
Paper ID #39742

Reimagining the digital lab with $30 FPGAs

Steven Bell, Tufts University

Steven is an Assistant Teaching Professor in Electrical and Computer Engineering at Tufts University,
where he teaches a mix of courses including digital design, introduction to engineering, and embedded
systems. He has a BS in Computer Engineering from Oklahoma Christian University, and MS and PhD
in Electrical Engineering from Stanford University.

©American Society for Engineering Education, 2023

Reimagining the digital lab with $30 FPGAs

Introduction

Introductory digital logic is one of the most exciting courses in a typical electrical or computer
engineering program — or at least it should be! Coming into the course, students have both
learned to code and to analyze basic electrical circuits, but the workings of a computer remain a
mystery. Digital logic is our opportunity to connect those dots by showing how a collection of
circuit elements can execute code, and by enabling students to build systems with their newly
developed engineering skills that they hardly could have dreamed of at the beginning of the
semester. At its best, the digital logic course pulls back the curtains on the magic of
microprocessors, and invites each student to imagine becoming the magician themselves.

The course also occurs at a critical point in the curriculum: at Tufts, students take the course
(ES 4) in the fall semester of sophomore year and it forms part of their core conception of what
electrical and computer engineering is. In general, their courses up to this point have been generic
across engineering, and many students see the course as a way to confirm whether an electrical or
computer engineering major is right for them. As a result, we have both an opportunity and an
obligation to inspire and motivate students in addition to helping them develop prerequisite skills
for other courses.

Digital logic labs

As at most universities, our offering of the course has a substantial laboratory component, where
students put in the hard (and rewarding) work of translating pencil-and-paper logic designs into
working systems.

There are several traits we desire in a digital design laboratory:

• First, labs should be tangible; concrete rather than abstract. Tangible does not necessarily
imply that students can touch the result, but ideally the logic design would exist in the real
world and be subject to its constraints. We would like to probe it with normal lab
equipment and perhaps even connect it to other bits of real circuitry. Even better if students
have the feeling of creating something they can show off to others.

• Second, labs should be accessible, meaning that the necessary workspace and development
environment can be replicated easily and inexpensively. In the best case, the labs would be
completely portable, allowing students to work anywhere. This was critically important
during the pandemic, but it continues to have benefits. Tools like the Arduino
microcontroller boards are popular in large part because they are accessible: the software is
free and runs on nearly any computer, no lab equipment or additional circuitry is required,
and the boards themselves are inexpensive.

• Third, labs should represent professional practice. Students should gain experience
working with professional tools and techniques. This is obviously important in terms of
preparing students to work in industry, but it is also a critical factor for motivation: students
want to know that their work is not merely a toy exercise, but they are using
professional-grade tools and can put their course experience on their resume.

These objectives are often in tension, and achieving all of them is a tall order. The remainder of
this section surveys the popular approaches to digital labs and discusses their relative
strengths.

The historical choice for digital design labs was discrete 74-series logic chips on a breadboard.
Although these chip lines are nearly 50 years old, they remain an important contender for
introductory labs.

74-series logic chips provide a deeply tangible learning experience. A NAND gate is not just a
truth table, it’s something you can hold in your hand. Inputs and outputs are provided by real
circuit components. Power and ground are not invisible, they have to be wired up. Nothing is a
black box; most of the circuitry is exposed on the breadboard and the chip datasheets generally
show the internal workings down to individual gates if not individual transistors. Every logic
signal can be probed, gate delay can be tested, and power consumption measured.

Given that our course emphasizes building complex logic from scratch, discrete logic chips
provide excellent emphasis on fundamentals. However, it has been decades since digital logic
systems were actually built like this. While design with discrete logic chips may still be
pedagogically useful, it no longer represents professional practice.

A second approach is to use graphical simulators, such as CedarLogic [1] and LogiSim Evolution
[2]. Because these tools allow direct editing and simulation of a logic diagram, no mental
translation is needed from the diagrams and models used in the textbook or in class. The
simulation directly reinforces the logic diagram models, making it a useful tool for investigating
and understanding course concepts. The simulation can be single-stepped or paused at will and
any signal can be inspected, making it easier to get an intuitive sense of how the circuit is
functioning (or malfunctioning!).

Moreover, because most of these tools are lightweight and cross-platform (and in many cases
free), it is straightforward for all students to install the software and run it in class, in the lab, or
remotely. Some are even web-based [3], reducing the installation burden to zero and making it
easy for instructors to share starter designs or examples.

But these strengths are also weaknesses. While the simulation is far more portable than a box full
of breadboards and chips, it is also less tangible. Power supplies are generally abstracted away,
along with real-world issues such as timing, clock frequencies, and metastability. It is generally
not possible to interface with real peripherals, so the simulator’s I/O tends to be restricted to some
simulated buttons and LEDs.

And while the visual nature of the logic diagram is a powerful pedagogical tool, it does not
represent professional practice any more than filling a dozen breadboards with logic chips: digital
logic design today is primarily done with hardware description languages (HDLs).

Accordingly, a third approach to the intro digital lab is to use HDL simulation. This is
traditionally (System)Verilog or VHDL, although other languages are sometimes used (such as
the custom language used by the “NAND to Tetris” tools [4]). This directly exposes students to
professional practice, which prepares them for future courses, internships, and full-time
jobs.

The downside is that this is even less tangible than graphical simulation. Inputs and outputs
simply become testbench variables, and intermediate signals become digits (1 and 0) rather than
voltages. Almost any sense that there is an actual circuit at play is lost.

This is a perfectly reasonable abstraction for practicing experts, but it can be hopelessly confusing
for novice learners. Specifically in our context, nearly all of our students have some software
development experience coming into the course, so they naturally equate “code” with “software”.
Without some tangible experience to ground the abstraction in actual circuitry, students easily slip
into treating the HDL as nothing more than an obtuse software language with very frustrating
behavior.

To bring back the tangible element, the final popular approach is to design with an HDL and
implement it on an FPGA. This pushes professional practice one step further, giving students
experience with professional-grade toolchains and the FPGA design flow. It opens opportunities
for students to learn about PLLs, timing closure, metastability, and other essential aspects of
implementing a design.

Sadly, FPGAs also introduce enormous overhead, pedagogically and practically. Most FPGA
development boards cost a few hundred dollars apiece, and the toolchains from the two leading
vendors have hefty system requirements and only run on Windows or Linux. Datasheets run into
the thousands of pages, making them impenetrable for all but the most fearless of students.

And while typical FPGA development boards have nearly unlimited capabilities with a wide array
of built-in peripherals and pluggable PMOD modules, this also means that students rarely get to
make their own design choices and the peripherals become part of the black box. As a result,
students’ first experience with an FPGA is less like a playground sandbox and more like a guided
nature walk through the scary woods: you’d better stay on the trail or risk getting very lost.

Each of these lab models has important benefits, pedagogically and practically. The following
section introduces low-cost FPGAs, which combine many of the benefits of these different
approaches.

Low-cost FPGAs

Not long ago, “Low-cost FPGA” was an oxymoron. That is no longer the case: There are now
numerous FPGA development boards under $50, including the UPduino 3.1 [5], WebFPGA [6],
and the tinyFPGA family [7].

Lattice Semiconductor defined this category with the iCE40, a lineup of simple and low-power
FPGAs with a few thousand logic elements and a few dozen I/O pins [8]. The IceStorm project
[9] publicly reverse-engineered the iCE40 architecture and bitstream format, and developed a
complete open-source toolchain from Verilog synthesis through bitstream flashing. The combined
result has been a proliferation of open-source development boards and and substantial user
community around the iCE40.

In the introductory digital lab setting, these low-cost FPGAs achieve the trifecta of tangibility,
accessibility, and professional practice. In our offering of ES 4, we have used a sequence of
UPduino boards, starting with the UPduino 2.0 from Gnarly Grey (now discontinued) and
continuing with the UPduino 2.1, 3.0, and 3.1 from TinyVision.ai.

(a) UPduino 3.1
($30, TinyVision.ai)

(b) WebFPGA ShastaPlus
($38, WebFPGA.io) (c) TinyFPGA BX

($38, TinyFPGA.com)

Figure 1: Several breadboardable FPGA development boards based on the Lattice iCE40 series of
FPGAs.

Because the UPduino plugs into a standard breadboard, it retains much of the tangibility of
74-series logic. Students wire up switches and LEDs as I/O, making choices about pin
assignments and whether signals are active high or active low. Arbitrary digital peripherals can be
easily connected, from rotary encoders to seven-segment displays to MIDI keyboards. Signals can
easily be probed with an oscilloscope or logic analyzer.

Second, the UPduino and its cousins enable uniquely accessible and portable labs. With a price
point between $20 and $50, it becomes feasible for every student to have their own FPGA. It is
also possible for students to run the toolchain on their personal computers. Lattice Radiant (the
Lattice-supplied toolchain) has a free license for iCE40 devices [10], and the IceStorm toolchain
is open-source and runs on Windows, Mac, and Linux. Radiant requires an order of magnitude
less hard drive space than the Xilinx and Intel toolchains, and the IceStorm tools are even lighter.
Add to the UPduino a simple lab kit containing a breadboard and a handful of digital circuit
components, and it suddenly becomes possible for students to take their projects anywhere and
work on them outside of the lab.

Finally, low-cost FPGAs enable professional practice. The iCE40UP5K powering the UPduino
has 5280 logic elements, enough to implement interesting designs such as ARM or RISC-V
processors [11], neural networks [12], audio synthesizers, or arcade games. Students develop their
design with Verilog or VHDL (or the high-level HDL of your choice, such as Chisel, SpinalHDL,
myHDL, etc.) and work through the complete synthesis/P&R/bitstream flow. Like larger FPGAs,
the iCE40 contains block RAMs and a PLL, so students can experiment with inferring memories
and managing clock distribution and timing.

At the same time, the iCE40 chips are simple enough that even introductory-level students can get
a general grasp of how the FPGA works internally. In contrast to FPGA datasheets from the
leading vendors, the iCE40 datasheet is a mere 54 pages and reasonably comprehensible. We
show excerpts from the datasheet in class, demonstrating that the FPGA isn’t just a magical
device for implementing arbitrary logic — it is itself a digital circuit, which can be fully
investigated and understood with the skills from the course!

To borrow our earlier analogy, the iCE40 is not quite an idyllic sandbox of exploration and
free-form construction, but it’s close. The following section describes our course in more detail,
and then discusses how the UPduino FPGA enables a new paradigm in our lab exercises.

Implementation in an introductory course

The purpose of the introductory digital design course has subtly shifted over the past thirty years
or so. Today, a 32-bit Cortex M processor costs less than a 7408 AND gate, and processors have
taken over an enormous number of tasks for which we would have previously designed custom
logic. Accordingly, only a very few of our students will go on to design digital logic in their
careers — but many of them will be programming embedded systems or otherwise writing code
that interacts with hardware at a low level.

As a result, our course is focused on digital design as a link to computer architecture, and not as
an end in itself. We use the ARM architecture1 as a reference, showing students that the concepts
they are learning apply both to the Cortex-based embedded systems they will use in the following
semester and to billions of computing devices deployed in the real world.

We use the ARM edition of the textbook “Digital Design and Computer Architecture” [13], which
succinctly presents digital design fundamentals and then builds up to a simple microprocessor for
a subset of ARMv7 instructions.2

Figure 2 shows a map of our path through the course as we travel from the basics of 0 and 1 all
the way to building a processor. Our journey takes a number of twists and turns, so we refer to
this map frequently in class to orient ourselves and stay focused on the big picture.

We begin with combinational logic, and after spending just enough time skirting the edge of “how
things used to be done” (Boolean algebra and Karnaugh maps) we introduce VHDL.3 Next we
introduce flip-flops and sequential circuits, which is the point where the course gets difficult.
Then we take a second pass through VHDL to discuss process blocks and the implementation
of sequential logic. From there, we begin building larger pieces which ultimately are assembled
into a computer.

As Figure 3 shows, the labs follow a day or two behind the lecture content. Because labs
generally run four days a week and prelabs are due before students arrive in lab, we need a few
days of buffer between students’ first exposure to the material and using it in lab.

Lab kits
Every student receives a lab kit containing the FPGA along with a breadboard, USB cable, and all
of the discrete components they will need to complete the labs. The kit fits in a small container
about the size of a pencil box, which is easy for students to carry and bring each week to lab. The
box is also just deep enough for an assembled circuit to be packed away and remain intact. An
itemized list of the lab kit contents is included in the appendix.

The cost of the lab kit is approximately $15, plus the cost of the FPGA (which has ranged from
$15 to $30). In our case, we are fortunate that the department covers this expense, but it could
also be defrayed by requiring students to pay a small lab fee or to return their materials at the end
of the semester.

1Technically ARMv7, but at the level of detail we cover in the course, the differences between the various 32-bit
versions are irrelevant.

2With the growing popularity of RISC-V in industry and the release of a RISC-V edition of Harris & Harris [14],
this is a compelling alternative.

3We use VHDL simply because other courses at Tufts use VHDL.

http://www.ece.tufts.edu/es/4/
© 2022 Steven Bell. Some rights reserved.

Figure 2: Map of the course, showing the progression through combinational logic, VHDL, se-
quential logic, and finally toward the fair lands of computer architecture. Inspired by Elecia
White’s “Memory map” [15] and created with Inkarnate.

Combinational
logic

VHDL and
FPGAs

Sequential
logic

Computer
architecture

Figure 3: Flow of the course over the semester, and the correspondence of class topics and weekly
labs. Readings are from [13].

Lab sequence
Lab 1 introduces students to the lab equipment (power supply and multimeter) and the process of
building circuits on a breadboard. Since many students have never used a breadboard before, this
lab is structured as a tutorial with detailed instructions interspersed with small
investigations.

In labs 2 and 3, students design combinational circuits and construct them using discrete gates on
a breadboard. Lab 2 asks students to build a circuit which compares two 2-bit numbers entered
with a DIP switch, and light up an LED if A > B. This problem is approachable with only the
first week’s worth of course material (either by using intuition, Boolean algebra, or a Karnaugh
map). At the same time, it has a basic (if simplistic) real-world meaning and multiple
solutions.

In lab 3, students build a 2-bit adder using 8:1 multiplexers by wiring each mux input to a
constant high or low value to create a 3-input look-up table. This is intended both to give students
practice reading datasheets and working with a more complex logic component while helping
them form a conceptual bridge to understand how an FPGA can implement arbitrary logic.4

During the Spring 2021 offering of the course, we replaced labs 1–3 with an FPGA-based
alternative which was more amenable to remote work. Instead of discrete chips, students used
Icestudio [16], a graphical logic design tool that targets iCE40 FPGAs. Icestudio allows a user to

4Whether it does this successfully is questionable. Since students do not see or use LUTs directly once we start
using the FPGA in earnest, the other end of this conceptual bridge is never properly constructed.

Figure 4: Example solution for lab 2 (2-bit multiplier) created in Icestudio. The yellow blocks
represent FPGA I/O pins, while the blue blocks and wires represent the logic implementation.

draw a logic block diagram much like the logic simulation tools described earlier, except that the
inputs and outputs are mapped to pins on the FPGA. Icestudio can then synthesize the design and
flash it to the UPduino with the click of a button.

This had the immediate advantage that no additional lab equipment was needed, and students
could complete the labs in their dorms, in quarantine, or at home on the other side of the world.
Moreover, since the design existed primarily on a computer screen with only the I/O on the
breadboard, it was relatively easy to debug via screensharing. It also got students used the FPGA’s
physical interface and design flow (design, synthesize, flash), which slightly simplified the
transition to Radiant in later labs.

Because wiring up a logic diagram on a computer screen is substantially faster than physically
constructing a circuit, students were able to complete larger (and therefore slightly more useful
and interesting) circuits. For lab 2, students built a 2-bit multiplier (giving results between
decimal 0 and 9) by writing a logic equation for each of the four output bits in terms of the four
input bits. For lab 3, we extended the 2-bit adder to 3 bits.

There were also disadvantages to the Icestudio approach. Because the design exists entirely
within the FPGA, intermediate signals cannot be immediately probed and debugging is a little
more difficult. It is still possible to tweak the design and break out intermediate signals to output
pins, but this extra step biases students toward visually checking their design over and over
hoping to find an error rather than following a rational debugging process. Icestudio itself had a
few frustrating quirks and we sometimes spent as much time debugging those as actual circuit
issues.5 For these reasons, we went back to using 74-series chips for Fall 2021, but Icestudio —
and this approach more generally — remains a compelling option for labs.

5We used Icestudio version 0.6, and there have been many bugfixes and improvements since then. We have not
tested it extensively since the 0.6 release.

4
4A

ALU

2

4B

Operation

7
Segment
LEDs

7-segment
decoder

Top

Figure 5: Block diagram of lab 5, an ALU and 7-segment decoder.

Lab 4 introduces students to the FPGA, in the same way that lab 1 introduces them to the
benchtop equipment. By this time, students have already completed a number of VHDL exercises
and are familiar with the basics of the language, so the goal of the lab is simply to walk them
through the tool flow, starting with an empty project and working all the way through flashing the
FPGA.

In Lab 5, students begin building substantial designs with VHDL and their FPGAs. They
implement combinational modules for a 4-bit, 4-operation ALU and a 7-segment decoder, and
then link these together to produce the complete design. For the hardware, they must wire up a
DIP switch to provide the ALU operands and the seven-segment display to show the result.

Lab 6 is the first project to use sequential logic: students extend their work in lab 5 to two
seven-segment displays by multiplexing the displays and using persistence of vision.

This requires instantiating the onboard 48 MHz oscillator, dividing it down to a suitable frequency
for the display (on the order of 100 Hz), and writing combinational logic to switch between the
digits as shown in Figure 6.

0

1

48MHz
oscillator

Dual-digit
driver

Number
generation

Counter
logic

6

7

7

clk

7

Left digit enable
Right digit enable

7-segment display pins

Top

Figure 6: Block diagram for lab 6, which drives a multiplexed dual seven-segment display using
persistence of vision. Students can choose how they want to generate numbers to feed into the
display.

For Lab 7, students choose one of the following options:

• A controller to drive a standard VGA monitor at a resolution of 640x480 with 6-bit color.
This requires instantiating the onboard PLL to obtain the VGA pixel clock frequency, plus
counters to track the horizontal and vertical position and logic to generate the HSYNC and
VSYNC signals. A small breakout board with 3 resistor DACs is used to drive the color
signals (design link included in the appendix).

• The interface for an NES gamepad. The original NES controller essentially connects its 8
buttons to a shift register, so the students’ task is to trigger the latch signal and transmit 8
clock pulses while shifting data into the FPGA.

• An animation using frames stored in the FPGA’s embedded ROM. This project explores
how to infer a ROM (and how to read the netlist diagrams and utilization reports to confirm
it actually worked!), and how to generate addresses on the fly with a counter.

We are actively working on developing more options for lab 7 to cover additional peripherals
(PS/2 keyboards and I2C devices) and FPGA features (e.g,. RAM).

Final project
For their final projects, small teams of students build interactive projects with any number of real
peripherals, including PS/2 keyboards, NES gamepads, GuitarHero controllers, VGA displays,
MIDI keyboards, I2S audio amplifiers, and more.

The project is very open-ended — our only hard requirement is that it use the FPGA to read some
sort of input, do something interesting with it, and produce some output. However, we encourage
students to build an arcade game: what took an entire cabinet of digital logic (and some very
experienced engineers) fifty years ago now easily fits on the FPGA and can be accomplished in a
few weeks. Each year we have also had teams build audio synthesizers, and a couple teams have
worked on cryptographic accelerators. Students submit a brief proposal and we work with them to
refine the idea and scope to something practical. We also assign a TA to be their first contact and
advisor for the project; generally this is a student who completed a similar project in a previous
offering of the course.

The course culminates in a demonstration party where we set up all of the games in an open
room, bring in some food, and invite friends and colleagues to come play for an hour. Figure 7
shows a sampling of some past projects.

During the Spring 2021 semester, we offered an alternative final project option where teams built
a processor to execute a basic subset of ARMv7 instructions. This required teams to work a few
days ahead of the class topics, but could be completed by remote or distributed teams.

We supplied a set of handouts that described the interface for each functional component, along
with a guide suggesting a sequence for building, testing, and integrating the components into a
complete processor. Although the processor’s functionality could be verified entirely in
simulation, several teams went as far as synthesizing their processor in Radiant and testing it on
the FPGA.

Response

Starting with 0 and 1 and working all the way up through VHDL and FPGAs to a functional
microprocessor is a tall order for a single semester, but we have repeatedly found that students are
more than capable of meeting the challenge. Each year, student teams turn out impressive projects
with hundreds of lines of functional (if often inelegant) VHDL running live on their FPGAs.

Learning the digital design content will always require focused effort, but we believe that
effective design tools can dramatically reduce the cognitive load on students. We introduce

(a) “Smack Buds” platformer (b) Atari racer (c) Space Invaders

(d) 2-Player asteroids (e) Snake (f) Google Chrome dino game

Figure 7: Sampling of some final projects from the past few years.

VHDL using a web-based simulation environment developed specifically for the course, which
allows us to do VHDL exercises in class and for homework without any of the traditional
overhead of learning to navigate byzantine simulation tools. Likewise, the UPduino provides an
entry point with a straightforward physical architecture and accessible development tools,
reducing much of the overhead of traditional FPGA boards and allowing students more time and
mental resources to focus on their designs.

To help gauge the value of the lab kits, we sent an optional survey to the students who were in the
three most recent offerings of the course. Of the 30 students who responded, 67% indicated that
they did some sort of work on their lab projects outside of the lab, such as modifying the circuit or
flashing their FPGA. All but one student (97%) indicated that they used their lab kit and projects
outside the lab as a reference while writing their lab reports.

Overall, we succeeded in capturing the interest of our target audience — and then some. After
redesigning the course, we began to have interest from students outside of ECE and CS, as shown
in Figure 8. These have included students from mechanical engineering, biomedical engineering,
and engineering physics.

Additionally, we have drawn a significant number of computer science majors. The CS
department dropped the course as a hard requirement for CS majors in 2021, and instead made it
one option out of about eight “systems electives”. Nonetheless, we retained a large number of CS
majors.

Every year, we allow students to keep their FPGAs if they “think they will do something
interesting with them.” Only a very few students return them, suggesting that the vast majority of
students see value in what they have learned and can imagine using their digital design skills in
the future. However, most students report not having used them for any projects after the course,

Figure 8: Enrollment for the course since the FPGA-based redesign. We experienced a jump in
enrollments from non-majors, and CS enrollment remained strong even after ES 4 was removed as
a CS degree requirement in 2021.

so perhaps we still have a ways to go!

Lessons learned and future directions

The UPduino hardware itself has performed very well. Version 3.0 fixed silkscreen and signal
integrity issues with the 2.0 version, and the UPduino 3.1 includes a built-in PTC resettable fuse
on the power supply in response to our students burning up boards by shorting power and ground.
Failures are now very rare; we generally only experience one or two genuine FPGA failures out of
50-80 students.

Supporting Macbooks continues to be a challenge. Our initial solution was to provide a Linux
virtual machine which every student could run with VirtualBox or VMWare, regardless of their
host operating system. This established a uniform environment with Radiant and other software
tools, but many computers had trouble with the virtual machine and some of these were unable to
be resolved. When the ARM-based Macbooks arrived in late 2020, an x86 virtual machine was
no longer feasible, making the open-source toolchain the only option on Macbooks. We are
currently developing a browser-based IDE (similar to WebFPGA [6]) which we hope will provide
a cross-platform solution with no installation requirements.

As with any course, there is never time to explore every possible avenue that we would like. One
weakness of the final projects is that students do not have practice breaking large designs into
modular pieces, and tend to pile nearly all of their logic into one or two modules. They also tend
to use questionable constructs (such as multiple clocks or negative-edge-triggered flip-flops)
which make sense theoretically but do not produce reliable designs.

We have only begun to tap the potential of the “FPGA everywhere” lab model. One of the prelab
exercises invites students to test their code on the real FPGA before coming to lab, but there are

many more opportunities to do this in prelabs, homework, and perhaps even live in class.
Likewise, while a majority of students already do some work on their lab projects at home, we
imagine a time when FPGA development is as accessible and portable as microcontroller
development. We are continuously iterating, and we look forward to what low-cost FPGAs will
enable in the future.

Acknowledgments

I am grateful to numerous undergraduate and graduate TAs who have enthusiastically helped
develop parts of the course, worked tirelessly with students in the lab, and stayed up until
unreasonable hours of the night helping with final projects. This course would not be possible
without them.

Special thanks to Venkat Rangan (TinyVision.ai) for creating and supporting the UPduino 3.0/3.1,
and for supplying us with many boards despite ongoing supply chain issues. I am also thankful to
Lattice for making licensing a simple process, and occasionally providing technical support when
we encountered issues with Radiant. I have no affiliation with either TinyVision.ai or Lattice
other than being a satisfied and enthusiastic customer.

References
[1] J. Richardson, K. Shomper, M. Lewellyn, B. Sprague, and C. Kohl, “CedarLogic Digital Logic Simulator,”

https://github.com/CedarvilleCS/CedarLogic.

[2] Logisim Evolution Developers, “Logisim Evolution,” https://github.com/logisim-evolution/logisim-evolution.

[3] CircuitVerse Contributors, “CircuitVerse Digital Logic simulator,” https://circuitverse.org.

[4] N. Nisan and S. Schocken, The Elements of Computing Systems: Building a Modern Computer from First
Principles. MIT Press, 2005.

[5] V. Rangan, “UPduino v3.1,” https://tinyvision.ai/products/upduino-v3-1.

[6] R. Jacobs, “WebFPGA,” https://webfpga.io/.

[7] L. Valenty, “TinyFPGA,” https://tinyfpga.com.

[8] Lattice Semiconductor, “iCE40 – Low-power, High-performance FPGA,”
https://www.latticesemi.com/Products/FPGAandCPLD/iCE40.

[9] C. Wolf and M. Lasser, “Project IceStorm,” http://bygone.clairexen.net/icestorm/.

[10] Lattice Semiconductor, “Software licensing,” https://www.latticesemi.com/Support/Licensing.

[11] S. Ahmadi-Pour, V. Herdt, and R. Drechsler, “The MicroRV32 framework: An accessible and configurable open
source RISC-V cross-level platform for education and research,” Journal of Systems Architecture, vol. 133, p.
102757, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1383762122002429

https://github.com/CedarvilleCS/CedarLogic
https://github.com/logisim-evolution/logisim-evolution
https://circuitverse.org
https://tinyvision.ai/products/upduino-v3-1
https://webfpga.io/
https://tinyfpga.com
https://www.latticesemi.com/Products/FPGAandCPLD/iCE40
http://bygone.clairexen.net/icestorm/
https://www.latticesemi.com/Support/Licensing
https://www.sciencedirect.com/science/article/pii/S1383762122002429

[12] G. G. Lemieux, J. Edwards, J. Vandergriendt, A. Severance, R. De Iaco, A. Raouf, H. Osman, T. Watzka, and
S. Singh, “TinBiNN: Tiny binarized neural network overlay in about 5,000 4-LUTs and 5mw,” arXiv preprint
arXiv:1903.06630, 2019.

[13] S. L. Harris and D. M. Harris, Digital Design and Computer Architecture, ARM edition. Morgan Kaufmann,
2015.

[14] S. L. Harris and D. Harris, Digital Design and Computer Architecture, RISC-V edition. Morgan Kaufmann,
2021.

[15] E. White, “Memory map land image,” https://github.com/eleciawhite/MapFiles/, 2021.

[16] FPGAwars community, “Icestudio,” https://icestudio.io/.

https://github.com/eleciawhite/MapFiles/
https://icestudio.io/

Appendix: Part list
All of our course materials are available on our course website: http://www.ece.tufts.edu/es/4

Items in the lab kit (1 kit per student)

Item Quantity Part number/source

UPduino 3.1 1 TinyVision.ai
Micro USB cable 1
830-tie breadboard 1
Jumper wires 60
LED, assorted colors 12
8-way DIP switch 1
Dual 7-segment display 1 Lite-ON LTD-4608
Tactile pushbutton switch 4
Resistors for LEDs 20 330Ω or similar
Pull-up resistors 10 10kΩ or similar
Quad AND 1 74HC08
Hex inverter 1 74HC04
Quad OR 1 74HC32
Quad XOR 1 74HC86
8:1 Multiplexer 4 74HC151
Project box 1

Due to electronic component supply chain issues, the exact part numbers have changed from year to year. For the
74-series chips, we have replaced these parts with similar ones which allow students to complete the same projects
with slightly different designs. For example, the 2022 kit included a 74HC00 quad NAND, 74HC4075 3x3 OR, and
74HC266 quad XNOR in place of the AND, OR and XOR listed above.

Shared items provided in lab

We typically allocate one of each of the following per lab bench (10 students working simultaneously during a lab
section), and about 1 NES and VGA setup per final project team.

Item Cost each Part number/source

USB-C adapters
(for laptops with only USB-C) $2 Amazon or Ebay
Digital Discovery logic analyzer $229 Digilent

NES controllers $7 Ebay
0.1” Dupont connectors bulk Ebay or Digi-Key

VGA breakout boards $5 OSH Park https://oshpark.com/shared_projects/u8Pw1fpw

VGA cables and monitors — Borrowed from lab
VGA to HDMI converters $10 Amazon or Ebay
USB HDMI capture dongles $10 Amazon or Ebay

In the fall of 2021, many of our lab computers were replaced with “all-in-one” machines which did not have a
dedicated VGA input. Our fallback solution was to use a VGA→HDMI converter plus an HDMI capture dongle
which plugs into a standard USB port and appears to the computer as a webcam. Although direct VGA→USB
capture dongles exist, they cost several times as much ($100 or more).

The downside of this approach is that the converters and webcam preview software introduce noticable latency in the
video signal. Some games were still playable; others were not.

http://www.ece.tufts.edu/es/4
https://oshpark.com/shared_projects/u8Pw1fpw

	Introduction
	Digital logic labs
	Low-cost FPGAs
	Implementation in an introductory course
	Lab kits
	Lab sequence
	Final project

	Lessons learned and future directions
	Acknowledgments
	Appendix: Part list

