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Educational Self-learning Sandbox to Emulate Biological Systems  

 

Introduction 

In nature, organisms evolve into their own niches in an environment over time, despite 

harsh changes in both biology and nature itself. This paper describes the development and 

observations from a self-learning sandbox intended to mirror and emulate the biological systems 

around natural selection and environmental pressures. Unique “pixel creatures” with random 

behaviors are generated in a pre-made environment and compete against others to survive and 

pass their genetic information to the next generation. This iteration of self-learning differs from 

standard neural networks by the method of which fitness is achieved. As opposed to the model of 

backpropagation, which applies changes to errors after the learning action has been done on the 

same model, this instead uses a generalized fitness approach where only the top performers of 

each generation may be given the chance to move on. Random changes called “mutations” will 

give a varied approach, act partially in place of a learning rate, and prevent a form of the local 

minima problem, as well as provide resilience to environmental change or change from possible 

competitors. We develop a simulator based on an emulation modular framework with a 

customizable environment and varying levels of complexity. This sandbox encodes genetic data 

and abstracts the concepts of behavior and genotypes using machine learning concepts. Besides 

inputs and outputs, organisms’ internal networks are completely dependent on its encoded 

“genes”, a bit string, which includes connections between neurons and the properties of the 

neurons themselves. Such a sandbox was developed, conclusions and comparisons to nature were 

made, as well as insights to possible expansion and application to education. In addition, there 

are evaluations of configuration changes and its effects are recorded for each unique trial within 

the simulator. Analysis on similar projects are provided and how they may proceed against some 

problems in design and theory. These applications are then put into the lens of educational 

advancement and the effects it may have on student development and its growth. A primary goal 

of this paper is to outline the results of this software for education and to this end, transparency 

was a primary focus in mind. 

Emulating biology and its emulation in computing is a topic with various development 

and disjointed educational material over the years. Although there has been attempts to unify or 

catalog the results of this literature into decided outcomes, those that have not been outdated still 

have difficulty encompassing the depth of the field and keeping up with its advancements [1]-

[2]. There have been a variety of analyses on the effects of different algorithms and variables to 

judge the effectiveness of certain designs. In addition, literature exists using these algorithms and 

environments to judge their effect on the evolution processes [3]. Teaching with these 

applications in mind has a positive effect on a target body of students and it can be safely 

assumed that interactions with such concepts would work well as an educational medium [4]. To 

this end, the following project, in addition to its current goals, will attempt to act as educational 

material made by students for students entering the field. 

Primarily, there will be 2 cooperating processes that define the scope of the relevant 

simulation; Neural Networking and Genetic Algorithm Emulation. Neural Networking, or ANN, 

is a form of deep learning that makes decisions from inputted data in a way that is inspired by the 



brain. This subtype of machine learning process, uses layers of nodes called neurons to dictate its 

action from the input, with the input being the first layer of neurons received and the output 

being the last layer [5]. In a setting where the goal is to emulate a creature, this would simply act 

as the creature’s brain; dictating what it should do in each moment and making its correlating 

action. The agent, being this single creature that perceives its environment through a set of inputs 

and acts, would not be able to change its ANN within its lifetime on its own. To optimize an 

ANN to fit a goal, there must be a mechanism from which the agent’s actions can be evaluated 

and another to enact the results of this evaluation. In traditional single agent circumstances, each 

positive action will give the agent positive feedback, reinforcing the connections it had made to 

get to that conclusion. Likewise, for each negative action, or one that did not perform positively 

enough, the agent gets negative feedback which is normally interpreted to mean that it should 

weaken the signals that lead it there. This model of rewards and punishments, backpropagation,  

for their actions to achieve fitness is well suited to some tasks, such as recognition and 

classification, but for some tasks such as simulating biological life, there is a form of fitness 

evaluation that is deemed more appropriate [6][7][14].  

Genetic Algorithms are a different form of fitness evaluation in that they use an iterative 

process to achieve fitness for an optimization task as opposed to backpropagation. In this 

context, these algorithms typically involve the use of many independent agents working towards 

the same task over the course of generations, with each new generation using a slightly 

randomized form of the most fit of the last generation [7]. This ensures that hopefully that the 

local minimal problem would be avoided or minimized, as there would be a large enough 

“mutation rate” to allow for ample exploration of possibilities [8][9]. To identify the agents from 

one another, each has its own unique “genome” which changes the action of its agent [7]. In a 

biological simulation, these agents’ genome decides the structure of the ANN, which in turn will 

decide its actions within its lifetime. Instead of measuring fitness and deciding the best of each 

generation, it can be more advisable to instead set criteria that each agent must fulfill in order to 

survive, and surviving agents will have their genomes used as the starting point from which to 

deviate upon in the subsequent generation. In between generations, these algorithms would 

eliminate the underperforming “genomes” of some agents and promote those of others so that the 

following generations can further develop this evolutionary path. Overtime, this process can 

generate multiple distinct solutions to solve a problem, and in the context of evolution, has the 

potential to exhibit emergent properties, which is particularly desirable in a situation where a 

computer is emulating biological systems [10]. 

Section 2 goes over requirements of the project, including hardware and software used 

and its environment. Section 3 outlines the software’s capabilities and its workings. Section 4 

encapsulates noticed results, trends and takeaways. Lastly, Section 5 pertains to conclusions, 

which include its applications in other fields and appeal to education coming from both the 

software itself and the conclusions drawn from it. 

 

Section 2: Project Requirements / Background 

Machine learning in general normally takes a large amount of computer resources. 

Extending this to a large number of agents each with their own ANN would necessitate a similarly 



large resource commitment. Often, it is expected of machine learning applications to use or need 

dedicated workstations with nominally large amounts of processing power in the form of GPUs. 

However, in the case of application to education, the ease of running code and nominally low 

resource usage can prove beneficial for student interaction: as it proves more beneficial for 

classroom experience and usage if each student can experience results live and to create 

connections in the learning environment [11]. Although minimal resource usage was a secondary 

goal, the final version of software ended up meeting the expectation for running nominally well 

on a single GPU system, allowing for runtime on personal computing devices or GPU-equipped 

workstations, For both application and development of this project, software requirements are 

shown in Table 1 with the configuration that has been known to work. Version numbers are given, 

however unless explicitly stated, these are not necessarily required. Hardware specifications used 

on workstations will be listed further on: 

Table 1: Prerequisite Software Requirements 
 

# Name  Version Pre-req Comments 

1 Python 3.9.7 N.A. 

Future versions (notably 4+) 

might prove incompatible with 

libraries used. 

2 Nvidia CUDA Dev Kit 11.6 N.A. 

11.6 is required for usage of 

present GPUs, however version 

10.2 is a possibility with certain 

versions of PyTorch 

3 Conda 22.9 1 
Optional, but recommended for 

package management 

4 PyTorch 1.13.1 1, 2 

Site settings selected: Stable, 

Windows, Conda, Python, 

Cuda11.6 

https://pytorch.org/get-

started/locally/ 

5 matplotlib 3.6.3 1 
Library for graph creation and 

data analysis 

6 IPython 8.9.0 1 Library for interactive analysis  

7 Microsoft VS Code 1.75.0 N.A. 
Optional: IDE used, causes 

problems integrating with Conda 

 

As stated before, much of this project, in its current form, has been done in a manner so 

that it can be run on desktop computers containing a GPU. As training, or “evolving”, completes, 

there will not be the need to run the software for days or weeks, computations on both tested 

platforms have been performed within minutes and lesser single GPU platforms are predicted to 

have similar results. This provides a boon to educational standards as previously mentioned as 

https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/


anyone may have and run their own version of the software. All software used is free and openly 

available under free licensing.  

As for coding libraries and software choice, all software listed in Table 1 is extremely 

common in these fields, with PyTorch being the library that specializes in Machine Learning and 

is considered the standard being ubiquitous and among the few true python options in its field. It 

also proves relatively easy to learn to the uninitiated and it can be entirely contained in the Python 

programming language, which itself shares the same properties [12]. The Nvidia CUDA Dev Kit 

is a package that allows GPU usage in coded software and is used by PyTorch as a diver and pre-

requisite package in order to give GPU support for machine learning, which is used extensively in 

this project and by extension, any other reinforcement learning applications. However, CUDA is 

theoretically optional as low cost student workstations/ integrated platforms might be able to run 

similar applications without use of the GPU, but however, this method of computation was not 

tested and would predictably increase the computational time to unacceptable levels for this use 

case [13]. Computational times generally take 10-15 minutes on a typical single GPU system for 

a 1000 population environment with 5000 generations. With only CPU usage, it can be safely 

assumed that these times would triple at minimum. Such computational times would limit the 

efficacy of classroom demonstrations and limit the educational effectiveness of the project, so 

therefore keeping runtimes to a minimum is an imperative goal if educational use is desired. 

Both Matplotlib and IPython are used as libraries for the sake of convenience. Matplotlib 

helps in plotting complexities and easing development time for the Python language and its acts 

as a numerical mathematics extension NumPy. IPython however offers debugging possibilities, 

rich media, and interactive shell features that shorten the development time additionally. It also 

adds support for data visualization in unique ways from Matplotlib and methods for distributing 

and parallelizing computational resources [15]. 

Conda acts as a package manager with Python and allows the creation of unique Python 

environments, each with its own libraries and versions of codebases. Each of these environment 

acts without overlapping with other envs on the same system, which allows for differing projects 

with different requirements that would otherwise be out of date or unnecessary. 



 

Figure 1: Workstation 1 (Lambda Vector) 

For thoroughness and completeness, hardware specifications of both workstations used in 

this project is listed below. Workstation 1, a prebuilt shown above, is a high power environment 

that was used to test remote execution and applications. Workstation 2 is a more traditional 

desktop computer that contains a GPU. Note that although both workstation are optimized and 

used for AI applications, this software is believed to not require the computation strength that 

either station would provide, as surmised from resource usage data gathered. 

Workstation 1 

- 4x NVIDIA RTX A4000 

- AMD Threadripper Pro 3955WX: 16 cores, 3.90 GHz 

- 128Gb RAM 

- 2x Monitor, 1x Keyboard, Mouse 

- TrippLite UPS 1500 LCD 

- Linux Mint 21.1 “Vera” 

Workstation 2 

- 4x NVIDIA GeForce RTX 2080 



- Intel i7-8700 CPU: 6 cores, 3.20GHz 

- 16Gb RAM 

- 2x Monitor, 1x Keyboard, Mouse 

- Windows 10 Pro N 

Section 3: Software 

Upon starting of the software agents are generated in accordance with preset arguments. 

These arguments will also set the size of the environment, which takes the form of a square 

checkerboard grid with optional “walls”. Agents are seen as a single squares in this grid pattern. 

Each agent has its own object with attributes and an unchanging ANN which will determine its 

actions in the current generation. Each generation has a preset number of steps, and when those 

steps have taken course, a new generation is created with new agents populated with the properties 

of the successful last generation. This process will be discussed later. To visibly show the actions 

and results of these emulated biological agents, the software will take snapshots at pre-defined 

steps in chosen generations, and when the queued computation is completed, these snapshots are 

dumped as images in a folder. One of such snapshots of generation 0 is below, along with some of 

its meta settings. Each of these settings will be elaborated on and are all user inputted on startup: 

 



Figure 2: Base Environment 

EnvSize:    100 

Population:    1000 

GenerationLength:   1000 

AgentComplexity:  5 

MutationRate:   .01 

Current Generation/Step 0/0 

Environment size and population are the two of the most visible variables to change before 

the begin of a simulation. EnvSize is simply the length of one of the sides of the square world in 

number of squares. These squares act as the smallest metric of movement and intractability for the 

agents. Each square contains data about whether an agent is on it, and contains data about whether 

an agent is in an adjacent square to it. Movement between squares is done in the 4 cardinal 

directions, and no diagonal movement is permitted. Population is the amount of agents created per 

generation and is the determining factor of performance. However, this does not necessarily 

represent the number of agents on the field, as in the event that an agent generates on the same 

square as another in the population phase of each generation, then the new agent overwrites the 

one that was on the square. Once agents are generated, then no more can be created or destroyed 

in that generation. These 2 variables are persistent throughout the entire simulation, and every time 

a generation ends, the world is remade using the same attributes. Runtime of these environments 

varies between seconds for populations below 50, to an hour at a pop of 5000. Below in Figure 3 

are samples of worlds with varying values of these attributes, all of which were taken at first 

generation. 



 

Figure 3: Environment Seeding Example 

Generational length is simply how long a generation will last. The longer a generation lasts, 

the more time agents will have to achieve their survival requirements in order to pass genetic 

information onto the next generation. The integer value directly counts for the amount of steps that 

the agents will be able to take. The process for each step is as follows: 

1. Receive Inputs – Each input neuron will be given a value gotten from the environment. 

2. Generate Output – This is the computation stage, where each agent will figure out its output 

in accordance with its neural network. There can be only one output, which will always be 

the one with the highest absolute value. 



3. Act – Agents on the field each take their turn to move depending on the order of the agents’ 

generation. This stage also resolves conflicts and exceptions, such as an agent trying to 

move onto another, in which case it will not move. 

When the steps are concluded, the generation ends. Longer generations have the 

hypothesized effect of allowing for more varied styles of play, while shorter generations force a 

more optimized approach of beating out the other competitors. 

AgentComplexity is a metric that changes the depth of each agent’s ANN, and therefore is 

the most computationally expensive variable to change along with population. Each agent shares 

the same input and output neurons, as well as the number of intermediary neurons, known as the 

hidden layer number, which is set by the AgentComplexity. All of these intermediary neurons are 

labeled as in the “Hidden Layer”. Figure 4 has a flow chart made of one such ANN for a randomly 

chosen agent, and a key for inputs and outputs will be below explaining these neurons.  

Figure 4: Example Neural Network of a Created Agent 

 

Table 2: Input Neurons 
 



Cx = Current position on the x axis in the 

world. -1 being on the left border and 1 on the 

right, 0 centered. 

Rnd = Random number from –1 to 1 

Cy = Current position on the y axis in the 

world -1 being on the top border and 1 on the 

bottom, 0 centered. 

Osc = Oscillator, will go from 1 to –1 over 
the course of 10 steps as a sin wave function. 
Length of these waves can be changes from 
an output neuron: OscS 
 

PAx = Previous action on the x axis, if agent 
moved last step left or right, make –1 or 1. 
 

PDlr = Density of Agents in 5x5 areas on 
left/right side as a decimal -1 to 1, 0 if equal 

PAy = Previous action on the y axis, if agent 
moved last step left or right, make –1 or 1. 

PDf = Density of Agents in a 5x5 area in 
front of agent as a decimal 0 to 1 
 

Age = 0 to 1 percentage of steps done in 
current generation 

PD = Density of Agents in a 5x5 area around 
as a decimal 0 to 1 
 

Bf = if an agent is in front of it, set to 1 Bb = if an agent is behind it, set to 1 
 

Blr = if an agent is to the left or right of it, set 
to –1 or 1 respectively 

LRBf = takes the percentage of agents in 
front of it to the border of the world as a 
decimal 0 to 1 

 

Table 3: Output Neurons 
 

OscS = Sets the wavelength of the Osc input 

neuron (Absolute –1 to 1) 

MVb = Move backward (in relation to 
“front”, defined at creation) 

MVx = Move in the x direction (positive or 

negative) 

MVy = Move in the y direction (positive or 

negative) 

MVf = Move forward (“front” is defined at 

creation) 

MVlr = Move left or right (+ or -, in relation 

to "front”, also turns the front face) 

MVr = Move randomly MVn = Do not move at all 

 

The number of neurons in the hidden layer of any given agent will be the AgentComplexity 

number minus 1. As seen in Figure 4, nodes of the hidden layer may connect to each other and 

often times do by random chance. Connections can take information from an input or hidden node 

and transfer it to either an output or hidden node. AgentComplexity also defines the number of 

these connections made in a sub-argument. These connections are defined by the agent’s genome.  

Genomes are gotten from the “winners” of the last generation that fit the prespecified 

criteria. Usually this criterion will be to reach a certain part of the map. Winners will have their 



genomes put into a pot of sorts and whenever the next generation is being made, each new agent 

will get the genome of a random winner of the last. This new agent will then undergo a mutation 

check which has the possibility of modifying these inherited genes before it is placed in the 

environment to start the next generation.  

Genomes themselves are hexadecimal values that correspond to a bit string. Each gene in 

a genome is 6 hexadecimal digits, a 24 bit string, that defines a connection. A connection has an 

input, output, and an associated weight to go along with it that modifies the carried value. The first 

5 bits state the ID of the node that acts as the input (which is either a sensory or intermediate 

neuron), the next 5 denote the ID of the output of the connection (intermediate neuron or action 

neuron), and the last 14 bits make a signed integer denoting weight which then gets compressed 

into a decimal value between -3 and 3. Large weights in the figure are defined with thicker arrows, 

negative weights are red, and vice versa for thin and green arrows. Figure 4 demonstrates a genome 

with 5 genes, and the utility of these genes can give hints as to how many generations have been 

undergone. For example, Figure 4 shows that this agent has drawn a simple negative correlation 

between its x position and its movement pattern. From this one can infer that this agent will always 

move to the y-axis in the center of the field, and therefore that the selection criterium is likely in 

the center of the board. The 2 unexpressed connections shown in Figure 4 likely mean that there 

hasn’t been enough time passed to allow for a beneficial mutation. 

Mutation rate is the chance for a given bit to change from 0 to 1 and vice versa. Without 

mutation, there is no introduction of new connections, and those randomly moving (or stationary) 

agents from generation 0 will never change from their first random gen. The rate of mutation acts 

as a sort of learning rate parallel to other forms of deep learning and often runs into the same 

pitfalls when over or under-tuning this value [16]. 



 

Figure 5: Genome Color Demonstration (Gen/Step: 50/100) 

For visual purposes, genomes are also responsible for the color of each agent. This works 

by compressing and mapping the bits of each full genome into a hex color value, resulting in 

similar genomes exhibiting similar colors. Figure 5 is an example of this at work. The selection 

criteria was set to be the right half of the map, and it’s evident that not only has a concentration 

of agents formed at this edge of the map, but also a concentration of green shaded agents are 

prominent as well. This suggests that these agents share a similar genome, and therefore, similar 

behavior that has been successful for achieving the selection criteria. A video made of collaged 

snapshots showing the movement of this generation’s agents has supported the claim that their 

patterns behavior are similar; which has been to move right in a slow, sporadic, wandering 

fashion. Similar colors between 2 agents therefore represent similar genomes, which implies that 

they will have similar behavior. This allows one to inference the behavior of a group or 

archetype of behavior through color, without having to manually inspect the ANN of each agent. 

Now that the workings of the environment have been shown, the following section will 

focus on observations and emergent properties of this system. 



 

Section 4: Test Observation 

Now that the workings of the environment have been shown, the following section will 

focus on observations and emergent properties of this system. A simple trial will be shown with 

a preset selection criteria zone. This trial below will have 3 figures showing the early, middle, 

and late development of generations with each snapshot taken in the middle of the generation. 

All staring points will share the following settings: EnvSize: 100, Population: 1000, 

GenerationLength: 250, MutationRate: .01 

Figure 6 below shows the first trial. The selection criteria is shown as a red rectangle in 

the left-most image and encourages agents to be in the right hand side of the field. 

AgentComplexity is set to 7. 

Figure 6: Eastern Block Fitness Trial 

Early on, there already was a developed tendency to move in the positive x direction, as 

seen in Gen 55. Generation 400 exhibited an odd behavior where a certain demographic of 

genetically similar cousins crowded the last several columns, preventing others from coming in 

and showing an odd tendency to avoid wandering past a certain x value, shown by these certain 

shade of green. By generation 5000, genetic diversity is diminished and this behavior already 

shown in Gen 400 have been expanded to the entire population, crowding the right side and 

preventing movement. 

Section 5: Conclusions and Future Work 

The applications of such a project have cross-disciplinary effects, and it is clear that such 

ideas would be especially important to biology education. Biology in the modern era is 

dependent on bioinformatics, and integrating technology deeper into the classroom is ideal for 

the highest rate of effective and successful graduates [17]. This project can serve as a staging 

point for expansion by universities into bio computing for student education and more advanced 

projects to be built on. Section 4 has demonstrated emergent properties typical of biological 

systems that are the focus of any related course in the field, and more advanced and atypical 

environments will show equally more advanced and atypical behaviors whose analysis is beyond 

the scope of computer science and software engineering. These relationships are further 



reinforced upon repeated trails. Although we lack expertise in biology teaching pedagogy, we 

believe that there is firm interest and possible applications for such software in teaching of these 

fields, where it is most urgently needed. 

Section 4 has also demonstrated the patterns and results coming from our chosen method 

of programming genetics and evolutionary concepts. Explaining the cause and effect of such 

processes has the effect of adding to the expanding knowledge base of these topics, which in an 

of itself is an educational goal. Papers found relating to similar topics tend to have a focus on 

either the evolutionary/biological aspects of this technological application, or the 

computing/mathematical applications of the algorithms behind them. By giving a look at both in 

an intertwined form, aspects of cross-disciplinary cooperation get enforced, and the uses of such 

information can be of use to both fields for further work, reference, or study, which further 

enhances the educational aim. 

Computer Science and Software Engineering principles are inherent in the design of this 

software. There was never any mechanism that explicitly asked for a solution for a given 

problem. Solutions for selection emerged over time by random chance and were positively 

selected for. The properties of these interactions would be a positive point of focus for 

educational purposes and the process of controlling and managing these connecting systems is 

one focused on education. 

Future work would likely follow one of two possibilities:  

1. The first being one of software development: where this evolution simulator would be 

enhanced with modular and more varied functionality. Starting points for such would 

likely include making the AgentComplexity value set per agent rather than as a global 

variable as well as adding environmental variations in shape and possible forms of 

selection criteria in the form of food or a “kill” mechanism. Adding accessibility options 

like colorblind adaptations or easier to read text would allow greater educational 

flexibility. 

2. The second possibility would be to test the application of this software in an educational 

environment for curriculum development and teaching pedagogy. There has been 

expressed interest by both computing and biology departments for cross-disciplinary 

interaction and this software proposes a method for this involvement. Analysis of both 

the results and the application process would be made to judge its educational efficacy in 

the classroom. 
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