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Abstract -With the surge in global usage of internet in smartphones, so has the need for extra Bandwidth
requirements with simultaneous shared antenna capabilities for multi-channel video streaming and data
speeds up surged. In order to meet design specifications two different ECADs namely ADS and AWR were
used based on the High Frequency Engineering Design requirement and to obtain accurate RF results. A
comprehensive design of RF Wilkinson Power Divider (WPD) incorporating microstrip lines in two-sectional
configuration including EM model testing for device modeling, using RF test bench consisting of Fitted and
Discrete frequency interpolation points have been carried out. Receiver (RX) System modeling results using
1-tone and 2-tone RF signals are meticulously presented along with analytical results for RX System analysis
and synthesis. Exhaustive simulations have been carried out in all cases along with comparisons using ADS
as the primary software tool. During these investigations the theoretical and simulation results are found to
be in good agreement at System level, including design validation and modeling of the integrated RX module.

The design of Bandpass Filters (BPF), Quadrature (90°) Hybrid Branch Line Coupler (BLC)
incorporating microstrips and a 3 dB filter in four port network configuration has been carried out. It
incorporates the EM model for device modeling, using Full-wave analysis consisting of Fitted and Discrete
frequency interpolation points. Comprehensive RF Power Analysis and Optimizations of Radio Link with
the modeling results achieved by Small and Large Signal analysis are meticulously presented. During the
investigations carried out using the ADS Harmonic Balance tool for Noise control, the hypothetical
simulation results are found to be in good agreement at System level. These include design validation and
modeling effects of the integrated RX System Front End module for 5G Communications. An introduction
to establish a common level of knowledge at System level platform is also addressed. Frequency response
definitions of conventional BPF for 3™ order Chebyshev type — I filter approximations are discussed. In the
end, the derivation of S-parameters matrix for the BLC carried out using the well-known Even-Odd mode

network analysis is presented.

1. INTRODUCTION

During the 5G investigations, eight modules have been built mostly based on the Fundamentals of Physics,
Semiconductors and Circuit Theory including the Patch Antennas, BPF, Couplers, Transmitter (TX),
Receiver ( RX) and Switches etc. The Switch between the Antenna and TX and/or RX must be equipped to
handle high power when connected to the TX, and LO-Power when connected to the RX. In order to meet

these requirements, the p-i-n diodes with forward and reverse biases have been used, respectively. Its Phase
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shifting capability is deployed while designing the Antenna. The Varactor diode is used in designing
wideband BPF because the diode resonates at frequencies at the application of different reverse biased modes.
All principles of Device Physics, Semiconductor Fundamentals and Circuit Theory are integrated in the
Author’s MMIC Design and Fabrication Course.

During these research investigation eight modules have been built mostly based on the Fundamentals of
Physics, Semiconductor, and Circuit theory. Only few modules, however, are covered here in details
deployed at the receiver as well as the transmitter end. Front end receiver (RX) employs patch antenna,
SPDT switch, low noise amplifier (LNA), mixer with oscillator, band pass filter (BPF), power limiter and
(ADC) modulator.

The transmitter (TX) uses (DAC) demodulator, mixer with oscillator, power amplifier (PA), BPF and
SPDT switch attached to the patch antenna. In order to transmit the maximum power matching networks
are used. All the elemental values R, L and C are built with microstrips such as microstrips lines (MLIN),
microstrip coupled lines (MCLIN) and microstrips thin film capacitors (MTFC), and microstrip coupled
line filter (MCFIL), microstrip inductor (MSIND) etc. as given in ADS [1]

A novel SPDT switch is designed which is capable of handling very high power from the TX and very low
power to the RX. The P-i-N diode is chosen for this purpose, which handles very high power in its forward
biased state, and a very low power at its reverse biased state.

A radio system is comprised of discrete modules essential for the receiver (RX) and the transmitter (T X)
architecture. The Heterodyne principle is accomplished by integrating the discrete RF modules and
performing modeling at system level using RF base band intermediate frequency (IF), and carrier frequency
(RF) as a single sideband (RF-IF) = LO frequency. Conventional wireless communicator systems were
established on high power TX units with the RF unit functional up until the signal levels decreases below a
certain noise level (Threshold). However, with adjacent systems operating at same frequencies were found
to be sensitive to interferences. Thus, system transmitting at identical frequencies were physically separated
so that signals fall below the established noise threshold before interference occurs [2]. The physics and
mathematics along with their models of all eight 5G modules are thoroughly covered in the MMIC Design
and Fabrication course by the author. However, only selected few modules of high importance with

examples are depicted in the paper with the ADS based design and simulation results.

2. P-i-N DIODE with APPLICATIONS

Figure 1 depicts the p-i-n diode along with its profiles. Since the width of the depletion region is inversely
proportional to the resistivity (doping concentration). The wider depletion region amounts to a smaller
junction capacitance. The i- region consists of impurities either p-type or n-type. The i region is of
sufficiently high resistivity so that few impurities in the region are ionized and the depletion region extends
throughout the i- region and includes a small penetration into both the p+ and n+regions as shown in Figure
1 (ii). Because of the heavy doping of the p+and n+regions, the depletion does not extend very far into
them, and the depletion width is essentially equal to the i- region width. The junction capacitance in the

reverse bias is determined by this width [3].
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Figure 1 Profiles of two types of P-i-N Diodes

Packed P-i-N diode
The equivalent circuit of P-i-N region can be represented as shown in FIGURE 2.
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Figure 2 Equivalent Circuit of a P-i-N Diode



The arrows connected to variable Rg are in forward bias and Cg in reverse bias. Rs is a very small
resistance connected to the diode. Rg (V) is the variable resistance of the diode, which has very small value
with the forward bias, but a very large resistance with reverse bias. (V) is the double capacitance whose
value is dependent at the reverse bias. The Ls and Cp are inductance and capacitance of the package.
Neglecting the package effects of Ls and Cp, the equivalent circuit with forward bias behaves like a short

circuit with total resistance RT = Rs+Rj (f.b.)

RSA Ri' Yd‘sf‘fb)
Whereas the circuit with reverse bias acts as an open circuit. !
;QV(!-:D\',)
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Since Zc in reverse bias is much higher than the 50 Q transmission line impedance.
Calculations for Isolation and Insertion losses:

These calculations [5-9] are based on extracting A, B, C and D circuit parameters and applying them to the
S parameters at microwave. The basic building blocks for series impedance ‘Z’, the parallel admittance

“Y’, and lossless transmission line with a characteristic impedance Z0 and length | are given by as follows:

O 0
iii)
Figure 3 Three Basic Building Blocks

The ABCD matrix for Z=R + jX is given in Figure 3 (i)
‘g g]=[3 ﬂ . Where A=1,B=Z.C=0,D=1
The ABCD matrix for Y=Gr + jB is given in figure 3 (ii)

A B

_[1 07, _ _ - -
‘ D’]_[Y 1].%ereA 1,B=0.C=Y.D=1

The ABCD matrix for lossless transimittion line is given in Figure 3 (iii)



[A B] _ [Cosﬁl JjZ,sinfl
C D jY,sinfl  cospl

Where A = cospl . B=jZ,sinpl
C=jY,sinfl ; D=cospl

By definition Sy is the transmission coefficient of S-matrix, which is given

2 ..
S21 = —————— from transmission table of S vs ABCD parameters
A+BY, + CZ, +D
2 1

SoforZ=R+jX 521_1(R+,x) =R
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Essentially, P-i-N diode provides minimum insertion loss with forward bias maximum isolation with
reverse bias. This provides sound platform in switching applications with adequate power handling
capabilities. Input power is usually expressed in dBms i.e., PidBm, so output power PO can be expressed as
PO = Pi - aL in ON state of the p-i-n diode. For OFF state, the p-i-n diode is reverse biased. The isolation is

expressed in dBs. So, output power is expressed as PO = Pi - ai.

2.1 Circuit Modules of a Packaged P-i-N Diode

ii)

Figure 4. Equivalent Circuits at i) Forward Bias ii) Reverse Bias

At forward bias, the diode acts as nearly short circuit which causes the microwave power to be reflected

totally. As shown in Figure-4 (i) the switch is ON and the insertion loss is:

_ _ RN2, X 27,
a=alL=10log [(1+ZZO) + (ZZO) 1;



Where Yp = jwCp +

Rs+ jwLg

— 1 — H
ZD_E_ R+jx

At reverse bias, the diode acts as a nearly open circuit, the signal passes through the microchip line with an
insertion loss aL which is due to the finite value of Cp. As shown in Figure-4 (ii) the switch is OFF and the

isolation is

1

NOW RS +j(l)L5 + 1 -
(E)ﬂwcg
. 1
Ypo=jwCp + , T
Rs +jwLs+ —————

S0 Zp=1yv,
R

So a = ai=10 log [(1 + Z)Z + (2}(70)2 ]

All these concepts pertaining to p-i-n diode have been successfully integrated into course EECE 517 MMIC
Design and Fabrication. The detailed calculations for insertion loss and isolation along with simulation are
carried out making use of ADS tools in the classroom along with intensive analytical techniques. Some
select examples are being presented in this paper spectral analysis phase shift aL and «i in dBs along

calculating minimum detectable signal levels at input and output.

Example #1 [6]
A nonlinear mixer diode is used as an up converter shown in Figure 5. Assume that the output current of

the diode is i = ao + a1v + az2v2. Where v = vge sin (wrr t) + vio sin (oLot); @ = 211f. Calculate the
frequencies of all signals at port A in the diagram. Draw a composite spectrum for all the frequencies along

with their amplitudes.

RF port — Output port
0 -QQ 0 BPE o

18 GHz 20 GHz

2 GHz

LO

Figure 5. Up Converter Mixer with LO.



Apply v =vgr sin (opr t) + Vip sin (oo t) into (i)

1=4a, + ay (ver sin (opF ) + vigsin (o t a) [ver~ sin” (opr t VRE VL sin (@gr t) sin (o
ot a( (opF f) + (or0t) )+ a [vee® sin’ (orF t) +2 (oorF t) sin (

t) + vig® sin® (oo t)]

Making use of identities sin® 8 = (1 — cos 20)/ 2 and

Sin 81 Sin 82 = [cos (81 - 62) — sin (81 + 62)]/ 2 and substituting for i,

1=ay + a, vrr sin (orFt) + a, viosin (oL t) + % a2 VRe® (1 — cos (2 orF t)) + a2 g VRF VL0 (cos (or

- (ﬂIJD} T)

- cos ((epr + org) 1) +§a2 vie® (1 — cos (2 @i t)) collecting coefficients.

_____ (2
=

i=ag +% a) RF +% a2 V10® + @y (VRE sin (@RF t) + @; viosin (Lo t) + a1 VRF VLo cos ((@RF - oL0) 1)

-apvepreos ((pr+oo)t) e (3)
From (3) the spectrum is obtained at frequencies

DC frr fro 21rF fre=flo |frrtfio

0 18 2 36 10 20

The results of equation (3) along with fundamental, harmonics and amplitudes are given in tabular form as

below:

S. No. Component Frequency Amplitude
1. D.C. 0 Hz ap + 1/2ax(V’rr + v'10)
2. fio 2 GHz arvLo
3. frr 18 GHz a1VRF
4. 2fio 4 GHz -1/2a3 v'10
5, 2frr 36 GHz -1/2a3 v'rE
6. frr = flo 16 GHz aIVRFVLO
7. frr+ fio 20 GHz AIVRFVLO
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Example #2 [6]

Derive the phase shift @ and the attenuation a for the circuit shown in Figure F.

X . | . jx
@) O 0 )
Z,=500Q
) O 0 O

Figure 6 Phase Shifter and Attenuator
Transmission line is lossless with Z,= 50€Q and electrical length =l = 6
[A B _ [1 jx] [ cos6 jZosinH] [1 jx
0 11 [jY,sin6 cos6 0 1
_[0059 — XY, sinf j[2XcosO + (Z, — XzYo)sinH]

jY,sin@ cosf — XY,sin0
So, A=cosf — XY, sin@ B =j[2XcosO + (Z, — X?Y,)sinf
C=jY,sin6 D =cosf — XY,sin6
SO, 521 = S —
A+BY+CZo4+D

_ 2
T 2(cosO—XY, SInO)+jY,[2XC0SO + Zo 1 X2Y,sind)+jsing
= Si = cosf — XY, sin + j{Y,[2XcosO + (Z, — X?Y,)sin + sinf]}

21

{Yo[2Xcos0+(Z, —XZYosin9+sin9)]}2
4

1

21

= (cosO + XY, sinf)? +

Soa=

{(Yo[2Xcos8+(Zo—X?Y,sind +sin9)]}2 ]

Ain dB = 10 log [(cosf — XY, sinf)? + "

Here Y Re = cosf — XY, sinf

2y 2
SIn= XY, cosf+ (1— =) + sing
X x2
B 1 (z)cos+(1—2202)tan9
@ =tan 4
1—Z—tan 6

This provides the k;asis of phase shifting.

Example #3 [6]
The receiver system shown in figure 7 below is operating with a RF input signal of 10 to 11 GHz. Calculate

a) The overall gain and loss of the system.

b) The overall noise —figure in dB, and



¢) The input and output minimum detectable signal levels in mW for the receiver at room temperature.

L.=5dB
RF 1F
O O
- 1-2 GHz
10-11 GHz 9 GHz
F=3dB F=4dB
G=10dB G=20dB

Figure 7 Receiver System
a) GrdB=G1 +G2+G3=10dB + (-5dB)+ 20 dB =25dB

LtdB=-25dB

b) For noise figure F in dB

G1=10dB =10, F1 =3 dB = 1.9953
-s
Lc=5dB, so Gc=-5dB =101 =0.3162

4
G3=20dB=10>=100; F3=7 dB = 1010 =2.519
Noise Factor Fy

Fz—1 Fy—1
Fn=F+2—+2—
G, 6,64

=1.9953 + %+ﬂ = 2.6896

10 x 0.3162
¢) Pimps=-111+10logBW +F

10 x 109
106

=-111+ 10 log +4.2969

=-76.7031

—76.70321

Pivpsmw= 10" 20 =2.1364x 107 mW

PiMDS mWw= -76.7031 + 25 =-51.7031 dBm

—5L7031
PiMpsmw =10 10

=6.756x 10° nW

3. Wilkinson’s Power Divider and Power Combiner

Wilkinson Power Combiner (WPC) is a 3-port network device often made using Microstrip lines. For 3-dB
device operation, port isolation is achieved using quarter-wave transmission lines acting as microstrip arms

followed by balancing these arms (output ports) using a balanced resistance with respect to the input port.
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Figure 8. Power Coupler with Power Divider and Power Combiner
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Figure 9. Geometry of Wilkinson’s Power Combiner

Fig. 9 shows WPC structure whose analysis is made with Even-Odd mode coupling techniques that uses

superposition theorem and network symmetry to deduce the ideal (lossless transmission line) [S] parameter
matrix, given in [10,11] as

0o O d
001 1 A

— -i
[Sl=2.]1 0 0]:72 0 0

Yoo ool |5
< 0 o

vz

A 3-dB Wilkinson Power Divider with a power division ratio of 1:K* where K = P—z = 1.1e
2

an equal power split (1:1 power ratio) and a source impedance of Zg = 50 (1 has the following

design expressions of impedances shown in Figure 9 taken from [5].

. 1
Shunt resistor R = Zj. (K + E) = 2Z,
1+K?
Zos = Zo- [ = V2.Z,

Zoo = K2.Zgs =Zo . /K. (1 +K2) =+2.2,




3.1 Distributed Model of WPD with Results
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Figure 10. ADS Model with Microstrips
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Figure 11. Schematic of Optimized WPD in ADS
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Figure 12. ADS Simulated Frequency Response



3.2 Branch Line Coupler

Analysis of generic Directional coupler or a basic 4 port Coupler [10-14] is presented below:.

oluput o
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o (K L) ——0Coupled
o — — Tsolated port Port 3
bioation Coupling port

(a)] (b)

Figure 13. Portrait of 4 Port Coupler

(a). Conventional Coupler (b) Branch Line Coupler

Figure 13 depicts standard 4 port coupler while the general form of S- parameter matrix for a 4 port coupler
network is given in [10] as

S11 Sy2 Siz Sia 0 a jB 0
Sa1 Szz Saz Saa a 0 0 jp
S = : S = |.
[s] Sz1 Sazz Szz Saa [s] iB 0 0 a
Sg1 Saz Siz Sas 0 i a O

where o and J are real as they relate to magnitudes (amplitudes)
In-phase amplitude a = |S;,].
B = Coupling coetficient 5 10720 =1.4125 (for 3 dB coupler).

RF power conservation implies a2 + B2 =1

Cgap is Coupling value in dB given by Coupling C (dB) = 10log,, ( ) [8]: and

Pcoup]ed

Pin

Coupling loss L (dB) = 10log,q ( ) [5] (or) L = 10log,, {m}:

Pout



Coupling factor C (dB) is given as

C(dB) = 10logp* = —20log|S;| = —20 log 1

where amplitude = |S;4| for Quadrature (Q) or coupling port

Transmission factor or Insertion Loss is

IL (dB) = 10loght = —20 log|S,;| = —20 loga 2
where amplitude a = |S;4| for In-phase (I) or the through output port

Isolated Port is 4, so that no power is being delivered to port 4. Isolation I (dB) is

I(dB) = 10logp* = —10log|S,yl? = —20 log|S,, | 3

Directivity D (dB) = (Isolation — Coupled port response) = (I — C)

531

541

= [dB{S(4,1)} — dB{S(3,1)}] 4

— D(dB)= 10 lsgg—az —20log
4

Phase Difference (P) between through (I) and coupled (Q) ports is

P (deg) = [phase{S(1,2)} — phase{S(1,3)}] 5

3.3 Distributed Element BLC Model using ADS
Fig.14 depicts BLC Distributed Model[8] that is being optimized in ADS to Compensate the Microstrip
TEE effects Connections using ADS
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Figure 14. Schematic of BLC Distributed Element Model
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Figure 15. Schematic of Optimized BLC Distributed Element Model
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Figure 16. S-Parameters of BLC using the non-optimized smart Component Schematic
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Figure 17. S-Parameters of BLC using the ADS optimized smart Component Schematic
4. Power Limiter Design with Results



Fig. 17 depicts ADS schematic while Fig. 16 provides the modeled results of the RF power limiter.

1 -
I Tarm
i | MTFC Term2
Termd MTFC G Hum=2
Num=1 =] o . ¥
Z=50 Ohm  Subst="MSubl” Subst="MSub1” \s\.um_;“sm] = B
W=19311 mil W=0.352782 mm L=4 3i4 mil {§)
L L=4.314 mil {} L=5715510mm < C”UA=3I3'J =
- CPUA=30 SNP2 T=0.15 mm
T=0.15 mm Filia="C:Userslabdul mannan syed\DeskiopiPink SandiskiKP 2020-20211TX Project 202 1iLimitenLimiter inalMADL_011021_SMB.s2p™

NP
File="C:\s ers\abdul mannan syediDesktop'Pink SandiskiKP 2020-202 117X Project 202 1\WimiterLimer finalMADL_011029_SN2_10V s2p”

MSUB

MSub1
H=25 mil S-PARAMETERS
Er=123

Mur=1 5 Paam
Cond=5.96E+07 5P
Hu=3 Se 40134 mil Start=1 GHz
T=0.15 mm Siop=12 GHz
TanD=0.0016

Figure 18. ADS Schematic of Power Limiter
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Figure 19. ADS Simulated Insertion Loss (S21) and Return Loss (S11)

4.1 Design of Power Amplifier

Design parameters of ADS components are being incorporated into MMIC-RFIC integrated models.
These are utilized from the available standard ADS PDK library to develop ADS behavioral models and

subsequently simulate the system response of RF Front End.
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Figure 20. 1-Tone Excitation PA System Model

4.2 Results
The PA system Model Results are in Fig 21
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Figure 21. System Response depicting output spectrum (Pout) in dBm.
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Figure 22. Power Gain (dB) simulated from 1-Tone excitation.
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Figure 25. Frequency Responses for each of the PA System Models.

5. Microstrip Patch Antenna Design [15]

The MPAs are thin metallic conductors micro strips called “Patch” [6] placed above the ground plane
separated by a dielectric substrate, whose thickness ‘t” is much smaller than the free space wavelength ‘A0,



For HF applications, MPA is a MMIC design consisting of patch, ground plane, and dielectric substrate
along with feeding mechanism. Usually height of substrate h << A0, and typically 0.00310 < h < 0.0520.
Geometry of MPA is portrayed in Fig. 26. The rectangular and square patches are the most popular types
due to the ease of their design, analysis and MMIC fabrication along with their desired radiation pattern

and lower polarization radiation.

f—L—f !
p— =
i Y- ‘—111' h
mumiie n:&lﬂ:;& Ground plane T
l £ Substrate
Ground plane
(a) ()

Figure 26. (a) Geometry of Microstrip Patch Antenna. (b) Side view of MPA (c)
Radiating Slot Elements

5.1 Analytical Calculations of MPA Dimensions

ADS tools from Momentum-Microwave (MoM (UW) [4] suite are used to design the microstrip patch
antenna working between 0.95 GHz to 12 GHz and the resonance frequency operable for this effort is good
for 2.4-5 GHz range devices. The operating frequency fr = 4.89 GHz. The substrate material for these
simulations is GaAs comprising of a dielectric constant (relative permittivity) & r value of 12.3. The
substrate height ‘h’ of dielectric used for design is 0.635 mm (25 mils), as this is the standard height of
GaAs substrate used in MMIC designs.

The design of the rectangular patch antenna is accomplished using essential formulas from [15-19]. The
rectangular patch design parameters using the geometry depicted in Fig. 26 (a) are calculated by using
equations (6) through (10).

The width “W” of the patch is obtained by:

W 1 2w 2 6
T 2fr ooV e +1 2/ Ve +1

Where v0 = free space velocity of light = 3x1011 mm/s, fr = Resonant frequency = 4.89 GHz, € r = GaAs-

Relative Permittivity, so that from Eq. (6), Patch width ‘W’ =11.895 mm ~ 12 mm.

The effective permittivity constant of microstrip antenna is calculated using the relation:

2 w

s+ 1 . — 1 N
u‘l—‘mﬁ-=lE + +E2 [1—!—12—] 7

where ereff = Effective dielectric constant, er = Dielectric constant of substrate h = Height of the dielectric
substrate, W = Width of the patch



Substituting the respective values in Eq. (7), we get ereff = 11.068 Then the extension length; L is obtained

by using the below equation:

w

(e er — D.258) (% o 0.3)

where ereff = Effective dielectric constant, er = Dielectric constant of substrate h = Height of the dielectric
substrate, and W = Width of the patch; Substituting the values from previous step, we get extension length
;L =0.26763 mm. Finally, the actual length of the patch ‘L’ is determined by:

L = - —2AL 9
2 fr S/ €rerr~A/H0€0

Where fr = Resonant frequency, ereff = Effective dielectric constant

u0, €0 = Relative Permeability (4nx10-7 H/m) and Permittivity (8.854x10-12 F/m) free space respectively
Substitution of these values gives L = 8.685 mm. Ground dimensions of the antenna are essential to have a
finite ground plane as shown in Fig. 26 (b). The size of the ground plane is greater than the patch

dimensions by Approximately six times the height of the substrate, governed by the equations given as

Lg = (6h +L) and Wg = (6h + W) 10

Thus, length of the ground plane Lg = 12.495 mm ~ 12.5 mm and width of the ground plane Wg =
15.81 mm ~ 16 mm.

5.2 Antenna Impedance Matching Techniques for MPA Design

Exploiting MLIN, there are two predominantly used techniques for impedance matching of the antenna.
They are (a). Rectangular MPA Impedance transformer matching section, and (b). Square MPA coupled

with Recessed Microstrip line feed.

5.2.1 Analytical Calculations for Rectangular MPA Design

Z,=50Q ! : ’
Microstrip
Transmission Patch Antenna
Line
: | W B
N Z . A G
4/_‘1 (or) Zy Z.=TR W
| 2/4—
Zy
Substrate jJ— 7 — =
& (b) (c)
(a)

Figure 27. Microstrip patch Antenna (a) Quarter-wavelength Impedance transformer (b)
Geometry Comprising of Copper center Patch feed (c) Transmission Line Model
Equivalent Circuit.



For the Quarter-wavelength transformer section depicted in Fig 27(a)

Zi(o1) Zr=\/Zo.Zy = /50.Z,

where Z;, = Input Impedance, Z, = Impedance of the transmission line with 50 Q characteristic

impedance. and Z, =Impedance of Antenna |

The design requirement is to match Z;, to Z, value for maximum power transfer from source to

the load with fixed internal impedance of source (50 Q).

Z 2
=7 =7, — 11
Za

Zin can be varied by selecting ZT such that Zin = Z0 and the antenna will be impedance matched. By

feeding the patch antenna at the end, it yields a high input impedance value of Zin as current is lower at
patch ends (Impedance Z = V/I).

Impedance of the patch is given by

o Crefp (L)
ZA =9%0. (Er'gff_lJ ' (W)

With *L” and ‘7" being the patch dimenfions, P

=7,=573Q
wZr=450.2,=169.26 Q
Ground plane dimensions from Fig. 27 (b), the Rectangular MPA are Lg = 12.5 mm and Wg = 16 mm.

For the calculation of width (WT) and length (LT) of (Quarter-wavelength) transformer section having

narrow strip dimensions, Eq. (13) is used.

Z0 =i]n[ Sh —+ W 1 forvw.,/ h =1
'IEE'ff . AT At 13

But Zt is to be matched with Zg (50 Q) of MLIN so as to match impedance of feed line with
patch. Substituting the values in Eq. (19). gives a quadratic equation for “Wr’

= W72 — 40.64Wr + 13 =0

s Wt = 0.32 mm (the larger value of Wt = 40.32 mm is not considered)

Since “T-line” is a Quarter-wavelength Impedance Transformer, its length is calculated as

A A
LT=Q= o

e 4.61 mm, where Ay = 61.35 mm is the fiee space wavelength at frequency f;
VEreff

For MLIN (Microstrip Line) with Zo = 50 Q. [dimensions W = 0.392782 mm. L = 5.715910 mm



Resulting from Matlab calculations.

5.3 Analytical Calculations of Transmission Line Matching for Square MPA
Design[15,20,21]

—— =

(a) (Fig. Not to scale) | I(b).-

Figure 28. Microstrip Patch Antenna (a) Square Geometry comprises of Copper center
Patch fed (b) Top view depicting the dimensions of Recessed Microstrip

Using Eq. (6), the Width () and Length (L) of the radiating surface on recessed

microstrip line feed is given by W=L = . >W=L=92 mn|

2fry/Ereff

Conductor strip width of MLIN (W) = 1.666 mm (2x0.833 mm) using FEM results

From [7] and w/2 = 0.833mm, so that the depth of feed line into the MPA, as illustrated in
[6] is calculated as YO (or) H =0.833 L/2 = 3.8mm
Other dimensions of recessed MLIN feed in Fig 28 (a) as stated in [6]

Y=W/S5=184mmand X=7Z=(2W)/5=3.68 mm.

From Eq. (10), the ground plane dimensions for Square MPA with L = W = 9.2 mm are

L,=W, = (6h+L)= (6h+W) =13 mm.

5.4 Rectangular MPA Design with Simulation Results.

Figure 29. Rectangular Microstrip Patch Antenna
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Figure 34. Single Patch 3D Isometric Schematic view of Square Microstrip Patch
Antenna.
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Figure 37. Visualization of electric field Strength of the MPA



Figure 38. Post-Processed intensity Pattern of the MPA

6. CONCLUSION

RF — microwave chip-design needs multidisciplinary skills of Mathematics, Physics and Circuit Theory. To
carry out device modelling precisely, the MMIC model comprised of smith chart and ECAD software
(ADS) has addressed this problem adequately. An RF Engineer needs to inculcate skills in the design
simulation, testing and verification along with the understanding microwave — measurements accurately.
The fruitful partnership between Academia and Hi-Tech industry is of vital importance which the author
has envisioned all along, especially through achieving the sponsorships for Teaching and Research
endeavors in MMIC design and Fabrication activities. All the concepts of 5G chip-design have been
presented in the MMIC and microwave electronics courses. Part-time students from the industry have
appreciated learning a lot of fundamentals of microwave circuit design and full-time students have
expressed gratitude for providing hands-on experience in the lab using ADS tools.

A consummate 5G chip-set has been designed as a result of teaching and research investigations. All the
modules for 5G communication have been designed and simulated along with their system-level
integration. There is a potential for high-end RF-PA to be able to fit the desired needs of the next
generation (G) technologies including 6G communications. Presently, detailed simulations were carried out
for the RF input power of 1mw (0dbm), to establish a baseline, which is the transmitter output power of
0.2W (23dbm). For future work based on the baseband expectations of 10mwW(10dbm), it is to be advanced
by accomplished strings standards in power analysis of RF link acompassing Front and Back-end systems
for the next G wireless communications.

The author has been involved in this state-of-the-Art MMIC system level integration for the last three
decades and has witnessed numerous students achieving high accomplishments in their careers.
Throughout, the mantra in the class room has been “Only those students who learned the integration of
Fundamentals in Hi-Tech courses become wise, else they remain otherwise”. The earnest attempts of the
author have been to place all his students into the category of the “wise”.

During these novel investigations the consummate 5G chip-set as attached has been designed simulated and

is ready for fabrication.
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