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Work in Progress: Integrating Basic Stress Analysis Concepts  
into Statics 

 
Abstract 
 
The paper describes how basic stress analysis concepts can be integrated into a sophomore-level 
engineering statics course using pinned frames. The course covers pin connections and supports, 
which are typically separate from a statics course, through a hoist frame project. The project 
focuses on the concepts of pin shear stresses, member pull-out shear stress, bearing stresses, and 
axial uniform normal stress in a centrically loaded member. The pin connection is examined as 
both a tight fit and a loose fit, and a general structured procedure is provided to conduct the 
analysis. All statics and stress equations are formulated symbolically, allowing for the repetitive 
analysis and design of similar structures using an engineering tool. The hoist frame project is 
also utilized in a follow-up mechanics of materials course, where advanced stress topics are 
introduced just-in-time throughout the term and include design. A qualitative assessment by 
students was carried out at the end of the course to provide guidance for the instructors in the 
future. 
 
Introduction 
  
Engineering design, defined by ABET [1], “is a process of devising a system, component, or 
process to meet desired needs and specifications within constraints. It is an iterative, creative, 
decision-making process in which the basic sciences, mathematics, and engineering sciences are 
applied to convert resources into solutions. Engineering design involves identifying 
opportunities, developing requirements, performing analysis and synthesis, generating multiple 
solutions, evaluating solutions against requirements, considering risks, and making trade-offs to 
obtain a high-quality solution under the given circumstances. For illustrative purposes only, 
examples of possible constraints include accessibility, aesthetics, codes, constructability, cost, 
ergonomics, extensibility, functionality, interoperability, legal considerations, maintainability, 
manufacturability, marketability, policy, regulations, schedule, standards, sustainability, or 
usability.” 
 
The authors believe that statics textbooks make it challenging to carry out an “iterative, creative, 
decision-making process in which the basic sciences, mathematics, and engineering sciences are 
applied to convert resources into solutions.” This paper proposes a problem solution with a 
symbolic formulation approach to overcome this challenge to perform solution verification and 
parametric design studies in statics. Other statics textbooks do not consider using a total 
symbolic approach to formulate all problems. 
 
The proposed method suggests retaining all variables and equations in their symbolic form 
without any algebraic manipulation. This approach enables students to concentrate on the 
fundamental physics of the problem rather than on the algebraic manipulation needed to isolate 
the required solution variable(s). The authors recommend using a commercial program equation 
solver for solving the equations, except for the most straightforward problems, which should be 
verified. This method allows for a natural extension to design, as all equations are in symbolic 
form and can be entered into modern engineering tools for validation and repetitive analysis. By 



incorporating a computer equation solver with the raw symbolic equations, the method enhances 
engineering productivity, reduces the chance of algebraic errors, and enables easy design 
applications. 
 
In this paper, we will discuss a frame structure that is usually taught in engineering statics 
courses [2] – [6]. A frame is composed of interconnected members that are connected with pin 
joints where at least one member is a multi-force member (i.e., three or more forces act on it). 
Pin joints allow for the transfer of forces but not moments. Although the loads may not 
necessarily be applied at the joints, frames are designed to support external loads and are 
generally stationary, fully constrained structures. Only frames that are considered statically 
determinate both externally and internally are included in statics. 
 
The paper discusses integrating fundamental stress analysis into a statics course for a statically 
determinate pinned frame structure. Stress analysis concepts in statics is not new but a symbolic 
formulation of the problem is. The analysis process involves creating a free-body diagram of the 
entire structure, determining support forces using equilibrium equations, and creating separate 
free-body diagrams for each member. Joint member forces are then determined using the support 
forces and equilibrium equations. The paper also covers pin connections and supports not 
typically included in statics courses. Stress analysis is limited to pin shear stress, member pull-
out shear stress, connection bearing stress, and normal stress in axially loaded members. The 
authors use a structured symbolic approach to perform statics and stress analyses, which is 
helpful in design. This approach differs from those used in widely used statics textbooks [2] – [6] 
since we formulate all problems symbolically that allows an easy extension to complex design 
problems. Engineering design is considered in the statics book [6]. 
 
General Structured Procedure to Solve Statics and Mechanics of Materials Problems 
 
A general structured procedure is presented to solve statics and mechanics of materials problems. 
The students must follow the appropriate steps listed below for every in-class lecture, homework 
problem, and design project they solve based on reference [7] and [8]. 
 
1. Model. The success of any analysis is dependent on the validity and appropriateness of the 

model to idealize the physical problem to predict and analyze its behavior, whether centric 
axial loading, torsion, bending, or a combination of the above. Assumptions and limitations 
also need to be stated in this step. This step is only explicitly emphasized in [6] and [16]. All 
dimensions and forces are defined symbolically. 

 
2. Free-Body Diagrams. This step is where all the free-body diagrams initially thought to be 

required for the solution are drawn. The free-body diagrams include the complete structure 
and/or parts of the structure. Importantly, all dimensions and loads, even known ones, are 
symbolically defined. 

 
3. Equilibrium Equations. The equilibrium equations for each free-body diagram required for a 

solution are written. All equations are formulated symbolically. There is no attempt made at 
this point to isolate the unknown variables. However, we must examine every term in each 
equation for dimensional homogeneity. 

 



4. Deformation Equations. The deformation formulas are written for each part of a structure 
based on the Model in Step 1 using the method of segments [8]. All equations are formulated 
symbolically, and there is no algebraic manipulation. Therefore, we must examine every term 
in each equation for dimensional homogeneity. 

 
5. Compatibility and Boundary Conditions. One or more compatibility equations are written in 

symbolic form to relate the displacements. A compatibility diagram is used when appropriate 
to develop the compatibility equations. All equations are formulated symbolically, and there 
is no algebraic manipulation. We must examine every term in each equation for dimensional 
homogeneity. Although compatibility equations are commonly written for indeterminate 
problems, the authors emphasize their use for determinate problems just as in the mechanics 
of materials textbooks [9] – [11]. 

 
6. Complementary and Supporting Formulas. Steps 1 through 5 are sufficient to solve the 

(primary) variables force and displacement in a structure’s problem. Step 6 includes 
complementary formulas for other (secondary) variables such as stress and strain, variables 
which may govern the maximum allowable in-service values of force and displacement but 
do not affect the governing equilibrium or deformation equations. Supporting formulas might 
be required to supply variable values in the material law equations and complementary 
formulas; formulas such as area, the moment of inertia, centroid location of a cross-section, 
volume, etc. 

 
The complementary and supporting formulas are written symbolically and are necessary to 
develop a complete analysis. The complementary formulas involve solution-governing 
variables such as stress, strain, and stiffness. For example, supporting formulas and 
complementary formulas may be required to define variables in Steps 3 through 5 
completely. These formulas include a cross-sectional area, polar moment of inertia, centroid 
location, the moment of inertia, section modulus, effective length, the radius of gyration, etc.     

 
7. Solve. The independent equations developed in Steps 3 through 6 solve the problem. All 

equations in Steps 3 through 6 require retaining all variables and equations in their symbolic 
form without any algebraic manipulation and entering them into a modern engineering tool. 
The students compare the number of independent equations and the number of unknowns. 
The authors emphasize that the student should only proceed once the number of unknowns 
equals the number of independent equations. The known variables are then entered into a 
modern engineering tool and solved. 

 
The solution may be obtained by hand, which generally requires algebraic manipulation. 
Alternatively, the solution of any number of linear or non-linear equations can be achieved 
with a modern engineering tool. With the intelligent application of verification (Step 8), the 
computer program is a much more reliable calculation device than a calculator. The students 
are allowed to select the modern engineering tool of their choice, and this might include PTC 
Mathcad® [12], MATLAB® [13], and TKSolver [14].  

 
8. Verify. This critical step critiques the answer and is discussed in-depth in the next section. 

The paper [15] focuses on educating students to question, test, and verify problem solutions 
for mechanics of materials problems. 



 
Statics problems require only Steps 1, 2, 3, 7, and 8, and mechanics of materials and machine 
design problems require Steps 1 to 8. Since basic stress analysis will be carried out in this paper, 
only Steps 1-3 and 6-8 will be used. However, statics can only be applied to a statically 
determinate problem. For example, the proposed process can solve statically indeterminate 
problems (internally and externally) when Steps 1 to 8 are used.  
 
A structured problem-solving approach is used in statics book [6] with the following steps: Road 
Map, Modeling, Governing Equations, Computation, and Discussion and Verification. 
Furthermore, the statics [3] and mechanics of materials [16] textbooks use the SMART problem-
solving methodology, i.e., Strategy, Modeling, Analysis, and Reflect and Think. Both are like the 
approach used in this paper. A significant difference is that this paper formulates all equations 
symbolically, and then the unknowns are solved. Step 8 is also considered in the mechanics of 
materials textbook [9]. The authors are unaware of other structured problem-solving methods 
like those used in this paper in [6] and [16] in statics, mechanics of materials, and machine 
design textbooks. 
 
Pedagogically, the step-by-step solution format allows students to build a structure in their minds 
of how to approach and solve a problem efficiently. This step-by-step procedure will help 
students build logic, promote analytical thinking, provide an accurate physical understanding of 
the subject, and, hopefully, extend the same disciplined process to other courses. 
  
Step 8 Verify: Question and Test to Verify the Answers 
 
Step 8, Verify, may be new to most students, but it is critical! As a professional, one must be 
prepared to guarantee their solution. Attempts at verifying the solution may take many forms, 
and although it may not yield absolute proof in some cases, it improves the confidence level. For 
example, verification might involve comparing with a hand calculation, comparing solutions to 
similar problems, examining limiting and obvious solution cases, and comparing with 
experimental data. 
 
One of our educational goals is to convince students of the wisdom to question and test solutions 
to verify their ‘answers.’ We do this by integrating verification into the general structured 
solution procedure. Verification is new to almost all undergraduate students, but it is critical and 
must be formally incorporated into the solution process! The power of our proposed use of the 
computer equation solver rests in the ability to quickly and easily run many cases to verify the 
problem solution. Once an answer has been confirmed, the computer model becomes essential 
for parametric studies and design. 
 
Using Modern Engineering Tools for Design 
 
Much of the problem-solving in formal academic courses involves analyzing a single modeled 
system; calculations, typically, are performed once. However, the engineer involved in the 
design is often confronted with many calculations of a repetitive nature. For example, an initial 
concept of a structure, the “early design stage,” requires initial sizing calculations. Refinement 
requires more calculations. Resizing to use standard commercially available parts requires more 



calculations, with the added complexity of swapping some variables from known to unknown. 
Any analysis tool that reduces the boredom of this process and simultaneously reduces the risk of 
calculation error should be investigated. 
 
There are three relatively popular engineering equation-solving tools available to both 
professionals and students: PTC Mathcad® [12], MATLAB® [13], and TKSolver [14]. A 
computer equation-solving program is a more reliable calculation device than a calculator. All 
three programs have technical computation problem-solving features that are too numerous to 
discuss. For this course’s requirements, each can be used as a basic scientific calculator to solve 
linear and non-linear equations and display results in graphical and/or tabular form. However, 
the authors do not emphasize or recommend any computer equation solver. 
 
The introduction of modern equation-solving tools into this course is meant to accomplish the 
following: 
 

1. Motivate writing equations in symbolic form. 
 

2. Save time by providing a rapid solution of (many) simultaneous equations. 
 

3. Reduce computation errors. 
 

4. Provide a mathematical model of a problem that yields a fast and accurate means for a 
parametric study after appropriate testing for validity. 
 

5. Provide a model for gaining a better understanding of the physics of the problem. 
 

6. Stimulate interest and develop proficiency in the design process. 
 
Hoist Frame Project 
 
Problem Statement 
 
The hoist frame structure shown in Figure 1 is assembled with smooth (frictionless) pins and is 
symmetric about the XY plane. It is used to hoist an object of weight W. The top view shows the 
complexity of the frame. A double shear connection is at joints A, C, and D, and a quadruple 
shear connection is at joint B.  
 
A company manufactures this structure in several models. Each model has the same 
configuration with a different maximum lifting capacity and overall dimensions. The basic 
design is offered in custom sizes and lifting capacities. We ask the students to develop all 
equations symbolically to analyze any existing model based on statics and limited stress 
concepts. This project will focus on one model, and the students must carry out the statics and 
fundamental stress analysis. The follow-up mechanics of materials course allows the students to 
do a complete stress analysis of existing models and/or custom design a hoist for the customer. 



 
Figure 1. Hoist frame structure configuration and loading. 

 
We selected this project since it is complicated and lengthy compared to traditional statics 
homework problems. This project duration is six weeks from beginning to end. The length is due 
to the number and types of free-body diagrams, equilibrium equations, stress concepts, and 
computer implementation. This project is divided into Phase 1 Equilibrium Analysis and Phase 2 
Stress Analysis. After two weeks, the students first submit the hand analysis for Phases 1 and 2. 
The assignment is graded (50% of the final grade) and returned after one week. The 
implementation of Phases 1 and 2 in an engineering tool is completed over three weeks and then 
submitted (50% of final grade).  
 
The students are introduced to the symbolic approach in class and through homework 
assignments. Each homework assignment required at least one problem to be solved using a 
modern engineering tool of the student’s choice. This experience was beneficial for the students 
in carrying out the project. Based on experience, we have found that coding the equations, 
debugging, and solving them using an engineering tool can be challenging for the students, 
especially for this project since it was much more complex than the homework problems. The 



hoist frame project is also utilized in a follow-up mechanics of materials course, where advanced 
stress topics are introduced just-in-time throughout the term. Furthermore, the mechanics of 
materials hoist project also includes design. Therefore, learning the development of symbolic 
equations in statics provides a stronger foundation for the mechanics of materials course. 
 
The specification for one hoist model offered by the company in Figure 1 are as follows: 
 

𝑊𝑊 = 1,000 𝑙𝑙𝑙𝑙𝑙𝑙 
 

𝑋𝑋𝐵𝐵 = 4 𝑙𝑙𝑓𝑓;     𝑋𝑋𝐶𝐶 = 1 𝑙𝑙𝑓𝑓;     𝑌𝑌𝐴𝐴 = 4 𝑙𝑙𝑓𝑓 
 

𝑅𝑅1 = 2 𝑙𝑙𝑓𝑓;     𝑅𝑅2 = 1.5 𝑙𝑙𝑓𝑓 
 
which are needed for the equilibrium analysis.  
 
The pin and member dimensions for the hoist model provided by the company in Figures 6 and 7 
are as follows: 
 

dA = 0.375 in;   dB = 1.25 in;    dC = 0.75 in 
 

tA = 3.00 in;    tB1 = 0.375 in;    h1-int = 2.0 in 
 

tC = 0.75 in;    tB2 = 0.50 in;    h2-int = 2.0 in 
 
Solution Phases for the Project 
 
The project is divided into two solution phases as follows: 
 

• Phase 1 - Equilibrium Analysis. Phase 1 is purely a force analysis of the hoist structure. 
Given the general configuration of the hoist structure, we will determine the force exerted 
on and by each component of the hoist structure when lifting the load. In other words, the 
complete force analysis will evaluate the joint member forces, pin forces, and internal pin 
forces required to calculate the stresses in Phase II.  

 
• Phase 2 - Stress Analysis. The stress analysis is carried out using the forces from the 

equilibrium analysis in Phase I. The stress analysis is limited to pin shear stress, member 
pull-out shear stress, connection bearing stress, and normal stress in axially loaded 
members. The pin connection is considered a tight fit with uniform bearing stress and a 
loose fit with non-uniform bearing stress. 

 
We will now summarize Phases I and II, and the detailed solution process can be found in 
Appendices A and B, respectively.  
 
Qualitative Assessment 
 
A qualitative assessment was carried out by using student surveys. We carried out a qualitative 
assessment for this work in progress since it was more straightforward than a quantitative 
assessment for this work in progress.  



The course enrollment was 44, and statics is typically taken in the later part of the first year or 
early part of the second year (common) in mechanical engineering. This course was offered in 
the spring and consisted of 90% second-year students.  
  
The survey was distributed to the students during the third and last weeks of the course (before 
the final exam) with a participation rate of 95% (42 responses) and 85% (37 responses), 
respectively. Five questions were asked using a 5-point Likert scale, and one was open-ended. 
 
Bar Chart 1 asked, “My ability to identify, formulate, and solve problems has increased,” using a 
5-point Likert scale agreement statement. The survey shows a significant increase in the 
student’s ability to identify, formulate, and solve problems at the second week and the last week 
of the course. Strongly Agree (SA) and Agree (A) is 100% at the end of the course versus 26% at 
the start of the course.   

  

Bar Chart 1. My ability to identify, formulate, and solve problems has increased. 
SA = Strongly Agree = 5;  A = Agree = 4;  NA-D = Neither Agree or Disagree = 3;  

D = Disagree = 2;  SD = Strongly Disagree = 1 
 
Bar Chart 2 asked, “To what extent do you feel you mastered developing equations in symbolic 
form” using a 5-point Likert scale familiarity statement. The students felt that they were 
significantly more familiar with mastering the development of equations in symbolism at the end 
of the course. Strongly Agree (SA) and Agree (A) is 89% at the end of the course versus 12% at 
the start of the course.   
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Bar Chart 2. To what extent do you feel you mastered developing equations in symbolic form. 
VF = Very Familiar = 5;  F = Familiar = 4;  SF = Somewhat Familiar = 3;  

UF = Unfamiliar = 2;  VUF = Very Unfamiliar = 1 
 
Bar Chart 3 asked, “My ability to question and test to verify the answers has increased” using a 
5-point Likert scale agreement statement. The students felt that they significantly increased their 
ability to question and test to verify the answers at the end of the course. Strongly Agree (SA) 
and Agree (A) is 89% at the end of the course versus 12% at the start of the course.   

 

 

Bar Chart 3. My ability to question and test to verify the answers has increased. 
SA = Strongly Agree = 5;  A = Agree = 4;  NA-D = Neither Agree or Disagree = 3; 

D = Disagree = 2;  SD = Strongly Disagree = 1 
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The students were asked the following open-ended question only during the last week of the 
course: Please provide feedback on your experience with using the structured procedure to solve 
statics problem using an engineering tool. Fifteen students responded as follows: 
 

1. I really enjoyed learning how to use TKsolver to solve a complex problem and it will be 
very valuable when I take future courses and do my senior design project. 

2. I have some friends who have taken stress analysis and machine design. Some were 
introduced to the structure procedure in stress analysis and others in machine design. 
They all wish that they were introduced to the procedure earlier since they find it very 
valuable when doing design. 

3. I found the structured procedure when solving small problems to be a pain. But later I 
realized that it was a good learning experience since it prepared me to solve bigger and 
complex problems. 

4. The procedure was valuable. I enjoyed using Mathcad to solve the problems. 
5. I did not like the structed procedure and felt it was a waste of my time.  
6. I was able to use a modified version of the structured procedure in another course and 

found tksolver a great tool. 
7. The instructor provided an easy way to learn how to apply the structure method using 

mathcad. I plan to use this approach and mathcad in future courses. 
8. I found at first the method hard to understand, but once I used the method to solve many 

problems, the method was not that difficult. I practically found learning a new computer 
tool valuable for future courses.  

9. I felt like I learned a lot in this course. 
10. The professor provided a great experience to learn a new structured procedure and 

engineering tool that will be useful for years to come. 
11. Good learning experience. 
12. I now understand the power of TKSolver by taking this course and using it to solve 

problems. Excellent experience. 
13. I am looking forward to using what I learned in this course to solve more difficult 

problems and apply it to design problems. 
14. I felt like this was a valuable learning experience and I will be able to use in the future. 
15. The structured procedure was a lot of work to learn, however, once I grasped it, I found 

the procedure and software Mathcad to be very valuable experience and useful in the 
future.   

 
The response rate to the open-ended question was 41% (15 of 37 responded). The overall 
response was very positive, except for one student who felt the structured procedure was a waste 
of time. Overall, the students perceived that they learned a lot from this experience and will be 
able to use the structured procedure and software in the future. 
 
We plan to conduct a complete qualitative and quantitative evaluation of student learning and 
development in the future. In particular, assessing and evaluating student work throughout the 
course. 
 



Conclusion 
 
This paper presents a general structured procedure to solve statics problems that includes simple 
stress concepts using a symbolic formulation approach to perform solution verification. The 
significant difference between the structured procedures used in [6] and [16] is that our equations 
are all formulated symbolically and then solved for the unknowns. Teaching the student to model 
a general physical problem with the fundamental equations written in symbolic form, with no 
variable values specified, helps the student concentrate more fully on the fundamental principles 
taught in the course. Introducing the modern engineering tool to solve the equations removes the 
necessary manipulation of the equations to isolate the dependent variables. Training the student 
to examine and test the answer becomes one essential goal in our course. Using the symbolic 
approach, with mastery of a computer equation solver and the discipline to insist on verification, 
should be a significant asset in preparing students to model complex problems for analysis and 
design. Qualitative feedback from the students indicated that their ability to identify, formulate, 
and solve problems and question and test to verify the answers has increased. In future work, the 
authors plan to conduct a quantitative assessment to determine student learning and 
development. 
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Appendix A: Phase 1 - Equilibrium Analysis  
 
We will carry out Phase 1 in two parts. The first part establishes the two-dimensional free-body 
diagrams for the members and pins and then solves for the forces using the equilibrium 
equations. The second part establishes the three-dimensional free-body diagram for each pin and 
then solves for the pin forces. We have separated Phase 1 into two parts to reduce the complexity 
of the problem.  
 
Part 1 – Two-dimensional Member and Pin Analyses 
 
The steps to carry out the analysis of Part 1 of Phase 1 are as follows: 
 
1-1. Model. The hoist structure's weight is negligible compared to the load W as shown in 

Figure 1. The structure and the loading are symmetric about a common plane. Members 1 
and 2 are uniform and straight, and the pin centers are on the centroidal axis of each 
member. We also assume all cables in the structure are rigid. The pins will be analyzed for 
direct shear only, and friction is negligible. It is assumed that all cables support tension and 
no compression. 

  
1-2. Free-Body Diagrams. We will first focus on developing the two-dimensional free-body 

diagrams for the members and pins. To solve for all the forces on each member and pin, 
free-body diagrams of Members 1 and 2 and each pin are required. The coplanar free-body 
diagrams are shown in Figure 2. The foundation support reaction forces have a force label 
which begins with letter R, the second letter defines the pin. Thus, RAX is the X component 
of the force that the foundation support exerts on pin A. 

 
The free-body diagrams which we have decided to use are shown in Figure 2. Here we 
have removed pins A and B from Member 1 to show exactly the force the problem asks us 
to solve. FBD I involves 5 unknowns. Therefore, we require 5 independent equations to 
solve for all forces on Member 1. We can write only 3 independent equations for FBD I. 
The second free-body diagram is drawn, FBD II, was chosen to show the same force 
components BX and BY between pin B and Member 1. If we sum moments about pin C in 
FBD II, we will have an additional independent equation without adding more unknowns. 
With the third free-body diagram, FBD III, we may write an equation to determine the 
cable tension. This gives us 5 independent equations with no additional unknowns; we can 
solve the problem. 

 
 



 
Figure 2. Two-dimensional free-body diagrams for the hoist frame structure. 

 
1-3. Equilibrium Equations. From the free-body diagrams in Figure 2, we observe that there are 

13 forces to be determined as a function of the known hoist dimensions (XB, XC, YA, R1, R2) 
and load (W) shown in Figure 1.  

 

 
 

This will require the 13 independent equations. We will employ the equation numbering, 
(Ph a.b), where ‘a’ represents the phase number and ‘b’ is the sequential equation number 
in the phase. This numbering makes it easier for the student to know what equations are 
associated with each phase when implemented into an engineering tool. The independent 
equilibrium equations are as follows: 



 
 

One should note that the Equilibrium Equations (Ph1.1) through (Ph1.5) determine the pin 
forces on Members 1 and 2, in terms of the applied load and dimensions.  

 
The equations to determine the components CX and CY are: 

 

 
 

In addition, we can determine the support reaction forces on Pins A and C, and the contact 
force components between Member 2 and pin B: 

 

 
 

1-4. Deformation Equations. Not applicable.  
 

1-5. Compatibility and Boundary Conditions. Not applicable. 
 

1-6. Complementary and Supporting Formulas. Not applicable. 
 

1-7. Solve. Solving the 13 equations for the 13 unknowns yields: 
 

𝐴𝐴𝑋𝑋 =  718.75 𝑙𝑙𝑙𝑙𝑙𝑙;  𝐴𝐴𝑌𝑌 =  −625.00 𝑙𝑙𝑙𝑙𝑙𝑙;   𝐵𝐵𝑋𝑋 =  718.75 𝑙𝑙𝑙𝑙𝑙𝑙;   𝐵𝐵𝑌𝑌 =  1125.00 𝑙𝑙𝑙𝑙𝑙𝑙; 
 

𝐶𝐶𝑋𝑋 =  −1218.75 𝑙𝑙𝑙𝑙𝑙𝑙;   𝐶𝐶𝑌𝑌 = −1625.00 𝑙𝑙𝑙𝑙𝑙𝑙;   𝑇𝑇 =  500.00 𝑙𝑙𝑙𝑙𝑙𝑙; 
 

𝑄𝑄𝑋𝑋 =  −1218.75 𝑙𝑙𝑙𝑙𝑙𝑙;  𝑄𝑄𝑌𝑌 =  −1625.00 𝑙𝑙𝑙𝑙𝑙𝑙;  𝑅𝑅𝐴𝐴𝑋𝑋 =  −718.75 𝑙𝑙𝑙𝑙𝑙𝑙; 



 
𝑅𝑅𝐴𝐴𝑌𝑌 =  −625.00 𝑙𝑙𝑙𝑙𝑙𝑙;  𝑅𝑅𝐶𝐶𝑋𝑋 =  −1218.75 𝑙𝑙𝑙𝑙𝑙𝑙;  𝑅𝑅𝐶𝐶𝑌𝑌 =  1625.00 𝑙𝑙𝑙𝑙𝑙𝑙 

 
These equations can be easily solved by hand or can be entered into the engineering tool in 
the symbolic form as shown in Equations (Ph1.1) through (Ph1.13) and the known values 
inputted.  
 

1-8. Verify. The students use their hand solution to verify the engineering tool solution. Part 2 
will also discuss how limiting cases can be used for verification.  
 

Part 2 – Three-dimensional Pin Analyses 
 
The steps to carry out the analysis of Part 2 of Phase 1 are as follows: 
 
2-1. Model. The pins in Figure 2 were shown as two-dimensional to be consistent with the 

frame members and to simplify the equilibrium analysis. In reality, pins should be modeled 
as three-dimensional to reflect the member forces transferred at the connection. As stated in 
Part 1, the structure and the loading are symmetric about a common plane. Members 1 and 
2 are uniform and straight, and the pin centers are on the centroidal axis of each member. 
The pins will be analyzed for direct shear only, and friction is negligible.  

 
2-2. Free-Body Diagrams. In this problem, we have three different pins, each with specific 

regions of concern and two force components on each region cross section as shown in 
Figure 3.  

 
To obtain the maximum interior shear force in a pin, we must understand the construction 
of the pin joint, and we must determine the axial variation of the internal pin shear force. In 
Figure 3, each of the three pins, A, B, and C, have been drawn with the pin joint interior 
forces, in component form, applied by the structure member and frame foundation support. 
The structure is symmetrical about the XY plane, resulting in equal distribution of the pin 
forces on each side of the plane of symmetry. Also shown is the exposed cross section of 
each pin with shear force components acting on the interior cross sections of concern. For 
pins A and C, only one cross section is of concern. Pin B, however, must be analyzed in 
two different regions, region DE and region CD. 

 
In this problem, we have three different pins, each with specific regions of concern and two 
force components on each region cross section. If the analysis is to be programmed, we 
must have a notation scheme that identifies each shear force. We use the following notion: 

 

 
 

which defines the shear force, FS in the X direction in the region between A and B of pin 
(P). 
 



 
 

 
 

 
 

Figure 3. Three-dimensional pin free-body diagrams and cross-sections of maximum shear force. 
 
2-3. Equilibrium Equations. The forces on the free-body diagrams shown on the right-hand 

side of Figure 3 are known based on the previous equilibrium analysis in Part1. The free-
body diagram on the right-hand side in Figure 3 is used to determine the unknown internal 
shear forces. The pins on the right-hand side free-body diagrams are cut where the 
maximum internal shear forces occur. One should note that due to symmetry, only one side 
of the pin is considered. Therefore, we have the following 8 unknown internal shear force 
components on the pin cross-sections: 



 

 
 

From the sectioned pin free-body diagrams in Figure 3, the following 8 independent 
equilibrium equations are obtained for the internal shear force components in each pin. 

 
• Pin A Internal Shear Force. 

 

 
 

The resultant maximum shear force acting on the pin cross section must be determined, 
and it is obtained by the vector sum of the orthogonal components. For pin A: 

 

 
 

which is always a positive quantity.  
 

• Pin B Internal Shear Force. The shear force in pin B must be investigated in two 
different regions to identify the maximum shear force. 

 
o In region DE: 

 

 
 

The resultant force on the cross section is: 
 

 
 

o In region CD: 
 

 
 

  



The resultant force on the cross section is: 
 

 
 

The maximum shear force in the pin B is the maximum vector sum of the 
components at the two cross sections and may be determined using a common 
equation solver programming statement such as: 

 

 
 

• Pin C Internal Shear Force.  
 

 
The resultant force on the cross section is: 

 

 
 

Equations (Ph1.14) through (Ph1.26) will determine the shear force components and the 
resultant maximum shear force on the pin cross section. 

 
2-4. Deformation Formulas. Not applicable. 

 
2-5. Compatibility and Boundary Conditions. Not applicable. 

 
2-6. Complementary and Supporting Formulas. Not applicable. 

 
2-7. Solve. Equations (Ph1.14) through (Ph1.26) contains 8 independent equilibrium equations 

and 5 equations to determine the resultant shear forces. Equations (Ph1.14) through 
(Ph1.26) can be solved by hand or using an engineering tool to determine the shear force 
components and the resultant maximum shear force on the pin cross section as follows: 

 
Pin A:  = 359.37 lbf,  = 312.50 lbf,  476.24 lbf 

Pin B, Segment DE:  = 609.37 lbf,   = -812.50 lbf, 
 
1015.63 lbf 

Pin B, Segment CD:  = -250.00 lbf,  = 250.00 lbf,  353.55 lbf 

Pin C:  = 609.37 lbf,  = -812.50 lbf,  1015.63 lbf 



The maximum resultant shear force for Pin B is in Segment DE. Figure 4 shows the four 
free-body diagrams used to determine the maximum shear force for the three pins.  

 

 
Figure 4. Pin free-body diagrams of maximum shear force. 

 
2-8. Verify. Although we will substitute these 26 equations into an engineering equation solver 

program, verifying the computer’s output is always necessary. One of the primary tests that 
we should run is a hand calculation. In this case, the 26 numbered equations can be solved 
by hand; the individual equations are elementary. Once the program has been tested to 
show that the results are correct, this model may be used for very convenient, rapid, and 
reliable recalculation of the forces for any changes in the dimensions and/or applied load. 
 
Let’s look at two limiting cases to verify just the equilibrium equations: 
 
o XC = XB, R1 = 0 = R2. Member 2 is vertical and force T on Member 1 is at pin B. This 

would yield BX = 0 and BY = W/2. 
 

o XC = XB, R1 = 0, 2R2 = XB. Member 2 is vertical and force T is at end of Member 1. 
This would yield BX = 0 and BY = 2T. 

 
o Cable force T in compression. We assumed all cables in this model are rigid. A real 

cable can only be in tension. If we reverse the direction of the load W to upward in 
Figure 1, then the forces will change direction. We could check on whether the cable is 
in tension or compression and add a flag for the compression case.  

 
The first student assignment consisted of carrying out a hand analysis of Phases 1 and 2 
and they are required to demonstrate different ways to verify their analysis. After this 
assignment is submitted, we review how to verify the analysis. 

Remark. In a typical design process of a prototype, it is not uncommon to have suggested, 
or required changes in the configuration or load capacity of the structure after much work 
has progressed in the design. This may mean that all calculations previously done have to 
be redone! To have the analysis programmed in a symbolic form means that any changes 
can be implemented very quickly. Also, if a product has a general configuration which can 
be custom tailored to a customer’s specifications, the symbolic model provides a quick and 
accurate determination of the product’s specific details. 



Appendix B: Phase 2 – Stress Analysis  
 
Using the results from the Phase 1 force analysis, Phase 2 will be divided into the following three 
parts:  
 
• Part 1 – Maximum Shear Stress in the Pins;  

 
• Part 2 – Maximum Bearing Stress at each Pin Joint, and;  
 
• Part 3 – Maximum Axial Normal Stress in Centrically Loaded Member 2. 
 
Step 6, Complementary and Supporting Formulas, is required to determine the stress in Parts 1 
through 3. We will first develop the equations for Parts 1 through 3, and then solve for the 
stresses in Phase 2 using Step 7, Solve. 
 
Part 1 – Maximum Shear Stress in the Pins 
 
2-6.  Complementary and Supporting Formulas. From the Phase 1 analysis, we determined the 

maximum shear force in each of the three pins A, B and C as shown in Figure 3. Maximum 
shear stress in pins A, B and C in terms of the diameters. The shear stress in each pin 
requires the cross-section diameter and the internal shear force. The unknown pin diameters 
will be represented by dA, dB and dC, where the subscript identifies the pin location, and the 
maximum shear force in each pin, FsA, FsB, and FsC, respectively, ill have been determined 
in Phase 1. The shear stress in each pin is determined as follows: 

 

 
 
A test will be carried out to prove that the Member 2 pin forces are collinear with its pin 
centers, (since Member 2 is a two-force member). A comparison of slopes of the pin 
forces FC and FQ with the slope of Member 2 should be made as a test; the slopes must be 
equal. The slope of Member 2 can be obtained from geometry in Figure 1: 

 

 
 

The slope of force FC in Figure 5 is: 
 

 
 



The slope of force FQ in Figure 5 is: 
 

 
 

  
Figure 5. Member 2 free-body diagram. 

 
Part 2 – Maximum Bearing Stress at each Pin Joint 
 
2-6.   Complementary and Supporting Formulas. The bearing stresses in pins A, B, and C, and 

Members 1 and 2 in terms of the dimensions as indicated in Figures 6 and 7, respectively. 
 

 
Figure 6. Member 1 dimensions and free-body diagram. 

 



 

 
Figure 7. Member 2 dimensions. 

 
The bearing stress between pin A and the beam, Member 1 requires the magnitude of the 
force between pin A and the Member 1 in Figure 6: 

 

 
 

and the bearing stress for a Loose-Fitting Pin in Equation (C.3) is: 
 

 
 

We assumed a Loose-Fitting Pin versus a Tight-Fitting Pin since it is conservative, as 
discussed in Appendix C. In the course, we develop the bearing stress equations and 
discuss the difference between a Loose- and Tight-Fitting Pin and when to apply it in 
practice. 
The bearing stress between pin B and the beam, Member 1 requires the magnitude of the 
force between pin B and Member 1 in Figure 6: 

 

 
 

and the bearing stress for a Loose-Fitting Pin is: 
 

 
 

The bearing stress between pin B and Member 2 requires the magnitude of the force 
between pin B and the Member 2 in Figure 7: 

 

 



and the bearing stress for a Loose-Fitting Pin is: 
 

 
 

The bearing stress between pin C and Member 2 requires the magnitude of the force 
between pin C and the Member 2 in Figure 7: 

 

 
 

and the bearing stress for a Loose-Fitting Pin is: 
 

 
 
Part 3 – Maximum Axial Normal Stress in Centrically Loaded Member 2 
 
2-6. Complementary and Supporting Formulas. The cross-section normal stress in Member 1 

resulting from the axial load and the normal stress in the two-force Member 2 in terms of the 
symbolic dimensions are shown in Figure 7. 

 
The cross-section stresses require the dimension ‘h’ of Members 1 and 2, and the allowable 
minimum dimension is dependent on the pin diameters. We may specify a preliminary 
value of this dimension for each member, and this will be input to the calculation as 
variable h1_init and h2_init. 

  
The location of the pins from the outer edges of Members 1 and 2 will be guided by the 
recommendation in Appendix D that there be at least one hole diameter between the edge 
of the bar or plate and the edge of the hole. Thus, for pin A and Member 1 from Equation 
(D.4), 

 
 

 
For the location of pin B in Member 1: 

 
 

 
Given that h1_init is a proposed initial dimension, the minimum ‘h’ dimension for the 
uniform cross section of Member 1 would be the maximum of the three conditions: 

 
 

 
  



For the location of pins B and C in Member 2: 
 

 
 

Likewise, given that h2_init is a proposed initial dimension, the minimum ‘h’ dimension for 
the cross-section of Member 2 would be: 

 
 

 
In Member 1, the axial component of the pin forces at A and B would result in uniform 
normal stress if the pin centers are located at the centroid of the member’s cross-section. 
However, this stress is not the only stress on the cross-section because the pin force 
resultants are not collinear with the centroidal axis of the member. Therefore, we may 
calculate this contribution to the stress realizing that this is a combined loading case 
considered in mechanics of materials course. 

 
Note, if the axial force component BX on Member 1 is tensile, the maximum normal stress 
must be determined by calculating two pins and the section between points A and B. 

 

 
 

If the force component BX is positive (tension in section from A to B): 
 

 
 

The normal stress in the fork of Member 2 is determined from the forces FQ and FC, which 
may be tensile or compressive. The sense of the forces can be determined by the sign of 
either of its components, BX, BY, or CX, CY. If the force is tensile, (BX > 0, etc.), 

 

 
 
  



If the forces are compressive, (BX < 0, etc.), the normal stress in the center section of 
Member 2 is: 

 

 
 

Equations (Ph2.1) through (Ph2.26) can now be coded into a software program and the 
solution can be found in the next step. 

 
2-7. Solve. We can now calculate the pin shear stresses, the bearing stresses, and the axial uniform 

normal stresses in the centrically loaded Member 2 for any input values of dimensions and 
load Solving Phase 2. There are 26 equations for the 26 unknown stresses and angles in 
Equations (Ph2.1) through (Ph2.26). The solution can be easily solved by hand or using an 
engineering tool yields: 

  
 4,312 psi  827.6 psi 
 2,298.9 psi  53.13 deg 

 53.13 deg  53.13 deg 

 952.5 lbf  1,100.6 psi 
 1,335 lbf  1,851.2 psi 

 2,031.3 lbf  2,112.5 psi 

 2,031.3 lbf  4,694 psi 

 0.56 in  1.88 in 

 1.88 in  1.13 in 

 3.8 in  3.8 in 
 71 psi  383.3 psi 

 383.3 psi  534.5 psi 

 712.7 psi  -722 psi 
    

where the solution is presented above is the order of Equations (Ph2.1) through (Ph2.26). 
 

Appendix C: Pin in Hole Bearing Stress  
 
Referring to Figure C.1(a) and (b), a pin of diameter d is bearing against the plate of thickness t 
with a resultant force of magnitude R. Our objective is to determine the magnitude of the 
compressive stress exerted by the pin surface on the hole wall and, likewise, the hole wall on the 
pin surface.  
 
First, we will assume a Sung-Fitting Pin based on the following: 
 
• Assume a snug fit of the pin in the hole to ensure that the pin contacts the hole wall surface 

over the complete semicircular arc. 



• Assume that the compressive stress (pressure), p, of the hole surface against the pin surface 
(and the pin against the hole wall surface) is uniform over the arc of the contacting surfaces 
and acts normal to the contacting surfaces as shown in Figure C.1(d). We recognize this 
pressure as the compressive bearing stress on the pin and plate circular surfaces. 

 

 
Figure C.1. Pressure distribution for a Snug-Fitting Pin. 

 
From Figure C.1, one can determine the magnitude of the pressure, and the compressive bearing 
stress for a Snug-Fitting Pin as: 
 

                                                      
(C.1) 

 
Note that since the stress is force divided by an area, the area used for the contact stress in this 
pin connection is the pin diameter times the hole depth. This is the rectangular area shown in 
Figure C.1(e), commonly referred to as the bearing projected area. 
 
Second, we will assume a Loose-Fitting Pin based on the following: 
 
• Assume a close, but loose pin fit in the hole so that the pin does not make firm contact with 

the hole wall surface over the complete semicircular arc. This would be reasonable for a 
bearing application where relative rotational motion is expected. 

 
  



• Assume that the pressure, p, of the pin against the hole wall surface, is non-uniform over the 
arc of the contacting surfaces. A sinusoidal function may easily describe this. 

 
                                                   (C.2) 

 
where the pressure p is zero on both sides (θ = 0o, and 180o), and pm is the maximum pressure 
occurring at θ = 90o. This would be consistent with a loose pin fit in the hole. Figure C.2 
illustrates the form of this pressure distribution. 
 
The expression for the maximum pressure and maximum bearing compressive stress for a Loose-
Fitting Pin is: 
 

                                    (C.3) 
 
 
A Loose-Fitting Pin can occur in the construction of the connection. A loose fit can also happen 
when a significant difference in the plate and pin material and the load is applied, e.g., one is 
steel, and the other is plastic.  
 
The implication of all of this is that a conservative estimate of the bearing compressive stress on 
the pin or hole surface for a close-fitting pin should be somewhere between one and 1.3 times the 
resultant load divided by the projected area.  
 

                                                                  
(C.4)  

 
The least conservative lower value, R/td, for a Snug-Fitting Pin is most used. We assume a 
Loose-Fitting Pin since is it conservative. 
 

 
Figure C.2. Pressure distribution for a Loose-Fitting Pin. 



Appendix D: Shear Tearout Stress in a Pin Connection  
 
When a structural bar or a plate is connected to another object with a pin (which could be a bolt, 
a rivet, a straight or tapered shear pin, etc.), consideration must be given to the location of the 
pinhole relative to the edge of the plate. Figure. D.1 shows a bar (or plate) that is secured by 
means of a pin of diameter d, and the hole center is located at a distance Q from the edge of the 
bar. The bar is of thickness t. Due to the applied force F, consider the possibility of the pin 
shearing out the section of the bar to the left of the pin, as shown in Figure D.1(a). (This might 
be easier to imagine if the bar were made of wood with the grain was running parallel to its 
longitudinal axis.) 
 

 
Figure D.1. Shear tearout forces in pin connection. 

 
An estimate of average shear stress is very simple. From the free-body diagram of the sheared-
out piece in Figure D.1(a), the shearing force on each of the two shear surfaces is 
 

                                                                       
(D.1) 

 
The area of each shear surface, however, is a matter of judgement. The full area of each surface 
would naturally cover the space between the hole center and the edge of the plate. However, if 
we assume that the small tail around the pin has minimal contribution to the strength of the 
sheared-out piece, then the conservative analyst would opt for using the area corresponding to 
the space between the edge of the hole and the edge of the bar. We will elect to use that area, so 
each shear area is 
 

                                                         (D.2) 
 
  



The uniform average shear tearout stress on this area is calculated using: 
 

                                                 
(D.3) 

 
 
where F is the pin force with a line of action normal to the outer edge of the bar. It is assumed 
that the shear stress, , is the same on the top and bottom shear planes of Figure D.1. 
 
As we will show the students in a follow-up mechanics of material course, the shear strength of 
most engineering structural materials is approximately half of the normal tensile or compressive 
strength. If we then say that the maximum shear tearout stress should be no larger than one-half 
of the low value of the predicted range of compressive bearing stress, we might get a reasonable 
approximation for the bar dimension, Q – d/2 the bar. 
 

 
                                               

(D.4) 
 
 
 
Thus, a reasonable recommendation, rule of thumb, would be to have the edge of the hole at least 
one hole diameter away from the outer edge of the bar or plate as shown in Figure D.1 by Q. 


