
Paper ID #40320

Artificial Intelligence Solutions for System Design

Dr. Hugh Jack P. E., Western Carolina University

Dr. Jack is the Cass Ballenger Distinguished Professor of Engineering in the School of Engineering +
Technology within Western Carolina University. His interests include robotics, automation, and product
design.

Dr. Scott Rowe, Western Carolina University

Scott Rowe is an Assistant Professor in Western Carolina University’s School of Engineering + Technol-
ogy. He joined Western Carolina University in 2021 after studies in concentrated solar power and controls
engineering at the University of Colorado Boulder. Scott’s research relates to accessible and inexpensive
engineering equipment for laboratory education.

©American Society for Engineering Education, 2023

Artificial Intelligence Solutions for Digital Design

Abstract

Accessible artificial intelligence platforms, especially ChatGPT, are now available to solve
engineering questions. Here we evaluate this tool for finite state machine construction in Python.
With well-guided queries, ChatGPT built sensible code that implements a microwave oven
controller for hardware integration. However, to leverage ChatGPT user knowledge of the
programming task was necessary, which included schematics, input, and output delineation, and
debug expertise.

Special Note: ChatGPT was not used to author the paper except for items that are shown in the
Figures and Program Listing.

Introduction

In 2022 artificial intelligence became widely accessible through the release of ChatGPT, an
interactive platform that produces cogent text in response to user queries.1 Subsequently, the
growth of ChatGPT’s popularity, as measured by its user base, quickly outstripped the premier of
any prior application.2 Likely this tool, based on large language models and user feedback, will
affect the future of engineering education. By predicting “tokens” (characters or small assemblies
of characters) related to a user input the software can:

· Provide simple explanations of technical topics;
· Problem solve;
· Write and debug programs;
· Write and edit reports, memos, and correspondence, and;
· Suggest procedures and methods.

Notably, as a text generation platform, ChatGPT can write computer code in response to student
prompts, an ability that could hurt or help nascent engineers grow as programming students.3 To
assess this potential ChatGPT was recently probed with 40 software questions from a programming
textbook, where select queries required the authorship or modification of computer code.4
ChatGPT responses were 44% correct or partially correct.4 Thus, although ChatGPT can succeed,
students should approach artificial intelligence results with discretion. In its current state, the
application likely cannot enable the 33% of engineering students known to plagiarize answers,
although refinements in ChatGPT might improve the platform’s accuracy.5 Indeed, the large
language model AlphaCode, which is currently unavailable, ranks within the top 54.3% of human
programmers on code competition challenges.6 Thus, we expect that eventual improvements will

make artificial intelligence a capable programming tool. Herein we used ChatGPT to develop
scalable and structured code. Specifically, ChatGPT was used to construct a finite state machine
in the Python computer language for implementation on actual hardware. Putatively, the resultant
state machine could drive a microwave oven. This is a higher-order task that requires design
planning (state selection) and logical structure.7 We share lessons learned from ChatGPT use as a
development tool in this role. Overall, significant human knowledge of the programming problem
remains necessary despite the inclusion of artificial intelligence in this engineering task.

In 2022 AI reached a major milestone with the public release of Dall-E [1] which allowed the
general public to create images using plain text requests. This was followed by another product
called ChatGPT from the same company.

There has been a long history of artificial intelligence developments, such as the program Eliza,
developed in the 1960s [2].

These tools have captured public attention because of their approachability for simple inputs that
lead to complex outputs. In the engineering world, these can perform a wide variety of functions
including:

- Providing simple explanations of technical topics;
- Problem-solving;
- Writing and debugging programs;
- Writing and editing reports, memos, and correspondence;
- Suggesting procedures and methods;
- Solving simple problems;
- etc.

Surprisingly the tools were not developed for solving technical problems and have used less
focused training data. We can expect that more focused tools will be developed and available
within a timeframe of a few months to years.

Strategically these AI services will become an important part of an engineer’s toolbox. However,
they will change the way we approach our daily work and the education required to get there.

There are obvious concerns about academic integrity with this tool. In the paper, various
examples will be provided to illustrate what the tool can be used for. This should inform the
discussion about how it will be used by professionals and how we should prepare our students
for the new tool. There will also be a discussion of how our pedagogical methods should be
adapted. For illustration, this paper will primarily focus on state diagrams for the examples, but
the authors have explored other problem domains with similar results.

The Basics

ChatGPT searches and trains using common public data sets. It will give very good answers to
general questions. In the technical realm, that means many undergraduate problems with written
answers are easily found. In Figure 1 a question about state diagrams was quite informative.
Currently, the answers are purely text, i.e., no images, figures, graphs, equations, etc. This makes
it ideal for just-in-time learning, but it undercuts a traditional form of homework questions.
However, students using the same AI engine, e.g. ChatGPT, will have the same or very similar
answers.

Figure 1 - A Simple Query About State Diagrams

The tools are always learning but they are not infallible. Figure 2 shows a query made Feb. 3,
2023. The data set in the query is clearly exponential, but ChatGPT guesses that the function is
linear and does a simple linear calculation. When the same query was submitted 10 days later,
see figure 3, the response was much richer, but it is still trying to fit it to a linear function for a
resistor. It does not yet have the ability to identify a squared law device like a diode. This
requires that the engineer (or student) be able to critically analyze solutions and troubleshoot
when necessary.

Figure 2 - A Request to fit Data on Feb. 3, 2023

A second aspect of note is the complex form of the query. Typing a multiline problem statement
in a separate editor, and then copying and pasting, allows much richer queries. An essential
professional skill will be to create detailed and specific queries. In current practice students and
engineers spend a shorter time setting up problems, most of the time executing solution and
analysis methods, and very little time verifying solutions. Moving forward, the emphasis will
change to problem setup, the suggestion of problem-solving techniques, critical review of results,
and troubleshooting. It will be possible to solve more problems in the same amount of time.

Figure 3 - The Same Query as Figure 2 on Feb. 13, 2023

Complex Problem Definition

A sample of a state diagram for a microwave query is shown in Figure 4. It is a reasonable
solution for a homework problem. But, more work is required to relate it to the inputs, outputs,
and a timer for cooking.

Figure 4 - Using AI to generate a Problem Definition

Questions that a student would need to ask, for this solution, are listed below. Figure 5 shows
one of the answers to a basic question. The process of asking questions and defining the solution
is the major intellectual step of the process.

● Which state is selected during power-on?
● What inputs should I use?
● What outputs should I use?
● How should I set timer values?
● There are transitions without labels, what should I use?
● Why do two states have the same name?
● Etc.

Figure 5 - Follow-up Questions for the Design

Defining the Solution

At some point, enough information is gathered to start thinking about the implementation of the
system. If it is a software system this might include a data structure and big-picture flow
sequence, like a flowchart.

Figure 6 - Python Code for the Core System Design

The AI now has a structure to work with, and it will use again in future answers. The follow-up
request is shown in Figure 7 and Listing 1.

Figure 7 - A Subsequent Request to Add the Hardware Platform Information

import RPi.GPIO as GPIO
import time

class UWave:
 def __init__(self):
 self.state = "Off"
 self.beeper = False
 self.microwaves = False

 def update(self, start, stop, tleft, door):
 if self.state == "Off":
 if start and not stop and not door:
 self.state = "Cooking"
 elif self.state == "Cooking":
 if stop or door:
 self.state = "Off"

 elif tleft <= 0:
 self.state = "Done"
 elif self.state == "Done":
 if stop or door:
 self.state = "Off"

 self.beeper = self.state == "Done"
 self.microwaves = self.state == "Cooking"

GPIO.setmode(GPIO.BCM)
GPIO.setup(5, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(6, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(21, GPIO.OUT)
GPIO.setup(20, GPIO.OUT)

uwave = UWave()

while True:
 start = not GPIO.input(5)
 stop = not GPIO.input(6)
 door = not GPIO.input(13)
 tleft = 10 # Assume a constant value for tleft for
simplicity
 uwave.update(start, stop, tleft, door)
 GPIO.output(21, uwave.beeper)
 GPIO.output(20, uwave.microwaves)
 time.sleep(0.1)

Listing 1 - The Full Listing from Figure 7

At this point, the student/engineer has an almost complete program for the core functionality.
Adding a keypad, display, timer function, etc. would require more work but can be done with
careful definition of the system. The final stage is testing and troubleshooting. As before, the
student/engineer must apply intellectual effort to frame the right questions to probe the system,
interpret results, identify issues, query for solutions, and make corrections. Figure 8 shows a
possible debugging query for the program. There are a couple of cognitive steps needed to arrive
at this point and get a solution.

Figure 8 - Debugging the Program

For further interest, Appendices A and B provide examples of the state machine logic in other
languages.

Improving With Age – Industrial Controls

The original examples in this paper were generated with ChatGPT 3.5. This section provides an
example that has been generated with ChatGPT 4.0. The query is shown in Figure 9. It is worth
noting that the response was much more mature that the response in Figure 4.

Figure 9 – A microwave Over State Diagram Using ChatGPT 4 on May 1, 2023

The program language options are also developing. For example, an IEC 61131-2 Structure Text
(ST) program is shown in Figure 10. A ladder logic program is shown in Figure 11. These
programs do not include all of the elements required for a full industrial control system, but they
do provide parts of the program.

Figure 10 – Structure Text Program for Figure 9 Microwave State Diagram

Figure 11 – Ladder Logic Program for Figure 9 Microwave State Diagram

Finally, ChatGPT was asked for a materials list. The result is shown in Figure 12. This illustrates
where the value decreases. An experienced designer would not need this list, but it could be
useful as a pre-order check list. For students, this list could act as a list on par with hints from a
professor.

Figure 12 – Controls Cabinet Parts List (Partial) for Microwave Control

Conclusion

The tools decrease the time required to perform tedious tasks like writing reports and algorithms.
Instead, the engineer must be able to define a problem clearly for the AI tools. For example,
more time should be spent on specifications and concepts and less time on detailing. But, the
engineers must develop better test plans to verify the work of the AI.

As educators, we have focused on the ‘how of problem solving’ with methods such as mesh
current analysis, method of joints in trusses, and solving differential equations. The new
emphasis will need to become the ‘why of problem solving’ with more time setting up
schematics, free-body diagrams, and other models. But instead of spending time solving
problems, students will need to spend their time testing and verifying models.

References
1. Thorp, H. H. ChatGPT is fun, but not an author. Science vol. 379 313–313 (American
Association for the Advancement of Science, 2023).
2. Dennean, K., Gantori, S., Lima K., D., Pu, A. & Gilligan, R. Let’s Chat About ChatGPT.
(2023).
3. Rowe, S. C. & Nuttelman, C. R. A MATLAB Assignment Framework for Engineering
Education that Automates Grading. (2022).
4. Jalil, S., Rafi, S., LaToza, T. D., Moran, K. & Lam, W. ChatGPT and Software Testing
Education: Promises & Perils. arXiv preprint arXiv:2302.03287 (2023).
5. Bertram Gallant, T., Van Den Einde, L., Ouellette, S. & Lee, S. A systemic analysis of
cheating in an undergraduate engineering mechanics course. Science and engineering ethics 20,
277–298 (2014).
6. Li, Y. et al. Competition-level code generation with alphacode. Science 378, 1092–1097
(2022).
7. Rowe, S. C., Samson, C. I. & Clough, D. E. A framework to guide the instruction of industrial
programmable logic controllers in undergraduate engineering education. Education for Chemical
Engineers 31, 76–84 (2020).
8. openai.com, last accessed May 1, 2023.
9. Oettinger, A. G., “Eliza - A Computer Program For the Study of Natural Language
Communication Between Man and Machine”, Communications of the ACM, January 1966, Vol.
9, Num. 1, pg. 36-45.
10. Brady, J., “AI-designed Chips Reach Scale with First 100 Commercial Tape-outs Using
Synopsys Technology”, https://news.synopsys.com/2023-02-07-AI-designed-Chips-Reach-
Scale-with-First-100-Commercial-Tape-outs-Using-Synopsys-Technology?s=31, accessed,
February 22, 2023
11. Williams, T., “Some companies are already replacing workers with ChatGPT, despite
warnings it shouldn’t be relied on for ‘anything important’”, Fortune Magazine Online,
https://fortune.com/2023/02/25/companies-replacing-workers-chatgpt-ai/, accessed February 28,
2023

Appendix A - The State Machine Program in VHDL

library ieee;
use ieee.std_logic_1164.all;

entity uwave is
 port(
 start : in std_logic;
 stop : in std_logic;
 tleft : in integer;
 door : in std_logic;
 beeper : out std_logic;
 microwaves : out std_logic
);
end entity uwave;

architecture behavior of uwave is
 type state_type is (Off, Cooking, Done);
 signal state : state_type := Off;
begin
 process(start, stop, tleft, door)
 begin
 case state is
 when Off =>
 if start = '1' and stop = '0' and door = '0' then
 state <= Cooking;
 end if;
 when Cooking =>
 if stop = '1' or door = '1' or tleft <= 0 then
 state <= Off;
 elsif tleft <= 0 then
 state <= Done;
 end if;
 when Done =>
 if stop = '1' or door = '1' then
 state <= Off;
 end if;
 end case;
 end process;

 beeper <= (state = Done);
 microwaves <= (state = Cooking);
end architecture behavior;

Appendix B - The State Machine Program in C

#include <stdbool.h>

typedef enum {
 Off,
 Cooking,
 Done
} State;

State state = Off;
bool beeper = false;
bool microwaves = false;

void update(bool start, bool stop, int tleft, bool door) {
 switch (state) {
 case Off:
 if (start && !stop && !door) {
 state = Cooking;
 }
 break;
 case Cooking:
 if (stop || door || tleft <= 0) {
 state = Off;
 } else if (tleft <= 0) {
 state = Done;
 }
 break;
 case Done:
 if (stop || door) {
 state = Off;
 }
 break;
 }
 beeper = (state == Done);
 microwaves = (state == Cooking);
}

