
Paper ID #40048

A Systematic Approach to Teaching the Foundational Concepts of
Programming Using LEGO and Matlab

Il Yoon, University of North Georgia

©American Society for Engineering Education, 2023

A Systematic Approach to Teaching the Foundational Concepts of
Programming Using LEGO and Matlab

Il Yoon

University of North Georgia

Georgia, USA

iyoon@ung.edu

Abstract

Learning programming can be challenging for newly admitted engineering students. It may
be even more challenging in two-year colleges due to the broad spectrum of student
populations, which includes both traditional and non-traditional students. Students who have
been out of school for several years after high school may find programming particularly
challenging, while students who have just graduated from high school may find it less so. To
overcome this challenge, it is suggested to teach programming using familiar tools from the
very beginner level to the intermediate level. This paper proposes a new course to teach the
foundational concepts of programming using LEGO EV3, a robotics toolkit, and MATLAB
to control the LEGO robots. The course consists of three parts: Basics, Assigned Projects,
and Student-Led Projects. In the Basics part, students learn fundamental programming
concepts such as algorithms, flowcharts, variables, input/output, IF statements, and loop
structures. Systematically designed application problems are provided to enhance
understanding of programming basics. In the Basics part, students write code to control
LEGO robots and solve application problems. This helps students overcome their
unfamiliarity with programming, as they can see how the robots move interactively as they
program. After completing the Basics part, students will work on two assigned projects: a
line-tracking robot and a cleaning robot. Guided problems are provided to help students
complete these projects. After students complete the assigned projects, students will
undertake a Student-Led project. For this project, they will design an engineering product of
their choice and build it using LEGO EV3 and MATLAB. To evaluate the effectiveness of
the new course, the level of difficulty and repetition of application problems and guided
problems were measured, along with the applicability of active learning activities. The
measured data shows that the level of difficulty gradually increases overall from the beginner
level, which helps students build foundational concepts of programming as beginners. It also
shows that the topics in the Basics part are systematically repeated in the application
problems and guided problems, which enhances learning retention of the topics. Additionally,
the data shows that the learning methods used in this course lead to a higher percentage of
active learning activities with higher complexity, making this course more beneficial for
students. To evaluate the effectiveness of this proposed course, it is recommended to offer
this course for a few semesters and conduct surveys at the end of each semester to collect
feedback and measure its effectiveness.

1 Introduction

Programming is one of the most important skills that engineering students need to learn.
However, it is known that learning programming is not easy for students. A study has shown
that many college-level students still struggle with programming even after taking an
introductory programming course [1]. This means that teaching programming is very
challenging. Teaching programming at two-year colleges is even more challenging due to the
broad spectrum of student populations. Some students may have just graduated from high
school, while others may have been out of school for several years after graduating. If these
students have not been involved in STEM areas during their time out of school, it can be very
difficult for them to learn programming due to unfamiliarity. This makes it very challenging
for instructors to prepare the curriculum for a programming course due to the various levels
of background knowledge of students in the class. Therefore, there is a need to develop a
course that helps students build a solid foundational understanding of programming using
familiar tools, starting from the beginner level and progressing to the intermediate level.

One effective way to improve understanding in the learning process is through hands-on
experiences. In this newly suggested course, LEGO EV3 and MATLAB are introduced to
improve the perceptibility of learning programming as a tool for hands-on learning. In the
new course, students will simultaneously observe how their code works as they control a
LEGO robot by writing code.

Although LEGO robotic products have already been used in college-level courses for
learning programming, this newly suggested course offers some advantages for effective
programming learning. Firstly, this new course uses MATLAB to control LEGO robots.
Previous programming languages used for learning programming using LEGO robots were
NQC [2], [3], NXC [3], ROBOLAB [2], [4], Legos Mindstorm iconic language [5], Java [6],
and Visual Basic [2]. Out of these options, MATLAB was chosen for this new course for
several reasons. First, it is one of the essential programming languages that many engineering
students are required to learn. Second, it provides clear and intuitive syntax, enabling students
to transform their algorithms into programming texts quickly [7]. If a difficult and
complicated language is used, students would struggle with the language itself, rather than
trying to understand the concept of programming. Thus, using MATLAB helps students focus
more on understanding the concept of programming. Lastly, MATLAB is a text-based
language. Although graphical programming languages are more accessible for beginners in
general, it is essential for engineering students to be familiar with a text-based programming
language as professionals in their future [8].

This new course focuses on the immediate and interactive application of learning by
providing systematically designed application problems. After students learn a new
programming concept, they can apply it instantly by exercising related application problems
using LEGO robots. As students work on application problems, they can interactively
observe how LEGO robots are controlled as they program.

Using MATLAB and LEGO has been introduced previously for engineering education [9],
[10]. However, their works did not necessarily focus on learning the foundational concepts of
programming. Therefore, it is worth developing a new course specifically to help engineering
students learn and practice these foundational concepts using LEGO and MATLAB.
Accordingly, a new course using LEGO EV3 and MATLAB was developed and presented in
this paper. Although the new course was carefully designed with a systematic approach, it is
necessary to ensure its effectiveness before offering it. To validate the effectiveness of the
new course, the level of difficulty, repetition, and applicability of active learning activities
were measured, and the results are presented.

2 Setup descriptions

In this newly proposed course, LEGO Mindstorms EV3 is used with the MATLAB Support
Package provided by MathWorks to control the LEGO robot using MATLAB. The sensors
used in this course are: one color sensor, one ultrasonic sensor, two touch sensors, and one
gyroscope sensor. The motors used are two large motors and one medium motor, with the
two large motors being identical to each other. There are three methods of connection
available between a user's computer and the LEGO controller: USB cable connection,
Bluetooth connection, and Wi-Fi connection. In this new course, the LEGO robot is
connected to a computer via USB connection for better connection stability.

3 Course descriptions

The newly proposed course is composed of two main parts: the Basics part and the Projects
part, both of which utilize LEGO and MATLAB. In the Basics part, students learn and
practice fundamental programming concepts. The Projects part consists of two assigned
projects, a line-tracking robot and a cleaning robot, and one Student-Led project. Through the
assigned projects, students apply the basic programming knowledge they learned in the
Basics part to engineering applications. The Student-Led project allows students to solidify
their programming knowledge by using MATLAB to build an engineering product of their
choice. Systematically designed application problems and guided problems are provided to
help students understand programming concepts at each step of learning in the Basics part
and the two assigned projects in the Projects part.

This proposed course is designed for 1 – 2 credit hours with a recommended minimum of 2
contact hours per week to provide enough time for students to practice in class. This course is
suggested to be offered as a full college-level course. However, the curriculum of this
proposed course can be integrated into an existing introductory engineering course. At the
author's institution, the curriculum was successfully integrated into the 'Introduction to
Engineering' course for two semesters from Fall 2017 to Spring 2018. The course's main
objective was to provide students with general knowledge of engineering. However, the
curriculum also included basic programming skills as part of the learning objectives.

3.1 Basics part

The Basics part consists of sections on variables, input/output, IF statements, and loop
structures. From this part, students learn and practice the very basics of programming. Firstly,
students learn commands and syntax, and how to use them to write code from an instructor.
Then, application problems are given so that students gradually build up their programming
knowledge through problem-based learning, which is known to be effective [11], [12]. Each
application problem is given right after a new concept is taught at each section. Students
write code using MATLAB to control the LEGO as directed in the application problems. This
helps students understand how their code works by writing the code and watching how it
controls the LEGO simultaneously. The LEGO product is used to practice input/output, IF
statements, and loop structures, while it is not used for the exercise of variables. This is
because it is not necessarily more effective to understand the concept of variables using
LEGO, as learning variables is relatively simple compared to other topics. For this reason,
describing how to practice variables is skipped in this paper because the main purpose of this
paper is to describe how effective it is to use LEGO and MATLAB to learn programming.
Application problems are designed cumulatively so that students practice new concepts and
review previous concepts simultaneously when they move to a new application problem from
the previous one.

3.1.1 Input/Output

In the section on input/output, students learn how to assign values to variables using INPUT
command, as well as how to output data stored in a variable using the DISP command. After
learning how to use these commands, students exercise them with a LEGO car. They are
asked to build a simple toy car using the LEGO product and write code that includes INPUT
and DISP commands to control the car to move forward and backward at various speeds, as

directed in the application problems. The first and last application problems, along with the
expected Matlab codes for the input/output section, are shown below.

 Determine the speed and direction of the LEGO car. Then, use INPUT command to
display “Input the duration of time to move forward”, and assign any input value
into variable time_frwd. Then, make the LEGO car move forward for the time input.

motor_1.Speed = 50;
time_frwd = input('Input the duration of time to move forward ');
start(motor_1);
pause(time_frwd);
stop(motor_1);

 Use INPUT command to display “Input the duration of time to move backward.”
and assign any inpt value into variable time_bkwd. Use INPUT command to display
“Input the speed of the car and direction.” and assign any value into variable
speed_bkwd. Then, make the car move backward for the time duration input and with
the speed input. Then, use INPUT command to display “The duration of time for
moving backward is”. Use INPUT command to display the time duration that the car
move backward. Use INPUT command to display “The speed for moving backward
is”. Use INPUT command to display the speed when the car move backward.

time_bkwd =input("Input time to move in seconds. ");
speed_bkwd =input("Input speed to move forward. ");
motor_1.Speed = speed_bkwd;
start(motor_1);
pause(time_frwd);
stop(motor_1);
disp('The duration of time for moving backward is ');
disp(time_bkwd);
disp('The speed for moving backward is ');
disp(speed_bkwd);

3.1.2 IF statements
In the section on IF statements, students learn how to use IF, ELSE, and ELSEIF commands.
After learning these, they are asked to build a LEGO car with a color sensor connected. Then,
students write codes as directed in the application problems to make the LEGO car move
forward, backward or stop depending on the detected colors on the floor using the color
sensor. While students solve the application problems, they are also asked to use input and
DISP commands as directed in the problems to review the section on input/output. The
following shows the first and last application problems and the corresponding MATLAB
codes for the section on IF statements.

 Detect a color using a color sensor and display “Green” if the detected color is green.

color = readColor(mycolorsensor);
if strcmp(color,'green')
 disp('Green');

end

 Use INPUT command to display “Input an wait time to start.” and assign the value
to variable time_start. Detect a color using a color sensor. If the color is green, make
the car move forward immediately. If the color is red, make the motor move forward
after the time stored in the variable time_start. Detect a color using the color sensor
again. If the detected color is green, display “Keep moving forward.”. If the detected
color is blue, make the car move 2 times faster. If the color is red, make the car stop
after 1 second.

time_start = input('Input an wait time to start. ');

color = readColor(mycolorsensor);
if strcmp(color,'green')
 motor_1.Speed = 10;
 start(motor_1);
elseif strcmp(color,'red')
 pause(time_start);
 motor_1.Speed = 10;
 start(motor_1);
end

color = readColor(mycolorsensor);
if strcmp(color,'green')
 disp('')
elseif strcmp(color,'blue')
 motor_1.Speed = 20;
elseif strcmp(color,'red')
 pause(1);
 stop(motor_1);
end

3.1.3 Loop structures
In programming, understanding loop structures is important but can be difficult for beginners.
Therefore, it is crucial for beginners to have a solid understanding of how to use loop
structures when learning. In this course, students first learn the basics of FOR and WHILE
loops. Then, they assemble a LEGO car with a color sensor, an ultrasonic sensor, a gyro
sensor, two motors, and a controller. Students then write code as directed in the application
problems to make the car move forward and backward repeatedly, or rotate depending on
detected colors, distance from the wall, or angle that the car rotates using FOR and WHILE
loops. While solving the application problems, students are also asked to use INPUT, DISP,
and IF statements as directed in the problems for review purposes. The following shows the
first and the last application problems and the corresponding Matlab codes for the section of
loop structures.

 Make the car move forward for 2 seconds, and stop. Then, make the car move

backward for 2 seconds. Repeat this 3 times using a FOR loop. The speed parameter
is 10.

for i=1:3

 motor_1.Speed = 10;
 start(motor_1);
 pause(2);
 stop(motor_1);

 motor_1.Speed = -10;
 start(motor_1);
 pause(2);
 stop(motor_1);
end

 Refactor the code from problem 3 to reduce the duplicated lines.

spd = -10;
count_repeat = 0;
while count_repeat<3
 for j=1:2
 spd = -spd;
 motor_1.Speed = spd;
 start(motor_1);
 pause(2);
 stop(motor_1);
 end
 count_repeat = count_repeat + 1;
end

3.2 Projects part

After students learn basic programming concepts from the Basics part, two assigned projects
and one Student-Led project are given to them to enhance their understanding by applying
their basic programming knowledge to engineering problems. They are asked to work on the
projects as a team because teamwork is one of the necessary skills that employers want [13].
The number of students per team is 2 to 4. Students need to integrate all learned
programming knowledge of variables, input/output, IF statements and loop structures, and
utilize them to complete the projects. The two assigned projects are making a line tracking
robot and a cleaning robot. For the line tracking robot, students build a LEGO car and write
code to make the car follow a line on the floor. For the cleaning robot, students build a LEGO
robot with a cleaning tool attached and write code to make the robot move around while it
picks small pieces of papers on the floor. For these two assigned projects, guided problems
are given to students to help them complete their projects. Though students learn the basics of
programming from the Basics part, it is not easy for them to complete the assigned projects
on their own because they are not familiar with making somewhat complicated codes for their
projects yet. Thus, the guided problems for each assigned project guide students step-by-step
to help complete the projects. For the Student-Led project, students determine an engineering
product that they want to develop. Then, they design and build the product using LEGO and
write code to control. Some accessories are allowed to be used when building the engineering
product. For the Student-Led project, no guided problem is given. That is, students are asked
to make their code on their own entirely.

4 Effectiveness of the Course

To validate the effectiveness of the new course, three categories were measured: the level of
difficulty, repetition, and applicability of active learning activities. This was done to ensure
that students were able to understand the foundational concepts, apply their knowledge, recall
what they had learned, engage actively in class work, and experience the effectiveness of
using LEGO while learning programming.

4.1 Level of difficulty

An important factor considered when designing this course was the application of knowledge.
It is expected that students can have a better understanding of programming when they apply
their programming knowledge to tangible applications. Hence, application problems and
guided problems were designed to help students understand better by controlling the LEGO
robot using MATLAB. It is important that students start exercising problems from the
beginner level, with the difficulty of the codes gradually increasing. To ensure this, the level
of difficulty of each application problem and guided problem was measured and provided in
this section..

To assess the level of difficulty of each problem, the author created expected answer codes
for each problem, and a method modified from a previous study [14] was used. The following
items were used to measure the level of difficulty of the application and guided problems in
this course: the number of commands, the number of operators, cyclomatic complexity, the
maximum nested blocks, and the number of reduced lines after refactoring. Each answer code
was measured and scored based on these items. The scores of all items for each problem were
then added to predict its level of difficulty.

Fig. 1 shows that the level of difficulty of input/output application problems increases overall
as the problem number increases due to the increase in the number of commands. For IF
statements application problems as the next topic in Fig. 2, the level of difficulty increases
gradually overall. The level of difficulty increases mainly due to the increase in the number
of commands. The cyclomatic complexity overall increases a little bit due to the increase in
the number of commands. In the loop structures application problems as the next topic in Fig.
3, the level of difficulty increases overall though there are some fluctuations. The maximum
nesting depth of the application problems is 1, except at problem 5, problem 13, and problem
14. The reduced lines after refactoring are 4 at problem 13 and problem 14 while they are 0 at
other problems. In the line tracking robot project section, the level of difficulty of the guided
problems increases gradually as shown in Fig. 4. Compared to the level of difficulty in Fig. 1
to Fig. 3, it shows that the level of difficulty of the last problem is much higher than the one
of the first problem in Fig. 4. All factors except reduced lines after refactoring show gradual
increases though the rates of increases are varying. The level of difficulty of the cleaning
robot guided problems is shown in Fig. 5. It shows gradual increases from problem 1 to
problem 5, a sudden increase from problem 5 to problem 6 and a decrease from problem 6 to
problem 7. There is a sudden increase in reduced lines after refactoring from problem 6 to
problem 7, while the number of commands, number of operators, and cyclomatic complexity
decrease. In Fig. 6, the level of difficulty of each problem for all sections is shown. This
displays how the level of difficulty of problems through all sections increases as well as in
each section. This graph exhibits that the level of difficulty is mostly under 20 for the
sections of input/output, IF statements and loop structures. For the guided problems of the

line tracking robot and cleaning robot, the level of difficulty increases from under 20 to 63
for the line tracking robot, and to 104 for the cleaning robot.

Fig. 1. Level of difficulty of input/output application problems

Fig. 2. Level of difficulty of IF statements application problems

Fig. 3. Level of difficulty of loop structures application problems

Fig. 4. Level of difficulty of the line tracking robot guided problems

Fig. 5. Level of difficulty of the cleaning robot guided problems

Fig. 6. Level of difficulty of each problem for all sections

4.2 Repetition

In Table 1, it shows the number of repetition of input/output commands, IF statements and
loop structures in the application problems of each section. According to the table, students
are asked to use input/output commands 15 times while they exercise the application
problems of the section of IF statements, 24 times while they exercise the application
problems of loop structures, 5 times while they exercise the guided problems of the section of
line tracking robot, and 6 times while they practice the guided problems of the section of the
cleaning robot. Similarly, students are asked to use IF statements 4 times while they practice
the application problems of the section of loop structures, 23 times while they practice the
guided problems of the line tracking robot, and 3 times while they practice the guided
problems of the cleaning robot. In a similar way, students are asked to use loop structures,
either a FOR or WHILE loop, 29 times while they practice the guided problems of the section
of the line tracking robot, and 29 times while they practice the application guided of the

section of the cleaning robot. Eventually, input/output practice is repeated 50 times, if
statement practice is repeated 30 times and loop structure practice is repeated 58 times. In this
way, students repeat what they learn so that they can recall easily.

Table 1. Number of repetitions of each topic in each section

Section

Total Input/
output

IF Loop
Line
tracking

Cleaning

Input/output NA 15 24 5 6 50
IF NA NA 4 23 3 30

Loop NA NA NA 29 29 58

4.3 Active learning

Performing projects using LEGO and MATLAB in this newly suggested course can be
considered as active learning activities. Then, it would be questioned how much it would be
effective as active learning for learning programming. A study suggested 22 activities in total
as active learning activities [15]. The 22 activities are categorized into three levels based on
complexity: low complexity, moderate complexity and high complexity. In Table 2, it shows
the applicability of the 22 active learning activities to conducting projects using LEGO and
MATLAB in this course. In the table, conducting projects using the LEGO and MATLAB
suggested in this course can be considered as active learning activities described in code B,
D, G and K in the low complexity, code L, P and Q in the moderate complexity, and code S,
T and V in the high complexity. This shows that 4 activities out of 11 activities in the low
complexity can be considered as active learning activities in the new course, which is 36 %
out of 100 %. In the moderate complexity, 3 activities out of 7 activities, which is 43 % out of
100 %, can be considered as active learning activities. In the high complexity, 3 activities out
of 4 activities, which is 75 % out of 100 %, can be considered as active learning activities.
Consequently, the percentage increases as the complexity becomes higher.

Table 2. Applicability of active learning activities to the newly suggested course [15].
The codes with A are applicable and NA are not applicable to this new course.

Low Complexity
A B C D E F G H I J K

NA A NA A NA NA A NA NA NA A
Moderate Complexity High Complexity

L M N O P Q R S T U V
A NA NA NA A A NA A A NA A

5 Discussions

The assessment of effectiveness shows that this course was designed systematically to
enhance students' understanding of programming. The level of difficulty of application
problems and guided problems overall increases in each section, as shown from Fig. 1 to Fig.
5. This helps students build the concept of input/output, IF statements, and loop structures

gradually. Especially for the section of input/output and IF statements, the application
problems were designed to be simple, so students can focus on learning these concepts. For
example, in Fig. 1, the application problems in the input/output section have only 2 operators,
and the maximum nesting depths and reduced lines after refactoring are 0. This means the
application problems in this section are quite simple, while the difficulty level increases
gradually. This approach also applies to the application problems for IF statements in Fig. 2,
where the level of difficulty increases gradually mainly due to the gradual increase in the
number of commands, so students can focus on understanding IF statements. Because
learning programming is likely new for most students, this gradual increase in difficulty
would be helpful for them to become familiar with programming and understand the
concepts.

Loop structures are often considered challenging for new learners in programming.
Therefore, it is recommended that the application problems for loop structures should not be
too difficult so that students can fully understand the concept of loop structures. In Fig. 3, the
maximum nesting depth of the application problems is 1, except for problems 5, 13, and 14.
This means that the application problems were designed to focus on the simple application of
loop structures without considering complicated nesting. This approach will help students
build a solid understanding of loop structures. One noteworthy aspect of this section is the
introduction of refactoring in problems 13 and 14. Learning and understanding refactoring
can help students make their code more efficient..

In the section of the line tracking robot project shown in Fig. 4, the level of difficulty of the
last problem is much higher than the first problem. It is expected that students are not yet
familiar with transforming a complicated algorithm such as the tracking robot project into
code. In particular, the level of difficulty of the expected completed code for this project is
close to 70 while the maximum level of difficulty in the Basics part is below 25. That means
it would be very difficult for students to start working on the projects with only exercising
problems at the difficulty level below 25 in the Basics part. Therefore, starting with a guided
problem under the difficulty level of 25 in the Projects part would help students experience a
smooth transition from the Basics part to the Projects part to apply their knowledge learned
from the Basics part to the line tracking robot project and the cleaning robot project. Another
thing worth mentioning is that the maximum nesting depth increases from 1 to 4 in this
section. By experiencing the maximum nesting depth of 4, students are introduced to nesting
for more complicated codes for future projects.

The number of repetitions in Table 1 shows that the new course was designed systematically
to repeat what students have learned, enhancing their retention. However, it may be thought
that the number of repetitions for IF statements, which is only repeated four times in the
section of loop structures, is not enough. Nevertheless, this may help students focus on
learning loop structures without the added complexity of IF statements, which could be
confusing for beginners. Thus, minimizing the repetition of IF statements in the loop
structures section could be a useful approach for students to focus on loop structures. It is
also worth mentioning that the application problems for repetition are not simply recalling
what students learned; rather, they require students to apply what they recall to given
problems, thereby strengthening their understanding of programming concepts while they
repeat.

As mentioned in the Results section, Table 2 shows that the percentage of active learning
activities increases as the complexity of the activities becomes higher. This suggests that

using LEGO and MATLAB to conduct projects in this new course is more suitable for higher
complexity active learning activities. Although it is not explicitly stated in the cited study
[15], it can be assumed that activities with higher complexity are more effective as active
learning activities because they require and draw students’ attention and participation more
deeply into the activity. Given that this new course has a higher percentage of higher
complexity activities, it can be concluded that conducting projects using LEGO and
MATLAB as designed in this newly suggested course would be effective for students to have
better learning experiences in programming due to the effects of active learning. However,
this new course can be further improved by adding more low complexity active learning
activities without much additional preparation, as instructors can add them with relative ease
due to their simplicity. One thing worth to mention is that EV3 is no longer available, so new
edition of LEGO robotics can be used.

6 Conclusions

The proposed new course aims to teach the foundational concepts of programming to
engineering students using LEGO EV3 and MATLAB. The effectiveness of the course was
measured by assessing the level of difficulty, repetition, and applicability of active learning
activities. The results indicate that the level of difficulty increases gradually in each section,
and the foundational concepts of input/output, IF statements, and loop structures are
systematically repeated throughout the course. The level of difficulties of the line tracking
robot and the cleaning robot projects increase gradually from the Basics section. The
measurement of active learning shows that the course is suitable for higher complexity active
learning activities. Overall, the proposed course is promising in effectively teaching
programming to engineering students. it is recommended to offer this new course for several
semesters and conduct surveys to collect feedback and measure its effectiveness.

7 References

[1] M. McCracken et al., “A multi-national, multi-institutional study of assessment of
programming skills of first-year CS students,” ACM SIGCSE Bull., vol. 33, no. 4, p. 125,
Dec. 2001, doi: 10.1145/572139.572181.

[2] M. A. Garcia and H. P. Mc-Neill, “Learning how to develop software using the toy
LEGO mindstorms,” in Proceedings of the 7th annual conference on Innovation and
technology in computer science education - ITiCSE’02, Aarhus, Denmark, 2002, p. 239.
doi: 10.1145/544414.544508.

[3] A. Pásztor, R. Pap-Szigeti, and E. Török, “Mobile Robots in Teaching Programming for
IT Engineers and its Effects,” Int. J. Adv. Comput. Sci. Appl., vol. 4, no. 11, 2013, doi:
10.14569/IJACSA.2013.041123.

[4] E. Wang, J. LaCombe, and A.-M. Vollstedt, “Teaching Structured Programming Using
Lego Programmable Bricks,” Jun. 2007. [Online]. Available: https://peer.asee.org/2160

[5] N. E. Naga, S. J. Stokes, and H. E. Naga, “The Use Of Real Time Operating Systems And
Development Tools As A Mean To Revitalize Computer Engineering Programming
Courses,” Salt Lake City, Utah, Jun. 2004. [Online]. Available:
https://peer.asee.org/13110

[6] D. J. Barnes, “Teaching introductory Java through LEGO MINDSTORMS models,” in
Proceedings of the 33rd SIGCSE technical symposium on Computer science education -
SIGCSE ’02, Cincinnati, Kentucky, 2002, p. 147. doi: 10.1145/563340.563397.

[7] H. Fangohr, “A Comparison of C, MATLAB, and Python as Teaching Languages in
Engineering,” in Computational Science - ICCS 2004, vol. 3039, M. Bubak, G. D. van
Albada, P. M. A. Sloot, and J. Dongarra, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 1210–1217. doi: 10.1007/978-3-540-25944-2_157.

[8] D. Weintrop and U. Wilensky, “Comparing Block-Based and Text-Based Programming
in High School Computer Science Classrooms,” ACM Trans. Comput. Educ., vol. 18, no.
1, pp. 1–25, Oct. 2017, doi: 10.1145/3089799.

[9] A. Behrens et al., “MATLAB Meets LEGO Mindstorms—A Freshman Introduction
Course Into Practical Engineering,” IEEE Trans. Educ., vol. 53, no. 2, pp. 306–317, May
2010, doi: 10.1109/TE.2009.2017272.

[10] M. Casini, A. Garulli, A. Giannitrapani, and A. Vicino, “A LEGO Mindstorms multi-
robot setup in the Automatic Control Telelab,” IFAC Proc. Vol., vol. 44, no. 1, pp. 9812–
9817, Jan. 2011, doi: 10.3182/20110828-6-IT-1002.02080.

[11] D. Budny, L. Lund, and R. Khanna, “Designing Service Learning Projects for Freshman
Engineering Students,” Int. J. Eng. Pedagogy IJEP, vol. 3, no. S1, p. 31, Feb. 2013, doi:
10.3991/ijep.v3iS1.2371.

[12] M. A. Albanese and S. Mitchell, “Problem-based learning: a review of literature on its
outcomes and implementation issues [published erratum appears in Acad Med 1993
Aug;68(8):615],” Acad. Med., vol. 68, no. 1, pp. 52–81, Jan. 1993, doi:
10.1097/00001888-199301000-00012.

[13] G. M. Lundberg, B. R. Krogstie, and J. Krogstie, “From Employable to Fully
Operational: The Need for Training of Computer Science Graduates,” Int. J. Eng.
Pedagogy IJEP, vol. 11, no. 3, p. 21, May 2021, doi: 10.3991/ijep.v11i3.19995.

[14] S. Elnaffar, “Using software metrics to predict the difficulty of code writing questions,”
in 2016 IEEE Global Engineering Education Conference (EDUCON), Abu Dhabi, United
Arab Emirates, Apr. 2016, pp. 513–518. doi: 10.1109/EDUCON.2016.7474601.

[15] J. A. Van Amburgh, J. W. Devlin, J. L. Kirwin, and D. M. Qualters, “A tool for
measuring active learning in the classroom,” Am. J. Pharm. Educ., vol. 71, no. 5, p. 85,
Oct. 2007.

