,” and a bias among some practitioners to not define or adapt their terminology in
an interdisciplinary setting—what we called a “non-communicative stance”.

We conducted an empirical, qualitative study of practicing engineers (n=24) using a combination
of open and closed-coding methods. Our work was framed using the knowledge-in-pieces
framework [14], [15], and was informed by concepts of reification [18], [20] and real/erroneous
variability [6], [19]. We set out to answer two research questions, restated and addressed here.
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RQ 1. How do engineers interpret variability if it is described as “error”? Do they associate
“error” with real/erroneous sources, or some other meaning?

As is evident from the Background section, there are many different, sometimes contradictory,
interpretations of “error.” Among our participants, interpretations of “error” most frequently
included human error (18/24 participants). Insisting that definitions of statistical error be
removed from human error, as some statisticians opine, is fraught.

Participants also much more strongly associated “error” with erroneous variability (13/24) than
real variability (4/24). This is aligned with common uses of the term “error” in both mathematics
and statistical inference. While “error” in statistical parlance technically includes both real and
erroneous variability, it is clear that for our participants that the term has a biased interpretation.
While our sample cannot support the inference that such a bias extends to the full population of
engineers, it does suggest that such a bias may exist, and certainly indicates that there is the
potential for a diversity of interpretations.

RQ 2. What—if any—effect does interpreting variability as “error” have on engineers’ decision
making when using data for design?

Some participants, upon learning the observed variability was “error,” elected to change their
approach from a conservative analysis to a more dangerous approach based on a central value
(mean or median). While rare (2/24 participants), this phenomenon demonstrates the fraught
nature of a “non-communicative” stance to interdisciplinary communication. Statisticians who
insist on using an endemic meaning of “error” in engineering collaborations without clarifying
terms open the door to miscommunication and an increase in potentially fatal risks.

In a less fraught outcome, many participants (11/24) after the “error” prompt began to distrust
the data. Their responses ranged from requesting a repeat of the experiment, consulting external
resources, or formulating a plan to re-analyze the data themselves. This highlights a practical
issue communicating between statistical and engineering audiences: Statisticians accept and
expect that variation will enter into data analysis, and normatively refer to certain variations as
“error.” However, the term “error” may erode an engineers’ trust in a dataset.

Implications

These different interpretations of “error” encourage drastically different approaches to
engineering design decisions. As shown above, linguistic differences between engineering and
statistics can have potentially deadly consequences. Ideally, practitioners on interdisciplinary
teams would work openly and clarify all terminology to minimize miscommunication.



As engineering educators, we can encourage a more “open stance” by exposing our students to
different interpretations of terms. This can seed a more open view of terminology by showing
that terms are used differently across an increasingly interdisciplinary workplace. Additionally,
we can model a productive set of behaviors where collaborators ask “This is what error means to
me, how do you interpret this term?” In this way, we can (hopefully) train engineers to have such
discussions in their professional careers.

Limitations & Future Work

This was a qualitative (n=24) study on how engineers interpret and react to variability. While our
work clearly demonstrates the variety of potential interpretations and reactions to “error,” our
methods are not aligned with making inferential statements about the population of engineers.
For instance, we cannot conclude with certainty that engineers writ-large associate “error” with
human error. While we found the closed coding scheme for interpretations of “error” to have
substantial reliability, future work should test the generalizability of this scheme. Additional
empirical work may also surface additional approaches and responses to “error” not seen in our
sample.

Furthermore, our focus on variability necessarily limits the conclusions we can draw about
engineers’ perception of “error.” Future work could investigate perceptions of “error” in the
context of other aspects of engineering analysis. Perceptions of “error” likely interact with other
elements of engineering practice; for instance, we saw that the use of safety factors reduce the
cuing priority of other knowledge elements related to variability. These results suggest that
studying the perception of “error” could be incorporated in a wide variety of studies.
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Appendices

A1. Interview Protocol Details

Towards the beginning of the protocol, participants were presented with Figure 3. This was to
clarify the context of data that was presented in the interview—presented values arise from
multiple independent specimens, rather than repeated measurements on a single specimen. This
was to ensure the possibility of real variability in the data, without directly naming the concept.

Figure 3. Image used to describe the presented data: independent specimens, rather than repeated
measurements.
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Figure 4. Image used to illustrate the design scenario. This structure was described as being in
uniaxial tension.

Immediately prior to the “error” question, participants were asked to use a dataset to help design
a rod. The design context of the interview task was a geometrically-simple member subject to
uniaxial tension, pictured in Figure 4. The following prompt was accompanied by a dataset (Tab.
2).

“Imagine you were going to design a rod to withstand a tensile load, using the cast alloy
described by this dataset. How would you use this dataset to help design the rod? Please just
describe your process; you don’t need to do any calculations.”

Table 2. Dataset presented in interviews, values are the tensile yield strengths of a cast steel [30].

Steel Strength

Sample Tensile Yield Strength (ksi)

1 157.0

2 159.6

3 155.6

4 165.8

https://www.zotero.org/google-docs/?If1WgA


5 157.4

6 158.4

7 157.6

8 156.4

9 157.7

10 155.7

The following is the “error” prompt. Note that we deliberately withhold any definition. This
question encourages participants to re-interpret the data in Table 2 in light of the “error”
description. This prompt consists of an initial question about interpretation, and a follow-up
about any possible changes in approach. Note that the (parenthetical) gives conditions for an
optional follow-up; this is designed to help guide the participant towards the intended
interpretation of the question.

“In the written documentation for the data, the original collector of the data describes the
observed variability as ‘error’. What do you think this means?”

- (If participant is confused by the question) “We’re interested in how you interpret the
word ‘error’.”

“Knowing that the observed variability is ‘error’, would this change how you would use the
dataset to help design the rod?”

A2. Closed coding scheme: Participant Definition of “Error”

Table 3 reports the closed coding scheme developed to describe participants’ Interpretation of
“error.”

Table 3. Closed coding scheme for Interpretation of “error.”

Definition of “Error” Short Description Long Description (with Examples)

Real Variability Participant’s definition
includes, but is not
necessarily limited to, what
the researchers would
consider real variability.

- Definition includes variability in
material properties and/or variability
inherent in a material

Erroneous Variability Participant’s definition
includes, but is not
necessarily limited to, what
the researchers would
consider erroneous

- Definition includes error in
machines or from measurement



variability.

Human Error Participant’s definition
includes, but is not
necessarily limited to,
human errors. Human error
can contribute to both real
and erroneous variability.

- Explicitly defines error as “human
error”
- OR, mentions human operator error
and/or training
- OR, makes a statement
synonymous with “Someone messed
up”
- OR, mentions a protocol or
procedure
- OR, uses the term “mistake”

All Variability Participant’s definition
encompasses all variability.

- Explicitly defines error as
synonymous with variability
- OR, states that they do not
understand the difference between
error, variability, and/or uncertainty

A3. Open Approach codes

This section describes the Distrust of Data (DD) codes in greater detail, and details one
additional open code.

Distrust Data: Re-process the data (DD: An.)
The participant distrusts the data, and would re-analyze it themselves (2/24 participants). All
participants associated with this code interpreted “error” as human error only. Re-analyzing the
data would allow the participant to overcome that human error; for instance, Participant 24
described this as “We neglect and avoid the error in your calculation.”

Distrust Data: Consult an External “True” Value (DD: Extern.)
The participant distrusts the data and consults an external “true” value instead (2/24 participants).
For instance, Participant 18 stated

P18: I guess I would look at other established datasets and the typical values and not just
depend on looking at the 10 values and I guess in my case I would look for more data
[laughs].

The participant devalues the available data (“just depend on”) and specifically refers to
“established” data containing typical values. Note that in engineering, typical values are often



operationalized as the mean [3]. While this participant was previously willing to use the data for
design, knowing the variability corresponds to “error” sows distrust.

Distrust Data: Repeat Experiment (DD: Rep.)
The participant distrusts the data and requests that the experiment be repeated (7/24 participants).

P10: [I]f I see error, I probably want to find out why and what caused the error in the first
place. It could be a lot of stuff. If this error is repeatable, for example, my error, what I'm
thinking is a number that's so out of value. If that is repeatable, then yes, I probably
would not use this dataset to help me design a rod.

“Repeatability” of a result requires repeated experiments; this participant would require more
data collection in order to assess the “error” that appears in the original dataset.

For other participants, the term “error” suggested a paucity of data. For instance,

P8: [I]f I had those ten samples, definitely affects how I used-- I might decide not to
make any solid decisions on that. If I have a wider range of exact values, I can probably--
I want to assume, on average, the error will probably cancel out….

Participant 8 here uses the phrase “wider range” to refer to a larger sample of data. He outlines
conditions that would allow him to trust the data: a larger sample that would reduce the “error.”
His Interpretation is one of human error and erroneous variability; combined with the sample
size dependency noted before, this reasoning bears a strong resemblance to statistical estimation
theory.

Contradictory Reasoning (CR)
Participant 7 provided a reasoning that we could not resolve and have decided to label
“contradictory.” He provided his interpretation of “error” as “Error for me is the variation that I
can accept.” Taking this statement at face value, we would not expect him to adjust his approach.
However, when asked if he would change his approach in response to the “error” prompt, he
stated

P7: I think they consider the error before but now I think, consider about the error. We
should keep more margin for this design.

Despite regarding “error” as acceptable variation, Participant 7 elected to add more design
margin in response to the “error” variability. This participant’s Interpretation was coded as
including both erroneous variability and human error. It is possible that these two interpretations
manifest as two separate knowledge elements that cue from the same term of “error.” In this
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case, additional contextual factors may alternatively cue the two interpretations. However, we
lack the data in the present study to investigate this hypothesis.


