
Paper ID #39775

Neurocognitive Examination of the Impact of Design Project
Representation on Student Motivation and Performance

Corey James Kado, Florida Polytechnic University

He is a junior-level student at Florida Polytechnic University, majoring in Mechanical Engineering. He is
a Student Research Assistant under Dr. Elisabeth Kames, focusing on Design Neurocognition.

Elisabeth Kames, Florida Polytechnic University

Dr. Elisabeth Kames is an Assistant Professor at Florida Polytechnic University. Her research focuses on
engineering design and manufacturing, including pedagogical approaches. She is also interested in the
impact of motivation on performance and persistence in mechanical engineering design courses. Elisabeth
is an active member of ASEE, ASME, and Tau Beta Pi Engineering Honor Society.

©American Society for Engineering Education, 2023



Neurocognitive Examination of the Impact of Design Project 

Representation on Student Motivation and Performance 

 
Abstract  

The ASME Vision 2030 Project (V2030) outlined a set of goals to aid in the development of 

engineering education to better face the current and future demands of the profession. Part of this 

vision proposed the implementation of designed-based curricula throughout the degree program. 

These design courses are meant to introduce students to implementing theoretical knowledge into 

real-world applications and design tasks. The purpose of this preliminary study is to investigate 

the impact of design courses on the neurocognition of mechanical engineering students. This 

study utilizes a group of students in a sequential series of cornerstone design courses. The study 

makes use of an electroencephalography (EEG) device to monitor the participant's brain activity 

during a design task. This data will compare brain activity when the participants are presented 

with differing modalities of design exercises. A modified version of the Motivated Strategies for 

Learning Questionnaire (MSLQ) will self-assess the student’s motivation toward the design 

tasks.  

The robustness of this study allows for the ability to examine the impact of both brain activation, 

motivation, and learning style on the student’s design. Motivation, brain activation, and learning 

style are measured regarding a student’s demographics, including gender, residency, and age, to 

determine if a correlation is present. 

The results of the study indicate that there is a correlation between change in brain activation in 

the beta frequency located in the right frontal cortex and design problem modality. These 

findings further present a strong correlation between the brain activations and self-reported 

motivations of the students. Specifically, a student’s cognition motivation had a positive 

influence with design problems presented as pictures. Further it was determined that a kinesthetic 

learning style benefitted from pictural design problems, as well.  

Introduction 

Engineering education is a dynamic field influenced by the industry's shifting demands. The 

American Society of Mechanical Engineers (ASME) Vision 2030 Project (V2030) has identified 

several goals that are crucial for the preparedness of future engineers. One goal is to enhance 

"Student design/build project experiences in the degree program" [1]. However, this goal 

challenges educators as they strive to implement it effectively. 

Implementing the goal poses a challenge for educators as it leaves many decisions to be made, 

which should only be done with consideration for the students. One crucial factor to consider is 

the academic major of the students. As demonstrated by Vieira, the regions of the brain utilized 

for a task vary depending on the subject’s expertise or field of study. The study outlines the 

differences in the brain regions used by mechanical engineers from those used by architects [2]. 

Another crucial factor to consider is the motivation of the students toward these design 



experiences, especially throughout the curriculum. Research on student motivation has proven 

the dynamic nature of motivation, even over a short time. Another study has shown that essential 

motivation factors also vary with the study year the student is currently enrolled in [3]. 

Additionally, the influence of the presentation of problems in design projects is an important 

aspect that educators may consider. In a focused investigation, Gero [4] compared the effects of 

constrained and open-ended design problems. Some other considerations in understanding these 

influences have been presented, such as learning styles and personality types. However, studies 

have yet to compare the modality of design problem statements and the impact on student’s 

motivation towards completion.  

This study aims to determine if the modality of a design problem affects the thinking of 

mechanical engineering students (measured through brain activations), and if these correlate with 

a student’s motivation or preferred learning style. This study utilizes electroencephalography 

(EEG) to determine the brain activations of students in the cornerstone design course at Florida 

Polytechnic University. This course introduces mechanical engineering students to fundamental 

design practices and skills in the student’s sophomore year. The goal is to determine if there is 

any change in brain activations between design problems presented in two differing modalities – 

design problems presented through a textual prompt and design problems presented purely 

pictorially. A further goal of this study is to determine if there is any correlation between brain 

activations and academic motivation or learning style. Therefore, student motivation is measured 

by Pintrich’s Motivated Strategies for Learning Questionnaire (MSLQ), which will be discussed 

further in a future section of the paper [5]. Another possible scope for influence is the student’s 

preferred learning style, as determined by Fleming’s VARK [6]. A final frame to be investigated 

is if the demographics of a student, such as gender and socioeconomic status, influence brain 

activation when presented with a design problem. 

This research aims to provide insight into how design problems should be presented to students 

in design courses. If it is determined that there is a correlation between brain activations and any 

specific motivation or learning style, this can prove vital to an educator. Utilizing either of these 

questionnaires, an educator could target the specific needs of each student, ensuring their success 

in the course and improving their overall understanding of the course material. This study 

explicitly addresses three research questions about the modality of design problems in a design 

course.  

• In what ways does the change in design problem modality alter brain activations? 

• What motivation factors correlate with variance in brain activations due to the change in 

design problem modality? 

• What preferred learning styles correlate with variance in brain activation due to the 

change in design problem modality? 

Background 

It is imperative to understand the pretext that inspired the authors to conduct this research and 

utilize the tools outlined. A brief history of the goals of ASME and the field of design 

neurocognition that inspired the research is presented to understand the motivation of the 

researchers. The EEG is a widely used tool by researchers to provide quantifiable data of brain 

utilization. Using this data, and decades of neurological research, researchers can determine in 



what ways the participants’ brain is functioning without interference of any bias. Also utilized in 

this research are the MSLQ and VARK surveys, providing insight into the self-perceived 

motivations and preferred learning styles of the students. Utilizing these tools and demographic 

information gathered, a diverse and thorough amount of data can be utilized as we investigate the 

influences that affect a participant’s alteration in brain activations due to differing design 

modality. 

1. ASME Goals and Neurocognition 

The ASME V2030 laid out essential goals for educators to achieve by the end of the decade. 

These goals were not simply determined by a small contingent of people, but rather done by a 

task force that surveyed well over 3000 correspondents. These correspondents included 1470 

senior engineers and engineering managers, representing companies with as small as 1 employee 

to as large as more than 46,800 employees, and having upwards of more than 30 years of 

experience. 42 responses were gathered from differing academic institutions, which resulted in a 

plenary, which further probed 85 department heads on questions relating to the survey. In a final 

addition, 635 responses from early career (0-10 years of experience,) were gathered to provide a 

third perspective on the strengths and weaknesses of engineering education [7]. 

The survey presented 15 key skills and asked participants to determine which skills were strong 

and which were weak. As presented by both Danielson and Kirkpatrick, there exists a large gap 

between the reported strengths and weaknesses by industry supervisors when compared to the 

educator and early career engineers [7]-[8]. Focusing on the highest rated weakness by industry 

denoted as “practical experience,” Kirkpatrick provides a recommendation of the incorporation 

of “curricular components that emphasize active, discovery-based learning…” [8]. Sheppard 

proposes that the design projects present an opportunity for professional development in skills 

such as formulating and problem solving [9]. One method of determining the ideal approach of 

this is through design neurocognition. This method provides an invaluable unbiased insight into a 

student’s thought process. This is done through providing quantitative data that can be related to 

the actual processes undertaken by the student. 

As explained by Gero [10], previous research into design has been evolved by the availability of 

non-invasive brain measurement devices such as EEG and fNIRS (a tool that measures 

hemoglobin concentrations,) and to a lesser extent fMRI (a tool that measures blood flow.) Each 

of these devices is designed to non-invasively measure cerebral activations. The EEG device 

collects brain waves, which indicate activations of certain areas of the brain. Utilizing knowledge 

gathered through neurological research, these brain activations can be correlated to differing 

brain processes. This technology has been utilized in a wide range of studies in effort to aid 

designing protocols and the development of curricula for engineering students.  

In a study conducted by Vieira, an EEG device was utilized to display the difference in brain 

activations between constrained and open design problems [11]. Similar research has also been 

conducted with differing constraints, such as sustainability [12]. Furthermore, there has been a 

great deal of research into how differences between engineers affect brain activations when 



given the same task. Some studies looked at the influence of majors, with one study focused on 

differences in brain activations between mechanical engineers and architects [2], and a second 

focused on the differences between mechanical engineers and industrial designers in open versus 

closed design problems [11]. The effect on gender has also been observed in designing tasks 

conducted by industrial designers indicated that differing regions of the brain are utilized for 

opposing genders [13]. One final example of the breadth of the use of EEG in neurocognition 

research, is in the comparison of brain activations experienced professionals versus novices of 

their field. One such study compared experienced and novice designers [14], and another 

compared experienced and novice jazz performers [15]. This study seeks to further explore some 

of these phenomena.  

2. The Brain and EEG device 

To best understand results of the EEG it is imperative to understand the anatomy of the brain and 

the importance of each part. The brain is divided into 3 main regions, the cerebrum, cerebellum, 

and the brain stem. The main region of interest is the cerebrum, also referred to as the neocortex. 

This is the place where most of the brain processes take place, such as thought, speech, problem-

solving, emotions and learning. The cerebrum is split into two halves, split longitudinally from 

back to front, with each side controlling the opposite side of the body it is on. The brain stem is 

vital to survival containing the medulla which regulates many of the body functions (heart 

rhythm, breathing, and oxygen levels to name a few) but also generates responses to stimuli in 

the midbrain. The cerebellum coordinates the muscle movements of the body and maintains 

equilibrium in posture. New studies show that the cerebellum may also play a role in thoughts, 

emotions, and social behavior [16]. 

There are four lobes in the cerebrum, the frontal, parietal, temporal, and occipital. The frontal 

lobe is responsible for the person’s movement, decision-making, and personality characteristics. 

It also contains the Broca area, which is associated with speech. The parietal lobe involves 

identification of objects, spatial relationships, and plays a role with touch in the body. The 

parietal lobe also contains Wernicke’s area which aids in spoken language interpretation. The 

main role of the occipital lobe is interpreting vision. The temporal lobe is the location where 

short-term memory, speech, and rhythm. There are also structures deeper in the brain, however, 

EEG devices do not measure these deeper systems, but can only measure the surface of the brain 

lobes [16]. With this basic explanation of the brain and how different regions are responsible for 

differing actions, it is next important to understand how the brain functions on a cellular level, 

which is with brain waves. 

The brain functions by sending electrical potentials between neurons, and an EEG measures 

these potentials on the surface layer of the cortex. However, these are not a direct measure of 

information, however based upon the potential and frequency of the EEG, these can be measured 

as waves. Over the many years of neurological research, these waves have been associated with 

different activities. There are five identifiable brain waves that range from 0 hertz to 100 hertz. 

The highest frequency brainwaves are identified greater than 30 hertz, known as Gamma waves. 

These are associated with peak levels of concentration and high levels of cognitive function. 



However, these gamma waves are hard to measure as the electrical signals from the muscles 

cause a great number of artifacts in this range with current EEG technology. For this reason, 

these brainwaves may be difficult to measure, however in this study were able to be recorded 

without a great amount of interference [17]. 

The next lowest brain waves range between 12 and 38 hertz and are referred to as Beta waves, 

which are categorized into Low Beta, Beta, and High Beta. Beta waves in general are associated 

with alertness, attentiveness, and problem-solving. Low Beta (12-15 Hz) are often referred to as 

“fast idle” or musing thought, which is considered deep thought like meditation. Beta (15-22 Hz) 

is associated with engagement and active problem-solving. High Beta (22-38 Hz) waves are 

correlated with highly complex thought, integration of new experiences, or excitement. Due to 

these high frequencies, these can often manifest in neurological issues like insomnia and mania. 

The next lowest brain waves range between 8 and 12 hertz and are referred to as Alpha waves. 

These waves are often associated with the brain’s resting state, often associated with 

coordination, calmness, and learning. It has also been noted that following completion of tasks, 

post reinforcement synchronization (PRS) occurs which is a burst of alpha waves as the brain 

consolidates information. [17] 

The last two brain waves range between 1 and 8 hertz, with theta waves ranging between 4 and 8 

hertz, while delta waves range between 1 and 4 hertz. Both are associated with sleep, while theta 

waves occur during drowsy states. The only time these waves occur when a subject is awake 

indicates learning disabilities or other conditions, such as Attention Deficit/Hyperactivity 

Disorder (ADHD) [17].  A last area of interest concerned with brain operation is how memories 

are formed and stored in the brain. Three forms of memory exist, implicit, explicit, and working 

memory. Implicit memory occurs in regions of the brain too deep to be measured by an EEG 

device. However, explicit memory which is linked to episodic (past events), and semantic 

(general knowledge) memories have been linked to the neocortex. Working memory, also known 

as short-term memory, has been exclusively linked to the prefrontal cortex [18]. Utilizing this 

knowledge of the brain, when analyzing brain activation gathered by the EEG device, it can be 

determined the processes being undertaken by the participant.  

3. Student Motivation 

When observing the success/shortfalls of a student, many components are attributed to the reason 

behind their success/shortcomings. One aspect of students often overlooked is their internal 

motivation factors. These internal motivations are heavily influenced by many factors in a 

student’s life. As displayed by Kirn, one such influence can be the major a student is pursuing 

[19]. Along with varying by year of study, another study showed that the motivation of students 

is not stagnant but evolves throughout their time studying, with some motivation factors 

becoming more important than others [3]. There are multiple questionnaires that investigate the 

motivation of students, for this study the MSLQ is utilized. 

The MSLQ is a self-assessment questionnaire utilizing a Likert scale, rating a list of questions on 

a scale of “not true to me” to “very true to me.” This study specifically views five motivation 



factors, which are gathered using this questionnaire: cognitive value, self-regulation, anxiety, 

intrinsic value, and self-efficacy. Cognitive value describes the ability to recognize required tasks 

and sequence of tasks to execute a design problem. Self-regulation is the ability to orient oneself 

in the completion of a goal or design challenge. Anxiety is related to the nervousness felt while 

completing the design activity. Intrinsic value describes the self-determination and internal 

reasoning of a participant in a task. Self-efficacy is confidence in achieving a goal [20]. Notably, 

it has been documented that self-efficacy of a student may increase or decrease depending on the 

task [21]. Therefore, different design tasks may increase or decrease the student's confidence in 

their ability to complete (whether successfully or unsuccessfully) a task.  

The MSLQ offers a brief, but insurmountable insight into the motivations of a participant. It 

proves a useful tool in aiding educators in formulating education better suited to the individuals 

in their classrooms. In combination with brain activations, the MSLQ could possibly prove to be 

a further useful tool for educators. Pending the results of this investigation, motivations of the 

MSLQ could be linked to certain design modalities.  

4. Learning Styles 

Learning and retaining information through varying methods is a thoroughly researched area of 

education. Many methods exist to gage the preferred learning styles have been touted, including 

the method presented by Fleming known as the “VARK” in 1992 [6]. Fleming [22] further 

expanded upon this questionnaire, presenting the concept of multi-modal learning. The VARK is 

a self-assessment questionnaire in which students are asked questions based on different 

situations or preferences. The multiple-choice responses correlate to the outlined methods of 

learning, visual, auditory, reading, or kinesthetic. Summing up the number of indicated responses 

for each learning style, it can be determined which is the preferred learning style of the 

participant. Similarly, to the MSLQ, VARK may prove to be an even more useful tool for 

educators if there is a link between a preferred learning method and design modality. 

Experimental Procedure and Analysis 

The study was conducted in a single instance, at the end of a students’ first semester cornerstone 

course taught at Florida Polytechnic University. This cornerstone design course is commonly 

taken during the students’ sophomore year. In this course, students are introduced to the basic 

design concepts. Ideally this limits the amount of influence on how the participants approach the 

design problems presented.  

For the study, participants were given a 30-minute time slot in which the experiment would be 

conducted. The participants were read a summary of the purpose of the study and what data 

would be gathered and utilized as approved by the university’s Internal Review Board (IRB). In 

conducting product comparison, it was determined that the EEG device best suited for this study 

is the Emotiv EPOX Flex 32 electrode cap [23]-[26]. The EEG cap was fitted to the participants, 

and utilizing a saline solution, the electrodes were soaked and placed as close to the scalp of the 

participant as possible to limit interference. Utilizing the EmotivPRO application, the contact 



quality (which is a metric used to determine if an electrode is properly attached) was assured to 

be close to 100%. Participants were advised to limit motion as this could worsen contact quality 

by shifting the EEG cap and cause artifacts in the EEG data. 

A written design problem (designated as “Design Problem 1”) was given to participants and they 

were advised to fabricate as many solutions as they see fit for the problem. Participants were 

given up to 10 minutes for this task, after which they were instructed to stop designing. A break 

of approximately 3 minutes was given; this was done to prevent fatigue as this would decrease 

performance in subsequent tasks [27]. A pictural design problem (designated as “Design 

Problem 2”) was given to the participants with the same direction and time limitation as Design 

Problem 1. The design problems were all similar complexity. Following completion of Design 

Problem 2, participants were given a brief post-experiment questionnaire and this portion of the 

study was complete. The MSLQ and VARK were disseminated using the courses’ Canvas page, 

and the participants completed these within a few days of the EEG portion of the study.  

1. Study Subjects 

The demographic information of the students who participated in the study was limited due to a 

small number of participants (n=12) as provided in Table 1. The participants were 83% male, 8% 

female, and 8% nonbinary. Of this group 75% identified as Caucasian/White, while 25% 

identified as Asian. It can be noted that all participants were in the same age range (17-20), and 

all were domestic (from the United States) students. Due to this limited range in demographic 

diversity, significant conclusions could not be reached regarding relations between demographic 

factors and brain activations. 

Table 1: Participant Demographics 

 Caucasian/White 
Asian 

American 
Total 

Male 8 2 10 

Female 1 0 1 

Non-

Binary 
0 1 1 

Total 9 3 12 

2. Analysis Performed 

The analysis performed will seek to address each of the research questions posed at the 

beginning of this paper. Firstly, the brain activations of the participants were averaged across all 

brain regions monitored and across all brain waves monitored (Theta, Alpha, Beta Low, Beta 

High, and Gamma,) for both Design Problem 1 and Design Problem 2. The statistical analysis of 

a t-test was applied comparing the averages, but also applied to the raw data of each brain wave 

across the different brain regions. In the results, α < 0.05 is considered significant. This would 



address the first research question, specifically narrowing down which waves and regions of the 

brain are affected by design modality change.  

To address the second and third research questions, the deltas between Design Problem 1 and 

Design Problem 2 were found across all brain regions and brain waves. Linear regression is 

utilized to compare the deltas to the motivation and preferred learning style of the student. This 

linear regression is utilized to determine if there is any correlation between the set of 

independent variables and dependent variables. Due to the presentation of multiple variables, 

correlations might be present as a multi-order level, and as such, Akaike’s Information Criterion 

(AIC) is utilized to find the best fit model. Utilizing this method of linear regression, a 

correlation between a students’ motivation or preferred learning style and brain activation 

changes could be determined.  

Results 

This section will discuss the presence of any brain activation difference between Design Problem 

1 and Design Problem 2. This was done across the five brain wave frequencies and the 32 

regions monitored. MSLQ and VARK were utilized to determine factors for any significant 

changes in brain activations. The MSLQ utilizes a Likert scale of 1-7, 1 indicating “not true to 

me” to a question and 7 indicates that the question is “very true to me.” The VARK instructs the 

participant to select an answer or multiple answers to a question, which correspond to one of the 

four learning styles, each participant’s answers for each learning style were totaled. 

1. Difference in Brain Activation 

The brain activations were averaged across all brain waves and across all brain regions for each 

Design Problem. Utilizing a t-test, it was determined that there were significant changes in brain 

activations across multiple regions and across the varying waves. To further the conclusions of 

the results, a t-test was applied to each set to the individual brain waves to decisively determine 

which brain wave(s) and brain regions caused these strong correlations. The results of this test 

indicated that the Beta Low frequency was the most significant brain wave, with the regions of 

Fp1, F3, FC5, P8, Cp6, T8, Ft1, Fc6, F4, F8, and Fp2 having statistical significance. When 

comparing the deltas between the two Design Problems, it can be noted there is a general 

increase in brain activation for Design Problem 2 compared to Design Problem 1. These results 

are displayed graphically in the polar plot provided in Figure 1. 



 

Figure 1: Change in Brain Activations in the Beta Low Frequency 

2.  Correlations Between Brain Activations and MSLQ 

With the significant difference discovered in the Beta Low frequency and in the ten different 

brain regions, it was next to be determined if these changes could be correlated with motivation 

factors. For each of the significant brain regions a linear regression analysis was performed to 

determine which of the five motivation factors correlated to the change in brain activation. The 

AIC Analysis determined that Cognitive, Intrinsic, and Anxiety had the greatest correlation to 

change in the regions of Fp1, F3, FT1 and Fp2 (model p-value range = 0.0044 - 0.0477).  

Figure 2 compares the brain activation in the Fp1 region to the participants’ self-reported 

cognitive value. The students’ cognition showed a positive correlation with their brain 

activations in this region. This was further exacerbated by the students’ self-reported anxiety, 

however, the students’ anxiety was negatively correlated with their brain activations in the Fp1 

region. Recall, the Fp1 region is the prefrontal cortex, associated with tasks such as object 

identification and their spatial relationships.  



 
  Coefficients Std. Error t Stat P-Value  

 Intercept -2.938 0.7700 -3.815 0.0041  

 Cognitive 1.640 0.2943 3.944 0.0033  

 Anxiety -0.0341 0.1679 -2.033 0.0726  

 Residual Standard Error: 0.6226  

 F-Statistic: 8.69  

 Model P-Value: 0.0079  

Figure 2: Change in Brain Activations in Fp1 Compared to MSLQ 

The students’ cognition was also found to be positively correlated with their brain activations in 

the F3 region, which is in the frontal cortex and is primarily responsible for decision making. 

This relationship was strengthened by the negative correlation with their intrinsic value, to a 

model p-value of 0.0437. This is shown in Figure 3, below. 

 
  Coefficients Std. Error t Stat P-Value  

 Intercept 2.481 1.1717 2.056 0.0700  

 Cognitive 0.1940 0.0997 1.946 0.0835  

 Intrinsic -0.4673 0.1870 -2.499 0.0339  

 Residual Standard Error: 0.3109  

 F-Statistic: 4.522  

 Model P-Value: 0.0437  

Figure 3: Change in Brain Activations in F3 Compared to MSLQ 
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Figure 4 also exhibits the impact of the students’ cognition and intrinsic value on their brain 

activations, this time with respect to FT1. FT1 is in the frontal temporal region of the brain, 

primarily utilized in decision making and recalling short term memory. Again, cognition 

exhibited positive correlation and intrinsic exhibited negative correlation.   

 
  Coefficients Std. Error t Stat P-Value  

 Intercept 2.621 2.052 1.277 0.2355  

 Cognitive 0.4305 0.1746 2.366 0.0358  

 Intrinsic -0.6215 0.3274 -1.899 0.0900  

 Residual Standard Error: 0.5444  

 F-Statistic: 4.369  

 Model P-Value: 0.0472  

Figure 4: Change in Brain Activations in FT1 Compared to MSLQ 

Finally, Figure 5 displays the impact of all three of the aforementioned significant motivation 

factors – cognition, intrinsic value, and anxiety – on brain activity in the Fp2 region. This region 

was found to be correlated with all three factors to a model p-value of 0.0041. Similar to the 

previous regions, cognition displayed a positive correlation with brain activations, while intrinsic 

value and anxiety displayed negative correlations. The Fp2 region is once again in the prefrontal 

cortex of the brain. This, coupled with the activations in the Fp1 region, displays cross-

hemispherical activation in the prefrontal cortex, suggesting that participants use left- and right-

brain operations.  
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  Coefficients Std. Error t Stat P-Value  

 Intercept 0.2473 2.0466 0.121 0.9068  

 Cognitive 1.374 0.2543 5.404 0.0006  

 Anxiety -0.5628 0.1451 -3.877 0.0047  

 Intrinsic -0.0455 0.3238 -1.406 0.1973  

 Residual Standard Error: 0.5376  

 F-Statistic: 10.22  

 Model P-Value: 0.0041  

Figure 5: Change in Brain Activations in Fp2 Compared to MSLQ 

3. Correlations Between Brain Activations and VARK 

Like the MSLQ data, a linear regression analysis was performed to determine whether learning 

styles correlated to changes in brain activation. The AIC Analysis determined that Auditory and 

Kinesthetic had the greatest correlation to the region of F3, F4, F8, FC5, FC6, and CP6.  

 
  Coefficients Std. Error t Stat P-Value  

 Intercept -1.328 0.5055 -2.627 0.0275  

 Auditory -0.1112 0.0313 -3.549 0.0062  

 Kinesthetic 0.2040 0.0543 3.760 0.0045  

 Residual Standard Error: 0.262  

 F-Statistic: 8.209  

 Model P-Value: 0.0094  

Figure 6: Change in Brain Activations in F3 Compared to VARK 
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The change in brain activations was found to be correlated to the auditory and kinesthetic 

learning styles to a p-value of 0.0094 and 0.0025 in the F3 and F4 regions, respectively. This 

again exhibits cross-hemispherical activations, this time occurring in the frontal cortex of the 

brain. The correlation between learning styles and activations in the F3 region are shown above 

in Figure 6, while the correlation between learning styles and activations in the F4 region are 

shown below in Figure 7. It is important to note that the kinesthetic learning style exhibited 

positive correlation, while the auditory learning style exhibited negative correlation for each of 

these regions.  

 
  Coefficients Std. Error t Stat P-Value  

 Intercept -2.213 0.6279 -3.525 0.0065  

 Auditory -0.1615 0.0389 -4.150 0.0025  

 Kinesthetic 0.3227 0.0674 4.789 0.0010  

 Residual Standard Error: 0.3254  

 F-Statistic: 12.51  

 Model P-Value: 0.0025  

Figure 7: Change in Brain Activations in F4 Compared to VARK 

The auditory and kinesthetic learning style was also found to be correlated to the brain activity in 

the F8 region of the frontal cortex, shown in Figure 8.  

Comparing the brain activations in F4 (Figure 7) and in F8 (Figure 8), it can be noted that the 

change in activations appear to be nearly identical when compared to learning style. This 

exemplifies an overall, equally proportional, increase in the right hemisphere compared to the 

left hemisphere.  
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  Coefficients Std. Error t Stat P-Value  

 Intercept -2.438 0.5408 -4.507 0.0015  

 Auditory -0.1720 0.0335 -5.131 0.0006  

 Kinesthetic 0.3459 0.0580 5.959 0.0002  

 Residual Standard Error: 0.2803  

 F-Statistic: 19.29  

 Model P-Value: 0.0006  

Figure 8: Change in Brain Activations in F8 Compared to VARK 

The students’ auditory and kinesthetic learning styles were also correlated with the deltas in 

brain activations in the frontal cerebral cortex of the brain, specifically in the FC5 and FC6 

regions.  

 
  Coefficients Std. Error t Stat P-Value  

 Intercept -1.305 0.4630 -2.819 0.0201  

 Auditory -0.0995 0.0287 -3.470 0.0071  

 Kinesthetic 0.1930 0.0497 3.885 0.0037  

 Residual Standard Error: 0.2399  

 F-Statistic: 8.398  

 Model P-Value: 0.0088  

Figure 9: Change in Brain Activations in FC5 Compared to VARK 
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The FC5 region (shown in Figure 9) and the FC6 region (shown in Figure 10) are responsible for 

planning and movement. Additionally, this exhibits cross-hemispherical activation, in which the 

plots are once again very similar in nature.  

 
  Coefficients Std. Error t Stat P-Value  

 Intercept -2.494 0.6675 -3.737 0.0046  

 Auditory -0.1797 0.0414 -4.343 0.0019  

 Kinesthetic 0.36082 0.0716 5.037 0.0007  

 Residual Standard Error: 0.3459  

 F-Statistic: 13.79  

 Model P-Value: 0.001815  

Figure 10: Change in Brain Activations in FC6 Compared to VARK 

Finally, the auditory and kinesthetic learning style were correlated to the changes in CP6, shown 

in Figure 11. Like all other comparisons to learning style, CP6 had a positive correlation to 

kinesthetic learning style and a negative correlation to auditory learning style.  

The CP6 region is in the cerebral parietal area of the brain. This area is responsible for object 

recognition and interactions.  
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  Coefficients Std. Error t Stat P-Value  

 Intercept -2.294 0.5111 -4.489 0.0015  

 Auditory -0.1733 0.0317 -5.472 0.0004  

 Kinesthetic 0.3252 0.0549 5.928 0.0002  

 Residual Standard Error: 0.2649  

 F-Statistic: 20.04  

 Model P-Value: 0.0005  

Figure 11: Change in Brain Activations in CP6 Compared to VARK 

Discussion 

The findings presented in this research are unique due to the relatively new use of the EEG to 

gather insight into design cognition in the engineering education community. The changes in the 

brain activations of students between differing design problems are presented.  

1. Significance of Brain Activation Differences 

The beta frequency region being linked to attentiveness, problem-solving, and deep thought. It 

was found that of the 32 regions of the brain monitored, 11 displayed a significant level of 

change in brain activation between Design Problem 1 and Design Problem 2, specifically in the 

Beta Low frequency region, which is displayed along all regions in Figure 1. This parallels 

results presented by Vieira, in which it was recorded that when comparing closed- versus open-

ended tasks, there was a significant difference in the beta frequency range [28]. The increase in 

this brain frequency from Design Problem 1 to Design Problem 2 indicates that the latter led to 

more investment and thought by the students. An increase in both could lead students to develop 

higher volume and higher quality solutions for design problems.  

The frontal lobe has been linked to decision-making but also working memory, which is utilized 

during the completion of tasks for the generation of ideas. For the regions indicative of increased 

activation, four were in the left hemisphere (indicated by odd numbers,) and seven of these 

regions were in the right hemisphere (indicated by even numbers.) By region, nine of these 

regions are in the frontal cortex with one region in the temporal and one region in the parietal 

lobe. These are similar findings to Shealy, in which by using concept mapping in design, it was 

found there is an increase in right frontal cortex compared to the left frontal cortex [29]-[30]. The 
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activations themselves also indicate an increased use of working memory in the students during 

Design Problem 2 [19]. Similarly to the beta frequency ranges, the activations of these areas of 

the brain suggest that the modality effects not only the student’s investment into the design 

problem, but also bolsters the student’s range of ideas, decisions, and reasoning processes.  

In addressing the first research question – In what ways does the change in design problem 

modality alter brain activations? – we find that a positive correlation exists between an increase 

in brain activation and pictural design modality. This correlation specifically correlates in the 

beta low frequency region, furthermore in the right hemisphere of the brain and the frontal cortex 

of the brain. It is suggested to incorporate a range of design modalities to achieve the maximum 

effect of learning for the students. 

2. Cognition, Intrinsic, and Anxiety Value Significance with Brain Activations 

Changes in brain activations have a strong positive correlation between the frontal cortex and 

cognitive motivation. Cognitive motivation relates to a student’s ability to identify required tasks 

and task sequence. Referring to Shealy, cognitive motivation closely aligns with the purpose of 

the frontal cortex, which correlates to increased use of divergent thinking and idea representation 

[29]-[30]. This correlation suggests that the students with higher cognitive motivation are more 

likely to produce solutions of a wider variety. As well these students can maintain the 

identification of the required tasks and sequence required for the design problem.  

The negative correlation between anxiety, intrinsic motivation, and the students’ increase in 

brain activation indicates several conclusions. During the design problems, and as displayed with 

Figure 2 and Figure 5, the students were less anxious while generating solutions for the second 

design problem. This correlation is directly aligned with an increased interest and engagement in 

this design problem. The decrease in intrinsic motivation, as displayed by Figure 3-Figure 5, 

indicates that the students had an increased difficulty in maintaining mental attention for Design 

Problem 1, as such, an increased difficulty in providing solutions. This can be accounted for by 

educators in that the first design problem is more demanding on students, which could cause 

students to dissociate with the design problem or the field.  

In addressing the second research question – What motivation factors correlate with variance in 

brain activations due to the change in design problem modality? – we find that a positive 

correlation exists between a student’s motivation and change in design modality. A positive 

correlation exists between pictorial design problems and cognitive motivation. An increase in 

cognitive motivation results in a wider array of solutions to design problems. A negative 

correlation between anxiety and intrinsic motivation exists and pictorial design problems. By 

decreasing these motivations in a student, less strain is applied to the student’s mental capacity, 

resulting in a desired increase in ability to provide solutions.  



3. Auditory and Kinesthetic Learning Significance with Brain Activations  

Changes in brain activations indicates a strong positive correlation between the frontal cortex 

and the kinesthetic learning style, as displayed with Figure 6-Figure 8. The kinesthetic learning 

style is associated with a preference for “hands-on” open-ended learning, such as designing [6]. 

The pictorial presentation of Design Problem 2 leaves much open to the students to interpret 

when formulating solutions. For educators, the increase in activations could indicate students 

with this preferred learning style will be engaged by this design problem representation.  

Opposingly the change in brain activations indicates a strong negative correlation between the 

frontal cortex and the auditory learning style, as displayed with Figure 6-Figure 8. This learning 

style focuses on the teaching method of verbal information presentation, such as lectures [6]. 

Design Problem 2 is directly juxtaposed to this learning style. Design Problem 2 leaves much to 

be interpreted by the students, while this learning style relies upon the presentation of direct 

instruction and information as seen in Design Problem 1.  

In addressing the third research question – What preferred learning styles correlate with 

variance in brain activation due to the change in design problem modality? – it is found that 

there is a positive correlation between the kinesthetic learning style and an increase in brain 

activations. This indicates that the students with this preferred learning style were able to 

comprehend and provide more solutions. Contrastingly, there is a negative correlation between 

the auditory learning style and the increase in brain activations. Students with this preferred style 

likely had greater difficulty providing as many solutions, or grasping the task at hand. From this 

investigation of both learning styles, an educator may be inclined to provide both methods of 

design problem presentation depending on the student’s preferred learning style. 

4. Limitations of Study 

The primary limiting factor of the study is the number of participants. This study is sufficient for 

addressing the three research questions investigated in this study, for future exploration. 

However, the limited demographic variation in the participants does not allow for sufficient 

comparison of other factors that likely impact the performance of a student. For example, Vieira 

investigated the difference in brain activations between male and female industrial designers and 

found key differences in both frequency bands and brain regions [14]. This may be another key 

consideration for educators to factor in when creating design problems and challenges.  

A second limitation of this study is derived from the use of an EEG device. To attain proper data, 

the electrodes of the EEG device need to be placed on the scalp. It has been noted, and observed 

in this study, that this requirement excludes certain types of hair and hairstyles prominent in 

certain demographics [31]. This is an ongoing matter that has only had novel solutions presented. 

If a common solution has been developed, this would allow for the inclusion of more participants 

and a wider demographic range.  



Conclusion 

This study examines the brain activation changes in students when presented with differing 

design modalities. This study was performed using an EEG device to determine brain 

activations, MSLQ, and VARK surveys. This study identifies that there are significant changes 

in brain activations in the beta frequency range, specifically correlating with the frontal cortex 

and right hemisphere, between the two differing design modalities. This suggests the importance 

of incorporating varying design modalities to challenge students and provide more fulfilling 

learning outcomes. With such correlation existing, it was sought if these changes could further be 

correlated with a student’s motivation and/or preferred learning style. The MSLQ survey 

indicated that there is a positive correlation between the students’ brain activations and their 

cognitive motivation. The students’ cognitive motivation describes their ability to identify the 

tasks, as well as the necessary sequence of tasks, to complete a design challenge. Therefore, the 

students’ positive correlation between their brain activations and their cognitive motivation 

suggests that the students have an increased ability to produce a wide variety of design solutions 

when presented with the second design problem modality (pictorial). The VARK survey also 

indicated a positive correlation between brain activations and the kinesthetic learning style. This 

signifies the students’ abilities to interpret the pictorial design problem due to increased 

engagement and visualization. The results also showed a negative correlation existing between 

brain activations in comparison to anxiety and intrinsic motivation, and the auditory learning 

style. The motivation is indicative of decreased attention, therefore decreasing the students’ 

ability to provide feasible design solutions. Additionally, the auditory learning style is directly 

opposite to the kinesthetic learning style, as outlined by Fleming. The auditory learning style 

requires direct instruction and information, which aligns with the modality of the first textual 

design problem and opposes the second pictorial design problem. The goal is to continue 

examining these phenomena to provide improved pedagogical approaches for design curricula.  

1. Future Works 

Future work in this study includes the investigation of the change in brain activation and the 

quality of the design output. While this study focused on the quantitative intersection of brain 

activations, student motivation, and preferred learning styles, the study did not consider the 

quality of the design outputs generated by the students for Design Problem 1 and Design 

Problem 2. The next step is to generate a methodology to score the design output generated by 

the students and compare the quality of the designs generated with the data presented in this 

paper. This will allow for a better understanding of the impact of design problem modality on 

design output, including the consideration of brain activity. Additional considerations include 

generating a baseline comparison of brain activations to non-design-oriented tasks, to determine 

whether significant differences exist.  

With a larger sample size, student demographics could also be compared, to determine whether 

trends exist. Additional student measures could be considered, as well; this could include various 

measures from the student’s personality assessment, such as introversion/extraversion, student 

interest, and previous experience or expertise.  



Additionally, Florida Polytechnic University currently offers a three-year design sequence in 

mechanical engineering. This presents an opportunity to consider a longitudinal study examining 

the impact of design problem modality on brain activity and the quality of design solutions at 

differing levels in the curriculum. Determining how these brain activations vary over the course 

of a student’s experience in high level education can allow educators to better prepare 

coursework and information for the students.  
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