
Paper ID #40236

Introducing ROS-Projects to Undergraduate Robotic Curriculum

Dr. Lili Ma, New York City College of Technology

Professor Lili Ma received her Ph.D. in Electrical Engineering from Utah State University focusing on
autonomous ground vehicles. After that she did three-year post-doctoral training at Virginia Tech working
with unmanned aerial vehicles (UAVs). Prior to joining the Dept. of Computer Engineering Technology at
CUNY New York City College of Technology, she taught at Wentworth Institute of Technology for eight
years. Her research interests are in designing coordinated control schemes for a group of autonomous
robots. Her teaching interests are in designing robotic projects that promote undergraduate research and
integrate interdisciplinary areas (robotics, artificial intelligence, IoT, electronics, and image processing).

Dr. Yu Wang, New York City College of Technology

Dr. Yu Wang received her Ph.D. degree in Electrical Engineering from the Graduate Center of the City
University of New York in 2009. She is an associate professor in the Department of Computer Engineer-
ing Technology at New York City College of Technology. Her research areas of interest are engineering
education, biomedical sensors, modeling real-time systems, embedded system design, and machine learn-
ing.

Dr. Chen Xu, New York City College of Technology

Dr. Chen Xu is an Associate Professor at the Computer Engineering Technology department at New
York City College of Technology. She received her Ph.D. degree in Biomedical Engineering from the
University of Connecticut. Her research areas of interest are biomedical sensors and instrumentation,
image processing, signal processing, and non-invasive medical test.

Dr. Xiaohai Li, New York City College of Technology

Xiaohai Li received his M.S. degree in Electrical Engineering from Polytechnic Institute of New York
University, New York, in 2004 and Ph.D. degree in Electrical Engineering from the Graduate Center of
the City University of New York (CUNY), New York, in 2010. He worked as a Post-doc in the PRISM
Research Center in the Department of Electrical Engineering at the City College of New York of CUNY
in 2010. He is currently an Associate Professor in the Department of Compute Engineering Technology
at NYC College of Technology of CUNY. He founded the City Tech Robotics Research Lab and is a co-
founder of the City Tech Experiential Arts & Technology Lab (EAT Lab) at NYC College of Technology
of CUNY. His current research interests include applied control systems, robotics, swarms, wireless sensor
networks, computer vision and perceptual computing, and IoT/IoRT.

©American Society for Engineering Education, 2023



Introducing ROS-Projects to Undergraduate Robotic
Curriculum

Abstract
This paper describes three MATLAB-ROS-based simulation projects developed for an un-

dergraduate robotics course. The Robot Operating System (ROS) is an open-source frame-
work that helps researchers and developers build and reuse code between robotics applications.
Adoption of ROS in the undergraduate curricula is still rare due to its demanding requirements
of C++/Python/Java programming skills and familiarity with Linux. Recently, MathWorks re-
leased its ROS Toolbox, making it easier to interact with simulators like the Gazebo and ROS-
supported physical robots. The MATLAB-ROS-Gazebo simulation platform allows students to
utilize other MATLAB Toolboxes, such as Image Processing, Computer Vision, Visualization,
and Navigation Toolboxes, for fast algorithm development and testing.

The paper presents three projects for autonomous mobile robots on the MATLAB-ROS-
Gazebo simulation platform. The first project is on sensing and perception of laser scan data
and its post-processing of model-based fitting. The second project is on the path planning of
an autonomous mobile robot implementing the Wavefront algorithm. The third project obtains
closed-loop control of the robot’s behavior based on visual hints. These three projects cover
the fundamental components of controlling an autonomous mobile robot, including sensing,
perception, decision-making, and low-level motion control. We believe these projects will help
other educators develop ROS-based simulation projects as part of a course or a stand-alone
course for teaching robotics.

Introduction
The Robot Operating System (ROS) has gained wide currency for creating working robotic sys-
tems, initially in the laboratory and then in industry. The primary programming environment for
those working on ROS includes C++, Python, or Java. MathWorks recently released its Robotics
Systems Toolbox and ROS Toolbox. Using MATLAB to interact with robotic simulators (such
as Gazebo) and physical ROS-compatible robots (such as TurtleBot) becomes a new option. The
existing toolboxes in MATLAB enable the development and verification of robotic control algo-
rithms more quickly. Though it is still an ongoing evolution, the fundamental ROS principles of
publishing and subscribing to topics, application-specific messages, invoking services, and shar-
ing parameters remained constant. Due to the growing importance of ROS in research [1] and
commercial robotics, educators began introducing ROS to enhance their robotic curricula [2–10].



Robotics is perceived in education as an excellent way to promote higher-quality learning by
grounding theoretical concepts into reality. To maximize the learning throughput, the focus of any
robotics software platform should be on ease of use, with little time spent integrating the compo-
nents [11]. This paper describes the development of three projects on the MATLAB-ROS-Gazebo
platform for a senior-level robotic course, which serves as a technical elective for the Computer
Engineering Technology (CET) curriculum. Topics covered basic sensing and perception routines
(laser sensing, image sequences from the robot’s onboard camera, model-based data fitting, color-
based feature extraction), decision-making (path planning), and low-level motion control (com-
manding the robot to move with a specified distance/angle or changing the robot’s movement by
varying its linear/angular velocities).

The context of this work is an undergraduate robotic course offered as a technical elective to
senior-level students in the department of Computer Engineering Technology. This robotic course
is structured to have a 2.5-hour lecture session and a 2.5-hour lab session each week. The course
objectives include addressing fundamental subjects in Autonomous Mobile Robots and Robotic
Manipulators and preparing students with the necessary skills in robotic programming, design,
and system integration. The students will do lab/project exercises in the lab sessions to reinforce
the knowledge, concepts, and algorithms learned during lectures. Project-based learning [12, 13]
was adopted in the lab sessions to guide students through the implementations of fundamental al-
gorithms discussed in the lecture sessions. We usually assign one project dedicated to autonomous
mobile robots and another to robotic manipulators.

Before the COVID-19 pandemic, both the lecture and the lab sessions of this course were taught
in person. In the lab sessions, students used physical robots for their experiments. These robots
are built using the VEX robotic kits, which were consisted of a mobile base with a simple arm
on top. Programming was using RobotC, implemented and tested on the physical robot directly
without going through a-prior simulation step. During the pandemic, both sessions were taught
online. We developed simulation-based projects to synchronize with the lecture sequences in the
unified programming environment, i.e., MATLAB. To resemble those physical experiments, the
MATLAB-ROS-Gazebo platform was brought into this course little by little each semester.

Recently, higher education has called for more in-person activities. In fall 2022, the lecture
session was taught mostly online (except for midterm and final exams). The lab session returned
to traditional in-person teaching. While huge desires are coming from the students demanding
physical labs/projects on real robots, completely discarding the simulation projects, especially
those with high fidelity, does not seem to be a wise solution. Instead, we have been looking for
ways to integrate the best practices from both sides: simulation and physical.

Targeting undergraduate robotic courses, adopting the MATLAB-ROS platform can be a suit-
able arrangement due to a couple of factors. Firstly, programming on MATLAB is much easier
than using other languages such as C++, Python, or Java. Secondly, MATLAB already has many
other toolboxes dedicated to education and research, which would significantly shorten the learn-
ing curve. Students could start algorithm development and implementation likely after a two-week
MATLAB tutorial. Students in the STEM field might have used MATLAB in other courses, such
as math, controls, circuit analysis, and signal processing. Based on their existing familiarity with



MATLAB, our teaching experiences show that two introductory labs focusing on MATLAB pro-
gramming, functions/sub-functions, and debugging can bring the majority of students to a satis-
factory level of MATLAB programming. Thirdly, the MATLAB-ROS-Gazebo platform allows
algorithms to be developed first with a simulator for quick prototyping. As a result, students can
refine their algorithms outside of the classroom. Fourthly, the MATLAB-ROS interface can be con-
nected to a wide range of ROS-supported hardware, such as the TurtleBot, allowing the algorithm
developed on MATLAB to work with a physical robot.

Our ultimate objective is to use the MATLAB-ROS interface for the two projects, starting with
the Gazebo simulator and moving on to the physical robot. This paper describes several options
for the project on autonomous mobile robots using the MATLAB-ROS-Gazebo environment. Our
next step is to use the MATLAB-ROS interface to connect to a physical mobile robot, either a
home-built robot or a commercially available robot such as TurtleBot. Similar procedures are to
be used to develop the project on a robotic manipulator, i.e., starting with the MATLAB-ROS-
Gazebo environment and then moving to the MATLAB-ROS-physical-robot setting. These remain
as directions for future investigations.

Setting Up the MATLAB-ROS-Gazebo Simulation Platform
The simulation system was successfully set up as shown in Fig. 1 by following the instructions on
MathWork’s website on how to set up the MATLAB-ROS-Gazebo platform [14]. Some details are
given below:

Installation of required MATLAB toolboxes: When learning how to setup and use the MATLAB-
ROS-Gazebo platform, we started by following the examples posted on MathWork’s website. For
those sample codes and commands, MATLAB will pop up a hint, indicating that certain toolboxes
are required, and asking if you wish to install them. Follow those installation steps by saying yes.
As with other MATLAB adds-on, installation is standard and straightforward.

Setting up the MATLAB-ROS-Gazebo simulation system:

• Download the VMware Player software. MathWork’s website states version 16 at the time
of writing. Versions 16 and 17 have been used. They both work well.

• Download the archive containing the virtual machine from MathWork’s website [14]. Up-zip
the archive. Open it using the VMware Player. Start the virtual machine. Select “I copied it”
if a dialogue shows up asking if you copied or moved the virtual machine.

• The virtual machine’s IP address will be displayed. It may look like:

We used the following commands to disable virtual machine’s IPv6 address:



sudo sysctl -w net.ipv6.conf.all.disable ipv6=1

sudo sysctl -w net.ipv6.conf.default.disable ipv6=1

• Start the connection between the MATLAB ROS node and the Gazebo simulator:

rosshutdown;

rosinit(‘192.168.1.158’, ‘NodeHost’, ‘192.168.1.154’);

The first IP address is the IPv4 address of the virtual machine. The second IP address is the
IPv4 address of the computer running MATLAB.

• Once connection is established, the command “rostopic list” on the MATLAB side will list
all the available topics provided by the simulated robot.

• If the algorithm on the MATLAB side needs to create a ROS action client, the command
“ /start-turtlebot-move-action-server.sh” needs to be run on the virtual machine side.

Figure 1: Setting up the MATLAB-ROS-Gazebo simulation platform.



Now the MATLAB-ROS-Gazebo platform has been setup. The MATLAB node will be able to
receive messages published by the simulated robot (odometry, laser scan data, images), as well as
sending commands to the robot to change its behavior (either by changing the robot’s velocity or
sending an action goal). More details will be presented when describing the three projects.

Our MATLAB-ROS-Gazebo simulation system was set up on the Windows operating sys-
tem. We also installed the whole system on a Mac Pro Laptop, but not following the instructions
particularly for the Mac Operating System, but used a Book Camp Assistant to allocate a Win-
dows partition on the Mac computer’s hard disk and then installed the Windows Operating System
(Fig. 2 (a)). Once the simulator is up running, connection can be established between this simula-
tor to more than one MATLAB node. Figure 2 (b) shows that MATLAB running on two different
computers (the right two in (b)) can receive messages from the same simulated robot (the leftmost
one in (b)).

(a) On Mac via Boot Camp (b) Two Computers Both Connecting to Gazebo

Figure 2: MATLAB-ROS-Gazebo.

Project 1: Model-Based Fitting of Laser Scan Data
This project exposes students to fundamental sensing and perception routines, including the collec-
tion of laser range sensor data, segmentation, and curve-fitting, as part of higher-level perception
processes. This project is performed on the MATLAB-ROS-Gazebo platform using the “Gazebo
Office” environment (Fig. 3) [14]. The robot is first commanded to wander around, scanning laser
data to sense its environment. Data collected while the robot is at several different locations and
orientations are accumulated together to have a better representation of the environment. The
segmentation and curve-fitting (more specifically, circle-fitting) are described below.

Distance-based segmentation: Using distance as the criterion, laser points are grouped as one
cluster if they are close to each other (i.e., the distance in between is less than a specified threshold).
Figure 4 (a) presents the clustering result, where a totally nine clusters are identified, each plotted
in a different color. The threshold of the minimal distance was 0.5 (m). For each new laser point,
we first compute the minimal distance between it with all existing clusters. If the minimum of
these distances is greater than the specified threshold, this point belongs to a new group, otherwise,
it is assigned to the one closest to it. Setting the thresholds higher will result in fewer clusters.



Figure 3: The Gazebo Office simulation environment.

Model-based fitting: After clustering and segmentation, a Least Square method can be applied to
curve fitting. Using this method, the circle fitting problem is equivalent to solving

x1 y1 1

x2 y2 1
...

...
...

xn yn 1


︸ ︷︷ ︸

A

ab
c


︸︷︷︸
X

=


x21 + y21
x22 + y22

...
x2n + y2n


︸ ︷︷ ︸

B

, (1)

where n denotes the total number of points, a = 2xc, b = 2 yc, c =
√

r2−x2
c−y2c

2
, (xc, yc) denotes the

coordinates of the circle’s center, and r is the circle’s radius. Estimate of X , denoted by X̂ , can be
computed using pseudo-inverse as X̂ = AT (AAT )−1B. At this point, it only remains to calculate

xc =
a

2
, yc =

b

2
, r =

4 c− a2 − b2

2
. (2)

For laser points in clusters 3, 4, and 5, fitted circles are plotted in red as shown in Fig. 4 (b).
The MATLAB commands to retrieve laser scan data and then plot it are given below:

laser = rossubscriber(’/scan’);

scan = receive(laser,3);

plot(scan, ’MaximumRange’, 4);

Laser data collected at different locations and orientations are slightly different. This phe-
nomenon shows that the simulator has taken into account the motion dynamics of the robot, thus
resulting in a simulation platform of high fidelity.



(a) Distance-Based Segmentation (b) Circle Fit

Figure 4: Model-based data fitting to laser scan data.

Project 2: Path Planning
In this project, students will perform path planning of an autonomous mobile robot working in
an unknown environment. Students will go through the complete process of programming the
robots to sense, perceive, make decisions, and take action. The project was implemented on the
MATLAB-ROS-Gazebo platform using the “Gazebo Sign Follower ROS” environment. The as-
sumption is that an autonomous mobile robot has an onboard laser range sensor. There are some
unknown static obstacles in the robot’s workspace. The control task is to program the robot to
detect objects in its workspace, utilize some path-planning algorithm to find a path to a specified
location, and then let the robot follow the path. Path planning is to find a trajectory going from one
point to another, given either completely known or partially-known information about the robot’s
environment. The Wavefront algorithm is the most basic but still powerful approach.

Sensing the environment: The robot starts with no knowledge of its surroundings, so its first step
is to wander around, collecting some information. Figure. 5 shows a sequence of laser scan data
that are obtained by the robot at several different locations, starting with one scan of 360o as shown
in Fig. 5 (a), three scans in Fig. 5 (b), and six scans as shown in Fig. 5 (c). Laser scan data indicate
the locations of static objects that need to be avoided by the robot.

Setting up and propagation through the Wavefront map: Following the Wavefront algorithm’s
convention by representing the robot’s current location by “R”, open spaces by “0”, spaces occu-
pied by objects by “1”, and the goal location by “2”, the initial setup of the Wavefront map is shown
in Fig. 6 (a), where grids without any value denote empty spots. Figure 6 (b) shows the Wavefront
map after propagation. An open-space path is searched by performing “counting down”, starting
from the robot’s current location and leading to the goal location. We highlighted the found path
by changing the grids on it to green. A simulated robot was displayed to indicate the robot’s ori-
entation upon execution. In Fig. 6, the neighbors of a grid include the one above, below, to its left,
and right. The user specifies the goal location by clicking on the updated wavefront map.



(a) 1 Scan (b) 3 Scans (c) 6 Scans

Figure 5: Integration of laser data.

(a) Setting Up Wavefront Map (b) Wavefront Propagation

Figure 6: Path planning using Wavefront algorithm.

Commanding the simulated robot to execute the planned path: The path planning algorithm
outputs a sequence of waypoints with x- and y- coordinates. This step commands the robot to
navigate through this list of waypoints. For every two adjacent waypoints, the robot first spins
in place to orient itself to face the second waypoint. It then translates toward it. The iteration
continues till the robot reaches the goal location. Figure 7 shows several snapshots of the robot’s
movement.

The example demonstrated in Fig. 6 used a goal location close to the robot’s initial position.
Our experiences working with ROS show that the robot’s orientation sensor accumulates errors
quickly when turning. The accumulated error will make the robot’s interpreted orientation less
accurate. If the goal location is far away, the robot has to take more maneuvers to reach there.
Due to its inaccurate orientation, the robot will likely run into objects, making the trajectory fol-
lowing hard to achieve. On the other hand, the scenario reveals the real issues that physical robots
encounter, confirming that the ROS-Gazebo platform provides a high-fidelity simulation environ-
ment.



(a) (b) (c) (d) )

Figure 7: Snapshots of robot’s movement.

Commanding the robot to rotate and translate are via the “sendGoalAndWait()” function:

• The translation command (i.e., moving forward with a distance “dist”) is achieved by:

goalMsg.ForwardDistance = dist;

goalMsg.TurnDistance = 0;

client.FeedbackFcn = [];

[resultMsg,~,~] = sendGoalAndWait(client,goalMsg);

• The rotation command (i.e., spinning in place for an angle “AOR”) is achieved by:

goalMsg.ForwardDistance = 0;

goalMsg.TurnDistance = AOR;

client.FeedbackFcn = [];

[resultMsg,~,~] = sendGoalAndWait(client,goalMsg);

In addition to commanding the robot’s movement by sending translation and rotation com-
mands, we can also control its movement by varying its velocity. For the autonomous robots
working in the 2D Cartesian space:

• Its forward-moving velocity can be changed by:

velMsg.Angular.Z = 0;

velMsg.Linear.X = 0.3;

send(robotCmd,velMsg);

• Its spinning velocity can be varied by:

velMsg.Linear.X = 0;

velMsg.Angular.Z = 0.3;

send(robotCmd,velMsg);



In this project, the robot frequently needs to acquire its current pose (position and orientation).
For example, the robot needs to know its gesture (both location and orientation) when integrating
laser scan data collected at different locations, that is, to transform from the robot’s body-fixed
frame to the inertial world frame. The robot’s onboard odometry sensor can provide such infor-
mation, as shown below, where (x, y) denotes the robot’s position and ψ (yaw) denotes the robot’s
orientation w.r.t. the positive x-axis.

odomMsg = receive(odomSub,3);

pose = odomMsg.Pose.Pose;

x = pose.Position.X;

y = pose.Position.Y;

q = [pose.Orientation.X, pose.Orientation.Y, ...

pose.Orientation.Z, pose.Orientation.W];

[a, b, yaw] = quat2angle(q);

Project 3: Vision-Based Control
This project is to close the loop by using information extracted from images captured by the
robot’s onboard camera to guide the robot’s behavior, i.e., to achieve vision-based control. We
implemented this project using the “Gazebo Sign Follower ROS” environment. In this simulated
environment, there are some left-turn and right-turn signs. Following these signs, the robot will
navigate through the maze.

One way to achieve vision-based control tasks is to utilize the information extracted from the
image plane to directly control the robot’s motion (i.e., image-based). Another approach is to
transform this information into a 2D/3D world and use that information to command the robot
(i.e., position-based). Researchers even investigated the combination of both. As a demonstration
of vision-based control, we adopted the image-based approach in this project. Our control logic
is quite simple. The robot turns right 90o when seeing a right-turn sign and turns left 90o upon
seeing a left-turn sign. This simple logic fulfills the objective of exposing vision-based control
to undergraduate students, illustrating the process of sensing, perception, decision-making, and
execution.

As a starting point for image processing, a simple color-based feature extraction routine has
been used that extracts and distinguishes the two signs simply by their color [15, 16]. For future
work, we plan to adopt artificial intelligence/machine learning/Neural Network-based approaches
to recognize these two signs by going through a pre-training process. Subscribing to receive images
from the robot is given below:



Figure 8 illustrates the routine that distinguishes the signs by their unique color. Figure 8 (a)
shows the original image captured by the robot. Figure 8 (b) shows the binary image after applying
pre-specified thresholds (both lower and upper bounds) to the hue channel for the color of interest.
We then performed contour detection, as shown in Fig. 8 (c). The contour with the maximum
number of points represents the detected feature of interest, whose center is displayed using a
cross.

(a) Original Image (b) Thresholding Hue (c) Detected Contours (d) Center

Figure 8: Color-based feature extraction.

Figure 10 shows the robot’s motion. The robot turns 90o when the detected feature is big
enough, indicating the robot is close to the sign. Otherwise, the robot moves forward with its
current orientation. Changing the robot’s orientation is achieved by varying its angular velocity
about the vertical z-axis. By setting this angular velocity to be positive, the robot will rotate
counter-clockwise; and clockwise otherwise. We constantly check the robot’s orientation to see if
the desired amount of rotation has been obtained. If so, we reset the robot’s angular velocity to
zero, and set its linear velocity to be positive so that the robot will move forward.

Figure 9: Snapshots of the robot’s behavior during sign-following.



Inclusion in the Robotics Technology Course
The context of this work is an undergraduate robotic course (CET 4952: Robotics Technology)
offered as a technical elective to senior-level students in the department of Computer Engineering
Technology (CET). Driven by the transitioning from traditional in-person teaching to online due to
the pandemic, a preliminary version of the MATLAB-ROS-Gazebo projects was introduced to this
robotic course in Fall 2020 and Fall 2021. In each semester, four students successfully set up the
simulation platform on their own computers, following the instructions on the MathWorks website
under the instructor’s remote supervision. Students were given sample codes. They executed the
program, collected sensor data, and commanded the robot to move in the simulator. Due to time
limit of two to three weeks, students were not required to develop their own algorithms.

The projects described in this paper are updated materials for introducing ROS. The instructor
can decide how many projects to include in their course (one, two, or three), depending on how
much focus they want to place on ROS. For our robotic course (CET 4952), we typically ask the
students to complete three projects in one semester. The first project is on autonomous mobile robot
(using physical robots while in-person), the second on robotic manipulator (also using physical
robots while in-person), and the third on advanced robotic control tasks (using either physical
robots or simulations). These MATLAB-ROS-Gazebo projects were intended to be used as one
option for the third project (i.e., the final project).

The following summarizes the timeline of our offering of the ROS-projects:

• Fall 2020 (online): First time offering ROS-based simulation projects; a preliminary version;
4 out of 20 students successfully performed the ROS project; students installed the platform
on their own computers.

• Fall 2021 (hybrid but primarily online): Second time offering ROS-based simulation projects;
still a preliminary version; 4 out of 10 students successfully performed the ROS project; stu-
dents installed the platform on their own computers.

• Fall 2023 (in-person for lab sessions): Third time to offer ROS-based simulation projects;
an updated and more systematic version; the MATLAB-ROS-Gazebo simulation platform
will be installed on lab computers, making the ROS-projects more accessible/available to
students. The cap for this course is 20. Before the pre-pandemic, the class was usually full.

• In the future: We will continue offering the ROS-projects as one option for the final project.

In Fall 2020, we collected students’ opinions, via anonymous zoom polls, on how this MATLAB-
ROS project helped them to understand and implement more advanced robotic control algorithms.
The survey question has four choices: “Absolutely help” (score 4), “Certainly help” (score 3), “Just
help to some extent” (score 2), and “Does not help at all” (score 1). There were 19 students who
participated in this survey. Students’ responses are presented below. Considering the challenge of
the MATLAB-ROS project, we think that the satisfaction rate of 68% is encouraging for bringing
ROS into undergraduate robotic courses/curriculum.



Figure 10: Survey results of students’ satisfaction of the MATLAB-ROS project (Fall 2020).

To continue evaluating the effectiveness of the ROS-projects regarding whether they success-
fully sustain and promote students’ interests in robotics, we plan to conduct this type of surveys
regularly each fall. The survey questionnaire may include questions such as:

• Does the MATLAB-ROS project help you understand data acquisition onboard the robot
(acquisition of laser range data and image sequences)?

• Does the MATLAB-ROS project help you understand post-processing of acquire data (clus-
tering, fitting)?

• Does the MATLAB-ROS project help you understand the concept/idea of closed-loop con-
trol (sensing, perception, and motion control)?

• Does the MATLAB-ROS project help you practice implementation of more advanced robotic
control algorithms (waypoint navigation, obstacle avoidance, vision-based control)?

• Does the MATLAB-ROS project help to sustain/promote your interests in the STEM field?

Conclusions and Future Work
The purpose of this work is to introduce industrial and research-level practices for robotic pro-
gramming and development on the open-source Robot Operating System (ROS). Our first step
in bringing ROS into the undergraduate robotics curriculum is through simulations. This pa-
per presents three simulation projects developed on the MATLAB-ROS-Gazebo platform. These
projects cover the fundamental components needed to control an autonomous mobile robot, inte-
grating sensing, perception, decision-making, and low-level motion control. Closed-loop control
of the robot’s behavior was obtained, demonstrating that other algorithms, such as localization and
obstacle avoidance, could also be implemented.

The MATLAB programming environment, which students may have already used in earlier
courses, also provides access to many other toolboxes (such as image processing, navigation,
and artificial intelligence) that assist in fast algorithm verification and validation. It will signif-
icantly shorten the learning curve when compared with other programming languages such as
C++, Python, and Java. The MATLAB-ROS-Gazebo environment already handled the complex
visualization of the real-world environment and robots’ dynamics. This leaves the users with the
only role of algorithm development. These ROS-based simulation projects were designed as (one
option) for the final project in our robotic course (CET 4952: Robotics Technology). We believe



they will also help other educators develop ROS-based simulation projects as part of a course or a
stand-alone course for teaching robotics.

For future investigations, our next step is to bring in physical robots, demonstrating the com-
plete picture of developing algorithms first on simulators and then deploying them to the physical
robots. Another direction is to extend to robotic manipulators.

References
[1] M. Galli, R. Barber, S. Garrido, and L. Moreno, “Path planning using MATLAB-ROS inte-

gration applied to mobile robots,” in IEEE International Conference on Autonomous Robot
Systems and Competitions, 2017, pp. 98–103.

[2] W.-J. Tang and Z.-T. Liu, “A convenient method for tracking color-based object in liv-
ing video based on ros and MATLAB/Simulink,” in International Conference on Advanced
Robotics and Mechatronics, 2017, pp. 724–727.

[3] R. L. Avanzato, “Development of a MATLAB/ROS interface to a low-cost robot arm,” in
ASEE Anuual Conference and Exposition, June 2020.

[4] L. J. F. Rivera and B. Chandrasekaran, “ROS-MATLAB interface and setup for a fault tolerant
robotic system using human robot interaction,” in Annual Computing and Communication
Workshop and Conference, 2020, pp. 0568–0575.

[5] A. Araújo, D. Portugal, and M. S. Couceiro, “Integrating arduino-based educational mobile
robots in ROS,” Journal of Intelligent and Robotic Systems, vol. 77, p. 281–298, 2015.

[6] A. Yousuf, W. Lehman, M. A. Mustafa, and M. M. Hayder, “Introducing kinematics with
robot operating system (ROS),” in ASEE Annual Conference and Exposition, Seattle, WA,
June 2015.

[7] K. A. Khan and J.-C. Ryu, “ROS-based control of a manipulator arm for balancing a ball on
a plate,” in ASEE Annual Conference and Exposition, Columbus, OH, June 2017.

[8] S. A. Wilkerson, J. Forsyth, and C. M. Korpela, “Project based learning using the robotic op-
erating system (ros) for un- dergraduate research applications,” in ASEE Annual Conference
and Exposition, June 2017.

[9] R. L. Avanzato and C. G. Wilcox, “Work in progress: Introductory mobile robotics and com-
puter vision laboratories using ROS and MATLAB,” in ASEE Annual Conference and Expo-
sition, Salt Lake City, UT, June 2018.

[10] Y. Wang, Z. Zhang, and Y. Chang, “A project-based platform for students’ robot operation
system (ROS) programming experience,” in ASEE Annual Conference and Exposition, Min-
neapolis, MN, June 2020.

[11] Y. Hold-Geoffroy, M.-A. Gardner, C. Gagné, M. Latulippe, and P. Giguère, “ros4mat: A
Matlab programming interface for remote operations of ros-based robotic devices in an ed-
ucational context,” in International Conference on Computer and Robot Vision, 2013, pp.
242–248.



[12] A. Shekar, “Project based learning in engineering design education: Sharing best practices,”
in ASEE Annual Conference and Exposition, Indianapolis, IN, June 2014.

[13] E. H. Fini, F. Awadallah, M. M. Parast, and T. Abu-Lebdeh, “The impact of project-based
learning on improving student learning outcomes of sustainability concepts in transportation
engineering courses,” European Journal of Engineering Education, vol. 43, 2018.

[14] MathWorks, “Get started with Gazebo and simulated TurtleBot,” [Online]
https://www.mathworks.com/help/ros/ug/get-started-with-gazebo-and-a-simulated-
turtlebot.html.

[15] R. Raof, Z. Salleh, S. Sahidan, M. Mashor, S. Noor, F. Idris, and H. Hasan, “Color thresh-
olding method for image segmentation algorithm of ziehl-neelsen sputum slide images,” in
International Conference on Electrical Engineering, Computing Science and Automatic Con-
trol, 2008, p. 212–217.

[16] H. Jia, J. Ma, and W. Song, “Multilevel thresholding segmentation for color image using
modified moth-flame optimization,” IEEE Access, vol. 7, pp. 44 097–44 134, 2019.


