
Paper ID #40276

The Superstition Lecture: The Music Theory of Stevie Wonder as a
Metaphor for Computing Levels of Abstraction

Dr. Matthew Morrison, University of Notre Dame

Matthew A. Morrison is an Associate Teaching Professor of Computer Science and Engineering at the
University of Notre Dame. He is a Senior Member of the IEEE and the ACM, and the co-organizer of the
Design Automation Conference Summer School. Dr. Morrison has won Best Paper Awards at the IEEE
Integrated STEM Education Conference, Cadence CDNLive, and the IEEE VLSI Symposium. He was
the recipient of the 2018 NACADA Global Academic Advising Award for Faculty.

©American Society for Engineering Education, 2023

The Superstition Lecture: The Music Theory of Stevie Wonder as
a Metaphor for Computing Levels of Abstraction

Matthew Morrison
University of Notre Dame

Abstract

Effectively conveying the importance and breadth of computing at every level of abstraction to
students through instruction is emerging as a critical challenge to cultivating the next generation
of computer scientists. Students should not only learn the science and engineering of computing,
but enjoy computer programming as an art form in order to effectively promote computational
thinking. In this paper, an extended metaphor of the levels of abstraction in a computer and
Stevie Wonder's seminal hit song Superstition is presented. Superstition is widely studied in
introductory music theory classes to show how the repetitive grooves of funk music create a
powerful and complex flow, and how that flow allows musical artists to use harmonic
progression, vocals, and instrumentation to imbue songs with deeper meaning. Likewise, the
repetitive processing in a computer architecture creates a power and complex data flow, which
allows computer scientists to use data structures and algorithms, procedural and object-oriented
programming, and logic design to imbue programs with efficiency, usability, and robustness.

The Superstition Lecture is presented as a course review for CS0, CS1, and CS2 computer
science courses, as well as a preview for future course material. Because these courses are pre-
requisite for most CS courses in academic curricula, reinforcing the importance of the concepts
they have learned - and tying them to future concepts - is critical for setting students up for
success. We present Stevie Wonder’s use of synthesizers, drum figures, ostinato, and cadential
progression in Superstition as a form of “musical computer programming”. These comparisons
provide introductory students insights into advanced computing concepts, including machine
learning algorithms, hardware side-channel attacks, and the importance and career benefits of
diversifying computing skills at several levels of abstraction.

Keywords

Levels of Abstraction, Metaphors, Computer Science, Computer Engineering, Paradigms

Motivation: Music and Fluency in Computing Levels of Abstraction

The notions of computer science as an art form itself and as a platform for creative minds to
exercise new artistic direction have been intertwined since Ada Lovelace envisioned a future
where computer served as more than calculator machines.1 Her insight into the potential for
computing machines stemmed in part from her dedicated study of the piano, singing, and as a
harpist.2 Since music and the “fundamental relations of pitched sounds” may be quantified as a
science of the harmony of expression, she envisioned a computing machine that could compose
elaborate pieces of music to any computable degree of complexity.

While the extent, capability, and ethical ramifications of a computing device to “think” and

“create art” have long been debated by computer scientists, many pioneers in the field will argue
that the process of designing a computer program is similar to composing music or poetry.
Donald Knuth begins his magnum opus The Art of Computer Programming with the argument
that a computer scientist who understands computer programming at several levels of abstraction
will find the process aesthetically pleasing3 “much like composing poetry or music.”3 Professor
Knuth had three crucial characteristics in common with Ada Lovelace: a strong understanding of
mathematics, a passion for music, and an understanding of the connection between the two.

In fact, universities have long observed a correlation between success in the computing field and
musical proficiency, and that the highest scores on the admissions tests and best performers in the
major are often “people with a background in music.”4 At the University of (removed for double
blind), the highest percentage of majors in the Marching Band reside in Computer Science and
Engineering. The fundamental skills of identifying and manipulating patterns are the same in
musical composition and program development. Music and programming require the ability to
view the composition at multiple levels of abstraction using spatial and temporal reasoning.
Schenkerian analysis is an approach to music theory where tonality in a musical composition
represented in “structural levels of abstraction”, where music form itself is defined as “an energy
transformation, as a transformation of forces that flow from background to foreground through all
the levels.”5 Musical composers must understand how to compose a symphony using a variety of
instruments, including drums, strings, brass, and woodwinds, and use those to convey emotion and
meaning. Likewise, computer programmers understand these levels of abstraction - logic design,
computer architecture and organization, compilers, and procedural and object-oriented
programming, and computational algorithms all within an operating system – in order to
effectively utilize computing devices towards solving complex problems.

Effectively conveying the importance and breadth of every level of abstraction to students through
instruction is emerging as a critical challenge to cultivating the next generation of computer
scientists. Imbuing fluency in computing at several levels of abstraction has always been
challenging, but it has become more difficult for a novice programmer to visualize in their mind as
computers advance in complexity. Students feel they send their program into a “black box”, and
the results are spit back out. Learning concepts like memory management, logic design, and
computational complexity are increasingly viewed by students as unnecessary nuisances instead
of critical skills. For example, students who grew up using Google Drive are having an
increasingly difficult time understanding basic concepts of traversing file systems since they’ve
never had to use them.6 CS1 and CS2 instructors have to devote valuable lab time to teaching
students what a file system is, yet students increasingly question the importance of understanding
UNIX file pointers and hierarchies, a pedagogical challenge unthinkable a mere 5-10 years ago.
In hardware specific fields, this phenomenon is a major factor in the decline in Computer and
Microelectronics Engineering major enrollments, which now barely consist of 10% of all
computing majors.7,8 Counterintuitively, the easier it has become for the public to gain access to
computing devices, the more challenging it has become for aspiring computing professionals to
apply spatial and temporal reasoning in developing programming proficiency.

Challenges of Using Music Theory as a Computing Composition Metaphor

The use of classical or contemporary music in a computational metaphorical framework has its
own challenges and pitfalls. While there are correlations between graduation outcomes of

musically-inclined students and computer science degree recipients, it is not a one-to-one
mapping, so computer science instructors should not assume musical ability, proficiency, or
theoretical understanding. Furthermore, some students simply find artists like Mozart, Beethoven,
and Bach “boring”, and using their compositions in a metaphorical framework may lead to
reduced cognitive engagement, especially in an 8am class. Any music-computing metaphorical
framework in a CS0-CS2 course should introduce the music theory “just enough” for the student
to correlate what they hear with a visualization of a correlated programming concept.

Some popular songs contain content that may be considered vulgar, politically divisive, or
discriminatory by some students. Editing lyrics may assuage some students concerns, but other
students view those modifications as an unethical form of artistic censorship. Other popular
songs – while catchy and interesting to students – are popular in part because of their simplicity.9
Concision, brevity, and digestibility drive modern pop music. Songs composed using a simplistic
approach may increase student cognitive engagement, but may not be sufficient for use as a
metaphorical tool for conveying a concept as fundamental, yet extensive as the levels of
abstraction in a computing device. Songs that briefly attained popularity are often considered
awkward, unappealing, or inappropriate by future generations of students, meaning that any
metaphorical framework using recently popular songs may need to be rapidly edited or removed,
adding excessive or unnecessary work to future lesson planning.

Music composed with the aid of computer software, such as Autotune, is disliked by many
students who feel those artists are using computers to overcome talent deficiencies.10 This
apprehension to exploring the overlap between computers and music by many students is a
barrier to effective cognitive engagement in a computer science class. Addressing this taboo is
crucial, since technologies like Moog synthesizers use underlying computational frameworks and
levels of abstraction similar to what CS students observe in their classes.

Target Audience and Pedagogical Benefits of Stevie Wonder’s ‘Superstition’

Because of this myriad of challenges, many CS instructors understandably avoid using music as
a pedagogical tool in the introductory CS courses entirely, missing an opportunity to engage with
students in a way that they enjoy and has meaningful parallels to effective programming
practices. In this section, we will describe the motivation for specifically using Stevie Wonder’s hit
song Superstition as a metaphorical tool in computation composition, as well as how the song
addresses the concerns raised in the previous section.

Superstition,12 the first single from Stevie Wonder’s album Talking Book, was the #1 hit song in
1972, was awarded multiple Grammy Awards, and was ranked as the twelfth-greatest song of all
time by Rolling Stone Magazine as recently as 2021.11 Talking Book was the second album in a
five-album sequence commonly referred to by Mr. Wonder’s fans and music theorists alike as his
“Classic Period” due to his mastery and application of music theory. The “Classic period” has been
referred by several critics as “the greatest creative run in the history of popular music.”13, 14
Superstition has inspired documentaries 15, 16, theoretical discussions 17, lectures in introductory
music theory classes18, and dissertations.19, 20 Superstition has been performed live by Mr. Wonder
in environments as ranging as the educational Sesame Street program21 and for the President at the
White House22. Superstition’s pedagogical benefits and appropriateness for the classroom are well
investigated and vetted by academic, government, and cultural organizations.

In 1971, Stevie Wonder turned 21 years old, which meant that his contract with Motown Records
was set to expire. He was frustrated with the creative and artistic limitations of his original
contract,23 and he expanded his natural musical talents in two ways that lend his music well to
computational metaphorical frameworks. First, he felt ideologically limited by the traditional
keys, rhythms, and harmonic progressions of the Motown quality control board, saying “I wasn’t
growing. I just kept repeating the Stevie Wonder sound and it didn’t express how I felt about
what was happening in the world.”24 So he took both traditionally classical and modern twentieth
century music theory classes at the University of Southern California. He applied his new-found
understanding of both classical and non-classical songwriting order to strengthen and
complement his already-prolific harmonic and rhythmic composition skills.

Similarly, many modern programming paradigms have their foundations in legacy computing
systems, and understanding their origins strengthens a student’s capability for applying advanced
concepts at different levels of abstraction. For example, studying the infamous Civilization video
game integer underflow error leading to Mahatma Gandhi’s game character – renowned for his
doctrine of non-violent resistance – to have an “aggressiveness” score of 255 out of 10 instead of -
1, or simply rounding off at 025 can drive home the importance of studying data types. This
amusing and relatively harmless example opens the door for more serious examples, such as the
integer overflow error that caused six thousand 911 calls to not be routed to Public Safety
Answering Points26 and the inertial guidance system overflow that led to the explosion of the
European Space Agency Ariane 5 rocket27. Students gain a deeper appreciation for emerging
overflow issues, such as the Year 2038-time epoch bug plaguing Unix-based systems.28 During
The Superstition Lecture, we review these lessons and note that understanding traditionally
classical programming challenges will help them adapt to modern twenty-first century challenges,
just like Stevie Wonder did when he took music theory classes. The lesson is that even the most
gifted musicians and programmers can improve their composing proficiency by gaining a deeper
understanding of the capabilities and limitations of their instruments.

The second innovation in Stevie Wonder’s music that lends itself well to a computer science
metaphorical framework is his adoption of synthesizers into his music composition. His feelings of
creative confinement were not limited to Motown’s compositional control or ideological
restrictions. He felt there were sounds in his mind that he couldn’t get out into the real world with
Motown’s orchestra or conventional instruments.29 He was introduced to Malcolm Cecil and Bob
Margouleff, who produced albums on the world’s largest and most advanced music synthesizer at
the time “The Original New Timbral Orchestra.” (TONTO) The technical innovation in TONTO
was the combination of Moog analog synthesizers (invented only 5 years earlier), undulating ARP
synthesizers for tuning modular systems, and guitar technology developed by Jimi Hendrix for
Electric Ladyland. While the first commercial albums using synthesizers were Switched on Bach
by Wendy Carlos (1968) and Zero Time by Cecil and Margouleff themselves (1971), the first
albums to gain commercial and critical success using synthesizer technology were Stevie
Wonder’s albums from his “Classic Period”. Introducing TONTO in this way helps break down
the taboo that students may have towards using technology in composing music.

More importantly, discussing Stevie Wonder’s appreciation for TONTO is an opportunity to help
students appreciate the foundations of computing itself. Malcolm Cecil recalled Stevie as saying “this
is much more like the music that is in my mind” when he first started experimenting with composing
music with TONTO.29 The foundation of computing as a discipline is based on the study and

mechanization of thought itself. The philosopher Thomas Hobbes wrote in his book Leviathian in
1641, “By ratiocination, I mean computation… all ratiocination is comprehended in these two
operations of the mind, addition and subtraction.” When Ada Lovelace wrote the sequence of
operations for the Analytical Engine – widely considered the first computer program - the operations
were addition, subtraction, multiplication and division (which were just repeated additions and
subtractions), and storage2, just as Hobbes posited. In the foundational paper of computer science,
Alan Turing was studying the Entscheidungsproblem, which is German for “decision problem.” And
in 1958, when the members of the Association of Computing Machinery (ACM) debated the term
that would be used for the emerging field (which eventually became computer science), two potential
terms were “applied meta-mathematics” and “applied epistemology”.30 Based on these ideas,
computer science is the mathematical theory of thought, computer engineering as the development of
decision machines that effectively implement those algorithmic principles, and programming as the
process of using the theory of thought to conduct the decision machine.

Stevie Wonder was leveraging all three paradigms when he recorded albums in TONTO during his
“Classic Period”. He was using a computing machine and his study of the science of harmony in
concert, just as Ada Lovelace envisioned, which we may consider as a form of musical computing
science. He worked with Cecil and Margouleff to modify TONTO’s wiring to perform analog
modulation to maximize the “funkiness” of his sound, which can be a musical computer
engineering. By leveraging the technology of TONTO to overlay and compose melodies, he wasn’t
just playing music, he was programming the “music in his mind”. It’s not a coincidence that the
first three albums he released while recording in TONTO were called Music of My Mind, Talking
Book, and Innervisions. Specifically, on Superstition, Stevie Wonder is performing every
instrument except the saxophone and trumpet, controlling every level of abstraction.

Target Audience, Prerequisites, and the Introduction of The Superstition Lecture

The Superstition Lecture has been presented to three sections of a CS2 Data Structures course
taught primarily in C++ (395 total students), two sections of a CS1 Introduction to Computing
course, where C and C++ are the primary languages (124 total students), and one section of a CS0
Principles of Computing for Freshman Business majors that covers Python, HTML, CSS, and a
brief introductory sequence in PyRTL29, a Python library for implementing hardware register
transfer instructions (35 students). There are crucial fundamental concepts required for students to
understand how to compose a computer program, regardless of programming maturity, so that the
major concepts covered in The Superstition Lecture are relatable to material covered during the
semester. But we note here that, because of the differences in topics and programming maturity
across those courses, there are some necessary tweaks required between courses, which we outline
below. We also assume no music theory prerequisite in the design of the lecture. In Table 1 below,
we compare the levels of abstraction discussed in the CS courses with the levels of Superstition.

Figure 1: Comparison of Levels of Abstraction in Computer Science and Music Theory in The Superstition Lecture

The first part of the introduction of The Superstition Lecture is a brief discussion of Stevie
Wonder’s career, his study of music theory, and the history of TONTO. A brief clip of a
documentary where Malcolm Cecil is interviewed discussing how Stevie Wonder used
technology to perform “the music in his mind” is played.30 A short clip of Cecil adjusting wires
and knobs while Stevie Wonder performs23 is played to emphasize the idea of music composition
at different levels of abstraction on a synthesizer. In the CS0 course, the concepts of Analog and
Digital signals are covered, so we review that material here. Next, we tell students that Malcolm
Cecil was initially a Radar Technician in the British Royal Air Force and experimented with
electronics and jazz based on what he learned in the military. The plugboards in TONTO are
then compared to Alan Turing’s Bombe machine developed to decode the Enigma cipher in
World War II. Students learn that the same fundamental technology that enabled the creative
process used by Stevie Wonder to record Superstition was the same that enabled the Allies
employ the rapid counterintelligence used to ultimately defeat the Nazis, and that the differing
approaches to programming on the same technology are known as programming paradigms.

For the CS0 course, we review the differences in implementation between Python, HTML, CSS,
and PyRTL for introductory logic design. The CS0 students design their own basic Finite State
Machines in this course, so this topic for the final exam is reviewed. For the CS1 course, we
discuss the differences in the programming paradigms of the C and C++ languages in the context
of procedural and object-oriented programming paradigms, and why they were studied. For the
CS2 Data Structures students, a brief preview of the required Programming Paradigms course is
presented, and which specific topics from the CS2 course will be crucial for their success.

Funk Drum and Figures, Computer Architectures, and Assembly Language

We use the funk drums in Superstition as a metaphor to help students understand the importance
of understanding the underlying hardware in a computing device. In Superstition, the song
begins with 8 measures of a famous funk drum beat. Stevie Wonder is playing the drums on a
simple kit consisting of a bass drum, a snare drum, a high hat, and one cymbal, and he is only
using three tracks to record the drums. And funk is all about timing. The drum beat is essentially
a two-measure repeated drum phrase. The drum beat includes a bass “kick” on every beat (aka
“four on the floor”), which means the bass drum is serving as the song’s clock signal, with a
snare drum on every other beat. But he is able to improvise flourishes with the confines of that
steady beat in order to give the song depth and uniqueness.

In the CS0 class, the concepts of frequency, clock generation, and synchronization are covered at
a high level, which introduces the opportunity to review those concepts. In the CS2 course, the
concept of clock skew that they will cover in the Computer Architecture course is compared to
Stevie Wonder’s proclivity for improvising within the beat, yet maintaining the timing of the
song. For the CS1 and CS2 students, I mention that they will study a Reduced Instruction Set
Computer (RISC) in their Computer Architecture course, and that RISCs were designed to
reduce the complexity of the hardware in exchange for reusing common assembly code
instructions. Then, I review the memory management topics specific to those courses, indicating
that simple microarchitectures are the underlying principles behind pointers, static and dynamic
memory allocation, and stack and heap memory space. In the CS1 course, we review an
assignment where students determined the difference in performance of storing the results of the
Fibonacci sequence in static and dynamic memory.

Finally, the introductory drum solo is played again. I mention that this drum solo is being used to
set up the funk rhythm for the rest of the song, and that operating systems in computers use
bootstrap programs to perform a similar purpose. The introductory drum beat is 98 beats per
minute, but the rest of the song itself is faster at 106 beats per minute. Likewise, a computer
needs to load the BIOS, perform tests, instantiate simple driver programs, and load the entire
operating system before running more complex programs. These are preview topics in the CS1
and CS2 class for the Operating Systems course for majors, and a review of the concept of
bootstrapping covered in the OS overview lecture sequence in the CS0 course.

Next, we briefly cover that RISC architectures are dependent upon compiler optimizations which
effectively translate high-level code into assembly and machine languages, just like funk drum
beats and funk bass lines are interdependent. In each course, the students get a brief interaction
with assembly language to introduce broader concepts of how code is interpreted by a computer
(CS0), memory management and pointers (CS1), or how memory is dynamically allocated to build
a data structure at run time (CS2). They do not write assembly language in these courses, but
having some intuition of how to read assembly will help them with programming at different levels
of abstraction. The purpose of the discussion of the bass in Superstition is to reinforce this concept.

The “bass” in Superstition is actually a clavinet track that Stevie Wonder plays instead of a bass
guitar. The bass riffs are designed to build “anticipation” for the next cycle. There are variations
on the riffs, but they fit within a clear pattern, a trait in funk music called circumscribed
variability18 Likewise, RISC architectures and assembly languages possess the trait of
circumscribed variability through the implementation of Register (R-type), Immediate (I-type),
and Jump (J-type) instructions. But they have specific constraints, such as the same size
architecture, or having stages of the instruction completed by the next clock cycle. To drive this
point home, we first play a sample of the bass clavinet track from Superstition, then the bass and
drums together. In Superstition, the ostinato – the repeated musical phrase or rhythm - is
established by the next 8 measures of the song with the bass clavinet track and the drums before
any singing or horns are introduced. Then, we play the bass only with an animation of a set of
assembly instructions. Finally, we play the bass and drums with an animation of a set assembly
instructions and the representation of how those assembly instructions flow through a MIPS
single-cycle architecture. The students can visualize the interaction of hardware and assembly
language as the hear the interaction of the drum and bass clavinet track.

Clavinet Tracks, Cadential Progression, and Programming Paradigms

Superstition has three Clavinet tracks, as well as a delayed version of the main Clavinet riff, and
Stevie Wonder strategically layers the tracks over each other to provide depth and feeling. The
ostinato with the bass and drums provides the rhythm, but the clavinets are used to convey the
foundations of the song’s meaning. Likewise, a procedural programming language like C gives the
programmer the capability to direct the computer to perform a task. In the CS1 and CS2 class, the
casting of void pointers to types gives the allocated memory meaning in the context of the
program. We convey this metaphor by playing the drums, bass, and one clavinet track as a void
pointer, and then layer the main riff on top of them as an example of casting the pointer to a type,
giving the song and program deeper meaning. In the CS0 course, they are shown an animation
assembly language and basic Python programming fitting together in a similar manner.

In each class where we’ve introduced The Superstition Lecture, the main differences between
procedural and object-oriented programming paradigms are detailed, although it is discussed in
much more detail in the CS1 and CS2 courses, since both courses switch between C and C++ to
emphasize course principles at different levels of abstraction. In the CS0 course, Python is the
base language and supports procedural and object-oriented programming paradigms.

Next, we give a high-level overview of the composition of the clavinet tracks. In funk music, the
groove is composed in order to compel the audience to anticipate the beginning of the beat to
follow its ending. In essence, funk grooves call themselves until the pattern is no longer called.17
At that point, I ask the students for a programming technique where a piece of code or task calls
itself, unless it reaches a case where it no longer calls itself. In every class, several students
immediately identify the solution as recursive calls. In Superstition, the clavinet tracks are used
to promote the repetitive grove, and a stop-time effect followed by a crescendo is used to
indicate the base case of the funk groove.

Finally, we select pairs of clavinet tracks to play together to show the students how Stevie
Wonder “fit” them together. When select subsets of the tracks are played together, they can sound
awkward, and students appear visibly confused. We explain that Stevie Wonder used his new
understanding of music theory to combine the clavinet tracks to induce “ghost notes”, where the
listener “hears” notes in their own head that the artist is not playing.14, 18 We use this opportunity
to correct a common student misperception about artificial intelligence in computer science. AI
algorithms are designed to derive approximate solutions that are not currently known, such as new
art or essays. But these solutions are based on previous information, which means the computer is
trying to return a solution that isn’t there. We then present real-world ethical issues in AI, such as
ChatGPT or using AI to select who to hire based on past hiring practices.

Horn Tracks, Object-Oriented Programming, and Side-Channel Attacks

The horn tracks are introduced as a metaphor for object-oriented programming. In the CS0 course,
we review several Python libraries which allowed them to compose more robust and extensive
programms, such as os.path, Image, ipywidgets, PyRTL, and tornado. In the CS1 and CS2
classes, this is an opportunity to discuss the differences between C and C++. We also use the horn
tracks and vocals as a metaphor for the data structures covered in the course, as the horns and vocals
are used to structure the meaning of the song. In the CS0 course, Python lists, dicts, and string
operations are reviewed. In the CS1 course, we review the construction and freeing of memory
when building singly and doubly linked lists in C++. And in the CS2 course, we review the lists,
trees, queues, stacks, heaps, STL, and graph data structures covered in the class.

The lyrics of Superstition also reflect the recursive case and base case of the groove flow. When
he is playing the “recursive case: groove, repetitive measures, he lists common superstitions.
“Very superstitious, Writing's on the wall / Very superstitious, Ladders bout' to fall.” But when
he plays the “base case” groove, he implores with the listener to not fall for superstitions. As he
sings “when you believe in things you don’t understand / you will suffer”, he builds up the
tension that contrasts with regular groove. Then, implements the stop-time effect when he sings
“Superstition ain’t the way”, immediately followed by a crescendo of horns, clavinet tracks, and
drums. By singing the message of his song while playing the base case, he effectively contrasts
that message with the superstitious behaviors he is critiquing in the recursive case.

Next, we show a visual representation of the horn track on Superstition (shown in Fig. 2 below).
The large spikes represent the trumpet and saxophone sound, but notice on the left the small spike.
We ask the students what they think that sound might be. After some guesses, we play the sound to
reveal that is one of the horn players coughing. After the students laugh, we introduce the concept
of side-channel attacks which use mathematical analysis of power spikes to steal information from
a computing device, regardless of the secure software. They learn this is a common issue in smart
card technology found on credit cards, and we share the story of how a North American casino was
hacked when a side-channel attack was performed on an internet-connected fish tank.31 The lesson
imparted on the students is that software is not an amorphous blob. Software goes onto physical
hardware, and understanding the entire computing ecosystem will strengthen their skills as a
software engineer, even if they are remiss to learn hardware design.

Figure 2: The cough (circled) in the horn track of Superstition used as a Side-Channel Attack Metaphor

Finally, we discuss how programming paradigms may be used in different ways to convey ideas,
or as a different take on the same idea. Superstition was co-developed by guitarist Jeff Beck, who
was collaborating with Mr. Wonder on songs in TONTO, and who wrote his own rock version.13

Beck’s version uses a reverb guitar to give a “superstitious” feeling. I point out that both Stevie
Wonder and Jeff Beck use the same drum beat, and that funk drum beats can be used in both
R&B and Rock to convey the same idea, just like different programming languages like Python,
C, C++, or Java can use the same architecture to accomplish similar tasks.

Lecture Conclusion and Student Anecdotes

The Superstition Lecture is concluded with a discussion of a motivator for Stevie Wonder to learn
music theory and experiment with TONTO in the first place. He didn’t just feel ideologically
limited in his music. He felt improperly compensated for his music. For each 98-cent album he
sold, he made only 2 cents. But by programming his own music using TONTO, he was able to
record Music of My Mind without the need for Motown’s orchestra.23,32 Since he was no longer
under contract, he leveraged his skills to obtain unprecedented creative control and compensation
for his music. We then tell the students that, even if they have their heart set on a computing
specialization, that diversifying their understanding of computing will empower them to seek out
a wider ranger of job opportunities, negotiate better salaries, and withstand shifts in the market.

The student feedback on The Superstition Lecture is primarily anecdotal and mostly euthanasic.
Students regularly email feedback from when they remember a topic that we discussed in a future
course or in an internship setting. Specifically, the CS2 students indicate the course helped them
with their motivation for the subsequent Programming Paradigms course, and with picturing the
movement of data with the MIPS architecture in the Computer Architecture course. Students in
the CS1 course indicate they remembered lower-level concepts when they took the Logic Design
course. And several CS0 students indicated on the Course Instructor Feedback that they loved the
“unique and exciting” review. Occasionally, a student will indicate they did not like the lecture,
and those comments are always couple with a comment similar to “I just don’t learn very much
from metaphors.” Finally, several ROTC students indicated that they appreciated the connection
between Superstition, the levels of abstraction, and military history.

References

1 Menebras, Luis and Ada Lovelace, “Notions sur la machine analytique de M. Charles Babbage”,
Bibliothèque Universelle de Genève, Paris: Anselin, 1842, pp. 352-376.

2 “Ada Lovelace: how the maths genius saw the future of music”, Classical Music - BBC Music, Jan 31,
2023, https://www.classical-music.com/features/artists/ada-lovelace/.

3 Knuth, Donald, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-Wesley,
Reading, Mass, USA, 3rd edition, 1997.

4 K. Melymuka, “Why musicians may make the best tech workers”, CNN, July, 1998.
5 Jonas, Oswalt, “Introduction to the Theory of Heinrich Schenker: The Nature of the Musical Work of Art”,

Musicalia Pr, 1934.
6 Chin, Monica, “File Note Found: A generation that grew up with Google is forcing professors to rethink

their lesson plans”, The Verge, Sep 2021.
7 Dillinger, Tom, “A Crisis in Engineering Education: Where are the Microelectronics Engineers?”,

SemiWiki, July, 2022.
8 Morrison, Matthew, “EDA Education – Challenges and Opportunities”, CadenceLIVE, September, 2022.
9 Pareles, Jon, “Want a Hit? Keep It Simple: Pop Songwriting and the Spirit of a New Simplicity”, The New

York Times, December 31, 2010, https://www.nytimes.com/2011/01/02/arts/music/02simplicity.html.
10 Sclafani, Toni, “Ow, my ears! Autotune is ruining music”, NBC Today, June 2, 2009,

https://www.today.com/popculture/oh-my-ears-auto-tune-ruining-music-1C9424663
11 “The 500 Greatest Songs of All Time: #12 Stevie Wonder, Superstition”, Rolling Stone Magazine,

September, 2021.
12 Wonder, Stevie, “Superstition”, Album: Talking Book, Motown Records,
13 Hamilton, Jack, “Stevie Wonder’s Classic Period: The Greatest Creative Run in the History of Popular

Music”, Slate Magazine, Dec 19, 2016.
14 Jones, Bomani and Spencer Hall, “The Right Time: Bomani Jones & Spencer Hall talk Kwame Brown and

celebrate Stevie Wonder's birthday”, ESPN, May 19, 2021, https://youtu.be/iUcihzoAVe8.
15 “Songs that changed Music”, Produce Like a Pro, May 25, 2022, https://youtu.be/J9_S-RESrV8
16 Keene, K.W., “The Fascinating Tale Behind the Making of Stevie Wonder’s Superstition”, Rock Music

History Lesson, March 2022. https://youtu.be/syRygJ3nlnY
17 “Understanding Superstition”, 12tone, July 3rd, 2020, https://youtu.be/3dhtX5c45so.
18 Lam, George, “Syllabus for MUS 208 – Music Theory I”, CUNY York College, August 2020,

https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1013&context=yc_oers.
19 Lovell, Jeffrey, “An Exploration of the Melody, Harmony, and Improvisation in the Music of Stevie

Wonder”, Dissertation, University of Oregon, May 2012.
20 Hughes, Timothy, “Groove and Flow: Six Analytical Essays on the Music of Stevie Wonder”, Dissertation,

University of Washington, 2003.
21 Stevens, Dana, “Stevie Wonder Week: When Stevie Rocked Out on Sesame Street”, Slate Magazine,

December 2016.
22 Bloom, Julie, “Gershwin Prize for Stevie Wonder”, New York Times, September 2008.
23 “Meet TONTO, the machine behind Stevie Wonder's Superstition”, CBC News, November, 2018.
24 Gibbs, Mya, “A Story of Stevie Wonder’s Journey Through Creative Expansion”, Black Music Scholar,
25 Plunkett, Luke, “This is why Mahatma Gandhi is so evil in Civilization”, Quzart: The A.V. Club,

November, 5, 2014.
26 “April 2014 Multistate 911 Outage: Cause and Impact.”, Public Safety and Homeland Security, Federal

Communications Commission, October, 2014.
27 Gleick, James, “A Bug and a Crash: Sometimes a Bug is More than a Nuisance”, New York Times

Magazine, December 1, 1996.
28 Wagenseil, Paul "Digital 'Epochalypse' Could Bring World to Grinding Halt", July 28, 2017.
29 Sherwood, Timothy, “PyRTL: register-transfer-level hardware design and simulation”, UC Santa Barbara

ARCHLAB, 2021.
30 Porter, Martin and David Goggin, “TONTO: The 50-Year Saga of the Synth Heard on Stevie Wonder

Classics”, Rolling Stone Magazine, November 13, 2018.
31 Schiffer, Alex, “How a fish tank helped hack a casino”, The Washington Post, July 21, 2017.
32 Tayson, Joe, “How Stevie Wonder Beat Motown Records”, Far Out Magazine, May 13, 2021.

