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Redesigning a multi-disciplinary measurement lab and statistics course: An 
approach for navigating competing priorities 

Abstract 

The design of an engineering course is challenged by the need to balance breadth vs depth 
while meeting ABET criteria, preparing students for the Fundamentals of Engineering (FE) 
exam, and maintaining within-institution course equivalencies. These difficulties are further 
exacerbated for the topics of measurement (including data acquisition) and data analysis 
(including statistics) because many universities package these vast topics into one course. In 
this paper, we describe the process of redesigning a data analysis and measurement course so 
that it better meets its program- and college-level goals. We gathered feedback about the 
course from students, faculty, and employers, and we analyzed the role of this course with 
respect to ABET criteria, the FE exam, and its relationship to similar courses in the college. 
We then used a curricular-priorities framework to organize the course’s learning objectives 
into three categories—enduring understanding, important to know and do, and worth being 
familiar with—and employed a backward-design approach to creating the corresponding 
assessments and activities. For the classroom activities, we incorporated a flipped-classroom 
design and interwove the measurement and statistics topics throughout the curriculum, rather 
than relying on the more common approach of sequentially addressing these topics. The 
resulting course curriculum is being classroom tested in Spring 2023. 

Introduction 

Measurement and data analysis are essential topics in engineering education, as they provide 
students with the skills needed to acquire, process, and interpret data. However, designing or 
modifying a course on these topics can be challenging due to competing priorities such as 
meeting learning objectives related to breadth vs. depth, ABET criteria, preparing students 
for the Fundamentals of Engineering (FE) exam, and maintaining within-institution course 
equivalencies. This work describes an approach to navigating these competing priorities 
when redesigning an upper-division measurements and statistics course hereafter referred to 
as Data Analysis. 

Data Analysis is offered by a small (<150 students), relatively new (created in 2013), degree-
granting program at a large, research-focused institution in the Rocky Mountain Region of 
the United States. The program, called the Integrated Design Engineering (IDE) Program, 
emphasizes design and hands-on experiences in their courses, and students choose a 
disciplinary emphasis (mechanical, aerospace, environmental engineering, etc.) and a 
concentration (business, space, engineering management, etc.) as part of this flexible degree. 
Data Analysis is a four-credit-hour course that combines lecture and lab time throughout a 
16-week semester, and the course is required for certain emphases, including the mechanical 
engineering emphasis, which is the most popular disciplinary emphasis among IDE students.   

Because mechanical engineering is the most popular emphasis, the learning objectives of 
IDE’s Data Analysis course were based on the Mechanical Engineering department’s version 
of Data Analysis, such that the two courses would be listed as equivalent in the course 
catalog, and students in both units could take either course. The Data Analysis course in 



Mechanical Engineering stemmed from the consolidation of three, two-credit-hour courses: 
Experimental Design and Data Analysis, Measurements Lab I, and Measurements Lab II. 
This consolidation has pedagogical advantages, such as pairing the introduction of a 
statistical analysis method with its immediate application to a laboratory experiment, but it 
also has disadvantages, namely students have less class time to learn the fundamentals of two 
vast fields of study—statistics and measurement.   

Initially, the content of the IDE’s Data Analysis course was organized in series, focusing on 
measurement topics first and statistical concepts second. This sequential model had two 
major disadvantages.  First, because the measurement and data acquisition content was 
concentrated at the start of the semester, many students struggled to remember what they 
“learned” in the first part of the class when they completed their culminating project later in 
the semester, in which they designed their own experiment and then collected and analyzed 
their own data.  This phenomenon illustrated that students would benefit from more 
deliberate, distributed practice with measurement and data acquisition [1]. Second, the 
measurement and data acquisition activities were much more hands-on than the statistics 
curriculum, creating very different energy and engagement in the class throughout the 
semester.  We wanted to modify the course to address these two concerns but decided to take 
a more holistic approach to the redesign. 

This paper outlines our comprehensive approach to redesigning Data Analysis. We not only 
consider changes to the assessments and activities of the class, but we also re-evaluate the 
learning objectives in the context of program and college level goals and students’ 
professional careers. We utilize a curricular priority framework to organize the course's 
learning objectives into three categories: enduring understanding, important to know and do, 
and worth being familiar with [2]. Then, we used a backward-design approach to create 
corresponding assessments and activities [2].  Our approach utilizes research-based practices 
for curriculum design and exemplifies a framework for other educators who may be facing 
similar challenges in redesigning a course, especially a measurement and statistics course. 

Background 

Course Redesign Framework 

Backward design is a framework for curriculum development that begins with the end in 
mind. The process starts by identifying the desired outcomes or learning objectives for the 
course and then working backward to create assessments and activities that align with those 
objectives. This approach ensures that the course is designed with the ultimate goal of student 
learning in mind and that all aspects of the course are aligned with the needs of the students, 
the curriculum, and the stakeholders [2, 3]. 

In the context of redesigning our Data Analysis course, we used the backward design 
framework to identify the most important learning objectives for the course, and we then 
created the assessments and activities that aligned with those objectives. This approach 
allowed us to design with the end in mind while ensuring that the course met the 
requirements of ABET criteria, the FE exam preparation, and within-institution course 
equivalencies.  

The use of the backward design framework for curriculum design in engineering has 
precedence.  For example, Mohammed et al. [4] used backward design for designing a quality 
management and analytics course, and Lulay [5] and Dillon [6] led teams that leveraged the 



framework when creating new modules for a materials and a mechanical engineering 
laboratory, respectively. Sutterer [7] used a variation of backward design to modify a 
mechanics of materials course, and Villalta-Cerdas and Yildiz [8] used it for designing an 
engineering technology bridge course.  When considering other laboratory contexts, 
backward design has been used for chemistry laboratory curriculum and laboratory research 
experiences for undergraduates [9, 10]. 

Curricular Priorities Framework 

The curricular priorities framework presented by Wiggins and McTighe [2] outlines three 
categories of learning goals: enduring understanding, important to know and do, and worth 
being familiar with. 

Enduring understanding refers to the big ideas or concepts that are central to a particular 
subject area and that students should understand deeply over time. These are the core ideas 
that will have lasting significance for students and that they can apply in various contexts. 

Important to know and do refers to the skills, knowledge, and processes that are necessary for 
students to be able to use and apply the enduring understandings. These are the most essential 
and practical elements of a subject that students need to know and be able to do to be 
successful in that field. 

Worth being familiar with refers to supplementary information and perspectives that students 
should be aware of, but that are not as essential as the enduring understandings and important 
to know and do elements. This category includes background information and alternative 
viewpoints that can enrich students' understanding and provide a more complete picture of a 
subject. 

By using this framework, educators can prioritize the content they want students to learn and 
ensure that they are teaching what is most important and meaningful to students.  

 

 

Figure 1. We sorted our learning objectives into three categories of curricular priorities [2]. 



Contextual Influences on Learning Objectives  

When redesigning this measurement and design course, we identified four priorities that 
influenced our decisions about the learning objectives of the course: 1) balancing the breadth 
vs. depth of the content in the limited time of the semester, 2) meeting the ABET student 
outcomes related to this course, 3) preparing students for the NCEES Fundamental of 
Engineering (FE) exam, and 4) ensuring that the course continues to serve as an equivalent 
course to similar courses in other departments in the college. 

This course introduces students to two vast fields of study, with multiple courses for each 
field at many universities.  For example, when considering only the field of statistics, the 
Engineering Management Program at CU Boulder dedicates entire classes to two-group 
comparisons, experimental design and one-way ANOVAs, two- and three-way ANOVAs, 
and regression and data mining. Thus, in a four-credit-hour course, it is challenging to 
determine what content should be introduced and to what depth the content should be 
explored.  Based on the experience of one of the authors teaching this course in the past, the 
students leave with a superficial understanding of the concepts in this course when trying to 
cover too much content.  However, with this Data Analysis course being the only 
measurement and statistics course that most students take before graduation, it necessarily 
must explore a wide range of topics. We had to make difficult choices about what topics to 
emphasize to gain depth in those areas, and ABET outcomes, FE exam prep, and other 
courses in the college influenced our decisions. 

As with many of the courses within the IDE Program’s curriculum portfolio, this data 
analysis course aligned with many ABET Criterion 3 student outcomes, but the program 
relied heavily on it for certain outcomes.  For example, this course contributes to Student 
Outcomes 1, 3-7, but it plays a lead role in developing students’ “ability to develop and 
conduct appropriate experimentation, analyze and interpret data, and use engineering 
judgment to draw conclusions” [11].  It is critical for the program’s ABET accreditation that 
our course continues to play a role—sometimes a lead role—in program-level education 
objectives. 

Another program-level objective is to prepare students to successfully pass the NCEES 
Fundamentals of Engineering exam, which includes a section on statistics that covers the 
following topics: estimation, expected value and expected error in decision making, sample 
distributions and sizes (e.g., significance, hypothesis testing, non-normal distributions), and 
goodness of fit, including correlation coefficient, standard errors, and R2 [12]. The purpose of 
this exam is to test engineers’ overall competency across core areas of an undergraduate 
degree in a given engineering discipline.  IDE students are required to take the FE exam prior 
to graduation, and they are encouraged to take the “Other Disciplines” version of the exam.  
The IDE Program recently discussed ideas for how we could further help our students prepare 
for the FE exam, and each instructor was asked to evaluate the overlap of their course content 
with the applicable sections of the FE exam to identify opportunities for further alignment.  
Because Data Analysis is the only statistics course that most IDE students take prior to 
graduation, the statistical concepts assessed on the FE exam must be taught in Data Analysis. 

The final influence on the course’s learning objectives that we considered is the course 
equivalency (with regards to meeting prerequisite and graduation requirements) of the IDE 
and mechanical engineering versions of Data Analysis. The two courses have quite different 
course assignments and activities, but their course topics and learning objectives largely 
match [13].  The overlap in learning objectives likely stem from the original course proposal 



and curriculum being based on the mechanical engineering version of this class. As the 
engineering college at CU Boulder looks to streamline pathways to completion for students 
who change their major, it is important to try to preserve this course equivalency; thus, the 
topics and learning objectives of our redesigned Data Analysis course must continue to 
correlate closely with those of equivalent courses in the college, namely the Data Analysis 
course in mechanical engineering.  

Review of Prior Work 

Redesigning or modifying a measurement or engineering course for engineering students is a 
common endeavor.  For example, Aung [14] revamped a mechanical engineering 
measurements lab based on student feedback and accounted for the lab being one of two 
courses in the degree that targeted the ABET student outcome related to conducting 
experiments and analyzing and interpreting data.  Their new experiments included aspects of 
linear regression and validating theoretical models with experimental data.  

Linear regression was repeatedly identified as a topic of emphasis when redesigning a 
measurement or statistics course. Chitikeshi et al. [15] integrated descriptive statistics and 
linear regression into an industrial instrumentation class for an engineering technology 
program.  They chose to focus on the use of software for this analysis and deemphasized 
manual mathematical calculations.   Burns and Hammond [16] described the multi-year 
redesign of a multidisciplinary statistics course, and they too decided to further prioritize 
linear regression—including multiple linear regression—and the use of software over hand 
calculation.  Through a comprehensive analysis of course goals and constraints that included 
the review of ABET criteria, stakeholder requirements, and student feedback, they also 
concluded that their 10-week statistics course for engineers should put greater emphasis on 
experimental design, ANOVA, regression, the use of real-world data, and graphical 
visualization via software. Similarly, we collected feedback from many sources—including 
faculty, students, and employers—when determining the curricular priorities for Data 
Analysis. 

When evaluating different types of assessments for a mechanical engineering course, Myszka 
[17] concluded that laboratory reports, quizzes, and design projects did not adequately 
address the students’ working knowledge of the concepts covered in the course. While 
practicum exams take more time to administer and prepare, and are more difficult for 
instructors to grade, they improve the student’s overall participation in the course, and more 
adequately address the learning outcomes for the courses.  However, because of time 
constraints and the volume of course content, we ultimately decided not to include a 
practicum exam in the redesign of Data Analysis. 

With regard to lectures and classroom activities, many statistic-course instructors have found 
benefits in a flipped classroom model, where students watch short lecture videos outside of 
class and engage in project or active-learning exercises in the classroom.  Vidic and Clark 
[18] concluded that a fully-flipped statistics course for engineers enabled more personalized 
learning and instruction than a partially-flipped classroom.  A study led by Motamedi [19] 
indicated that a flipped and “modified instructor-guided” pedagogy for a data analysis course 
for engineers yielded higher computational understanding and theoretical and statistical self-
efficacy than a problem-based learning approach. However, problem-based learning tended to 
result in higher self-efficacy for using data analysis software. Similarly, Huang et al. [20] 
found that students in a project-based learning intervention were more likely than those in an 
online course to talk about the connection between statistics and their disciplines but not 



themselves.  They posited that this phenomenon reflected that students involved in project-
based learning activities were more inclined to regard themselves as a part of the engineering 
community. 

The students in Motamedi’s study [19] tended to prefer the flipped classroom because of its 
flexibility with their schedules, their ability to watch lectures when they felt motivated to 
learn and when they knew that they would be able to stay focused, and their increased 
engagement with short video content. A significant disadvantage was their inability to ask 
questions while learning the material; thus, students would go to class feeling confused and 
ill-prepared. Vidic et al.’s [18] study of flipped classrooms addressed this issue by allowing 
students to post their questions about the video lecture ahead of class, and the instructor 
addressed the questions at the beginning of each in-person class. IDE’s Data Analysis course 
was partially flipped prior to this work, and these prior studies suggest we should consider 
fully flipping it as part of this redesign. 

Methods 

To determine the learning objectives of the course, we first consulted students, faculty, and 
staff. We gathered student feedback from past semesters of mid-term and end-of-semester 
surveys responses about the pace, content, and structure of the class. In general, students 
suggested maintaining the content coverage, pace, and project-based emphasis of the course.  
To gather the employer perspective, we spoke with a college-level administrator about the 
technical and professional skills that employers desired, based on a recent survey of 
companies who hire our graduates. The results of this survey suggested that employers are 
less concerned about students having specific technical skills and more concerned about their 
profession skills—written and oral communication, teamwork, critical thinking, etc. (B. 
Weihrauch, personal communication, March 11, 2022). Finally, during a faculty meeting, we 
asked the faculty of the IDE for their opinions of what the learning objectives of the course 
should be for both the measurement and statistics domains.  We focused this discussion on 
enduring outcomes, using “what should the students know or be able to do five years from 
completing this course” as our guiding prompt.  We then compared a synthesized list of 
possible enduring outcomes from the faculty with employer’s desired skills of our graduates, 
the student outcomes from ABET, the statistical topics on the FE exam, and the learning 
objectives of the mechanical engineering version of the course.  Through an iterative process 
and much discussion, we organized our learning objectives into three categories of decreasing 
priority: enduring understanding, important to know and do, and worth being familiar with.  

After determining our curricular priorities, we decided on the evidence needed to evaluate the 
students’ knowledge and skills in those areas.  We emphasized the repeated assessment of 
enduring outcomes throughout the semester, and we also ensured that all good-to-know 
learning objectives were assessed at least once.  It varied whether or not the worth being 
familiar with topics were assessed. Both formative and summative forms of projects, 
presentations, reports or portions of reports, quizzes, and homeworks were employed. 

Lastly, we created the classroom activities and lectures.  In general, we further adopted a 
flipped classroom pedagogy by recording more videos of short lectures that students watch 
outside of class.  In accordance with prior research [18, 19], we preferred to have students 
watch lectures outside of class so that they had more in-class time to engage with hands-on 
and collaborative activities. 



Results 

Learning Objectives and Curricular Priorities 

A synthesized list of learning objectives for Data Analysis, their curricular priority, and their 
associated assessments is presented in Table 1. The priority of each learning outcome is 
evident in how many assessments align with it.  For example, we categorized students’ ability 
to critique data visualizations and descriptive statistics for clarity and appropriateness as an 
enduring understanding, and there are over 13 assessments to collect evidence of students’ 
progress toward that objective.  Conversely, we classified two-way ANOVAs as worth being 
familiar with, and intend to make students aware of the method, without assessing them on 
the content.   

Our decision to not include assessments or classroom activities related to two-way ANOVAs 
but including non-parametric methods may be the biggest difference in learning objectives 
between the IDE and mechanical engineering versions of the course. We feel non-parametric 
methods must be included in the course if students are expected to appropriately analyze the 
data that they collect as part of their culminating Design Your Own Experiment (DYOE) 
project.  History has shown that students’ DYOE data are often non-normal with small 
sample sizes. 

Assessments 

Table 2 provides a comprehensive list of the assessments that were created to evaluate the 
extent to which students achieved the learning outcomes of the course. Collectively, these 
assessments account for 92% of a students’ grade in the class, with embedded questions in 
the online lecture videos (5%) and professionalism and participation (3%) making up the 
remainder. One notable exclusion from Table 2 is a poster presentation. The creation and 
presentation of a poster has been a long tradition of Data Analysis in both the IDE and 
mechanical engineering versions. However, because the vast majority of students in the 
course are IDE students who have created posters for three previous project-based courses, 
we decided to convert the presentation associated with the DYOE project from a poster to a 
slide presentation, which are more common in industry.   

The DYOE is a project that students work on for about three-quarters of the semester, with 
intermediate progress checks.  It requires students to design their own experiment, give a 
presentation on their experimental design, develop their own measurement system, collect 
and analyze their own data, and present their findings in a written report and a final 
presentation. The guidelines specify that they must incorporate an ANOVA. 

The design and assembly of a kalimba (a traditional African thumb piano) and the design and 
build of a smart home security system constitute the other significant projects in the course. 
The kalimba project emphasizes the value of utilizing analytical (theoretical) models and 
empirical results in combination.  Students must use measured values, including those from a 
tensile test that is used to find the modulus of elasticity of the material used for the kalimba 
tines, to predict the length of individual tines that will produce certain musical tones.  They 
then validate their predictions with experimental results collected from a microphone and 
USB data acquisition system and discuss any discrepancies. 

 



Table 1. We organized the learning objectives into three categories: enduring understanding 
(EU, highlighted), important to know and do (IKD), and worth being familiar with (WF). 

Topic Learning Objective Priority Assessment 

Data 
Visualization 
and Numeric 
Descriptive 
Statistics 

Critique data visualizations and descriptive statistics for 
clarity and appropriateness 

EU 
HW1, 3, 5-7, 9, 11-

13; P1-3; Q 

Create visualizations and calculated descriptive statistics 
for continuous and ordinal data 

IKD 
HW1, 3, 5-7, 11-

12;  
P1-3; Q 

Calculate a weighted average IKD Q 

Identify and create visualizations and descriptive statistics 
for categorical/nominal data 

WF HW1 

Data 
Analysis 
Methods 

Differentiate between different data types and recall that 
different types of data are analyzed differently 

EU HW1, 10-12, P3; Q 

Employ parametric methods for continuous data IKD 
HW1, 3-9, 11-12; 

P1, 3; Q 
Utilize non-parametric methods for ordinal or non-normal 
data 

IKD HW1, 11-12; Q 

Understand and apply methods for analyzing 
categorical/nominal data, including binomial data 

WF HW1, 10 

Recognize situations when a two-way ANOVA is needed WF   

Uncertainty 

Explain the concept of a confidence interval and why 
every measurement has uncertainty 

EU HW4, 6-9; P1, 3; Q 

Paraphrase the concept of propagation of uncertainty EU HW8; Q 

Calculate a best guess and confidence interval for an 
unknown true value of a measurement 

IKD HW6-8, P3 

Use the propagation of uncertainty equation IKD HW8 

Distributions 

Identify different distribution shapes, including normal, 
skewed, uniform, and bimodal 

EU 
HW 1, 3-9, 11, P3, 

Q 

Explain and utilize the Central Limit Theorem IKD HW4, HW11, P3 

Recognize natural limits in a dataset WF   

Statistical 
Ethics 

Critique the ethics of a particular statistical analysis that 
may or may not support the analyst's conclusions (e.g., 
eliminating outliers, changing parameters) 

EU HW9; Q 

Regression 
and 
Correlation 

Employ linear and non-linear regression EU P1-3; Q 

Explain the difference between correlation and regression IKD HW12; Q 

Interpret and use multiple regression IKD HW12 

Data 
Acquisition 
Systems and 
Signals 

Identify elements of a data acquisition system and discuss 
rate (sampling frequency), resolution, and range 

EU 
HW2-3, 8, 11; P1-

3; Q 

Summarize the characteristics of a "digital" (analog, 
binary) or analog signal 

EU HW2; P2-3; Q 

Perform a sensor calibration and explain how that reduces 
the uncertainty in the measurement 

IKD HW8, 11; P2, 3 

Recognize the difference between "digital" signals and 
digital communication (e.g., serial) 

WF   

Experimental 
Design 

Thoroughly plan an experiment before conducting it, 
considering why, who, and how, including the variables of 
concern, measurement equipment, and analysis methods 

EU HW3, 11; P1-3 

Design and conduct an experiment that compares 
measured data to a theoretical or analytical model 

IKD P1, 3 

Note: HW = homework, P = project, Q = quiz (see Table 2 for more information). 



The smart home security system requires students to incorporate sensors, actuators, and 
indicators of different types, with a custom LabVIEW program controlling all hardware. As 
part of the project, students must calibrate an analog sensor of their choice and incorporate it 
into their design. 

To have students practice their writing abilities prior to delivering a large report, we 
incorporated writing assignments into many of the homework assignments.  For example, for 
HW1 students have to write the Results and Discussion sections of a report. For HW3, they 
must write a Methods and Results section.   

Table 2. A variety of homework (HW), project, and quiz assessments provided evidence of 
students’ progress toward the learning objectives. 

Assessment Description 

HW1 Descriptive statistics and visualizations 

HW2 
Introduction to LabVIEW (a coding environment tailored to data 
acquisition) 

HW3 
Collect data and find descriptive statistics for an experiment 
comparing light intensity between two classrooms 

HW4 Central Limit Theorem 

HW5 Descriptive statistics in Matlab (another tool) 

HW6 Inferential statistics: 2-group comparison (t-tests) 

HW7 Inf. stats: 3+ group comparison (ANOVA) 

HW8 Propagation of uncertainty 

HW9 Statistical ethics 

HW10 Binomial distributions 

HW11a Non-parametric group comparisons (2-group) 

HW11b Non-parametric group comparisons (3+ groups) 

HW12 Multiple regression 

HW13 Critique of published statistical graphic or table 

Project 1 
Theoretical models and experimental results--how do they 
complement and differ? (Kalimba project) Video summary and 
full report 

Project 2 
Smart Home control system video and (partial) report (DAQ 
inputs and outputs; calibration) 

Project 3a 
Design Your Own Experiment (DYOE): Experimental design 
presentation 

Project 3b DYOE: Presentation and Report 

Quizzes 
Weekly quizzes (with a partner) that are cumulative and focus on 
assessing students' conceptual understanding of course topics 

 

Activities 

Classroom activities and pedagogy are largely influenced by instructor preference and what 
resources are available. Therefore, we will only highlight the general structure of the course 
and a few of our classroom activities. 

In general, we flipped our classroom. We recorded videos that students watched every week 
outside of class. These are a combination of screencast videos recorded by the instructor and 
publicly-available, online videos.  All videos utilize the PlayPosit platform, which enabled us 



to embedded questions that tested students understanding of the main concepts. In class, we 
briefly summarize the main points of the videos and answer any questions. Then, we move on 
to demos, hands-on activities, or group-based assignments. 

A few of our most popular demonstrations relate to aliasing. One demonstration utilizes a 
cantilevered beam (about 30” long) mounted on a vibration shaker. We excite the beam at its 
natural frequencies and use a stroboscope to simulate a sampling frequency. If the 
stroboscope frequency is at least twice the vibration frequency of the beam, we accurately 
capture the motion of the beam. However, we demonstrate that a stroboscope frequency of 
exactly twice the vibration frequency can lead to the appearance of a static beam (with or 
without a given deflection). We then also demonstrate the phenomenon of aliasing, where the 
beam appears to be oscillating a much lower frequency than reality. We include a discussion 
of mode shapes and nodes, and the students love running their finger along the beam and 
feeling the node of the mode shape. We do a similar demo with a box fan that has a bright 
piece of tape on one of the fan blades. 

A second demonstration related to measurement range and resolution involves a song clip 
that we resample with a specified range and number of bits. Students (and instructors!) are 
always amazed that you can make out the lyrics and music with a resolution as low as a 
single bit. 

For the statistics portions of the course, we try to incorporate as many active-learning 
activities as possible to minimize the time lecturing. For example, we have students analyze 
real data from Netflix when learning about data types, descriptive statistics, and data 
visualizations. When introducing t-tests, we have all students at a white board, drawing out 
each step of the analysis process. We also do a fun activity (with treats!) comparing the 
amount of cream in a regular Oreo to that of a Double Stuf Oreo—is there truly twice the 
cream? We also try to use real-world and relevant data sets as much as possible. For example, 
we have a discussion about the gender pay gap and then do an analysis using real data. We 
discuss micro-aggressions and then use data from a CU Boulder survey in a binomial 
distribution assignment, and we investigate COVID death rates across racial/ethnic groups.  

As mentioned previously, one intended outcome of this work was to interweave the concepts 
and activities of measurement and statistics more than we have in the past. This gives 
students opportunities for deliberate, distributed practice to improve their learning [1].  One 
example of how we connected and sequenced measurement and statistic concepts is that we 
have students design and execute an experiment involving the measurement of light levels in 
two different classrooms. We later utilized the data the students collected in a descriptive 
statistics and two-group comparison activity. Similarly, students will collect experimental 
data to use in a non-parametric, group-comparison analysis. The last example we will 
highlight is the natural pairing of sensor calibration with linear regression concepts. 

Discussion 

The implementation of this course redesign is being classroom tested in Spring 2023.  One 
concern of this curriculum design is the pace at which topics must be introduced.  If our just-
in-time pedagogical decisions require more time than anticipated for certain topics or 
assignments, we plan to reduce the priority of multiple linear regression to a good to be 
familiar with, in which students will be exposed to the concept but will not be assessed on it. 
 



A limitation of our course redesign is its narrow focus—a specific course at a specific 
university.  For instructors who teach similar courses in measurement and statistics or for 
curriculum committees considering course consolidations, we expect our work to be 
applicable and useful.  Additionally, we posit that our results are also applicable to 
engineering programs with independent courses in measurement and statistics because many 
of the learning objectives are program-level objectives that align with ABET criterion and the 
FE exam.   
 
While we did include ABET criteria and the FE exam topics in our analysis, we did not 
directly solicit corporate feedback.  Part of our justification for this is that in our college 
survey of employers, the most desired knowledge and skills from employers were related to 
professional skills, not specific technical skills (B. Weihrauch, personal communication, 
March 11, 2022).  With our emphasis on teamwork, written and oral communication, critical 
thinking and problem solving, and ethics, we are developing and assessing students’ 
professional skills throughout the course.  Additionally, the ABET organization and 
accreditation criteria are governed by members of over 35 professional and technical 
societies, thus intrinsically linking the ABET requirements to the educational outcomes 
desired by industry.    
 
Our planned future work for this project includes a reevaluation of our curricular priorities, 
assessments, and activities after the curriculum has been classroom tested in Spring 2023.  As 
customary for all IDE courses, at the end of the semester we will have another professor in 
IDE lead an evaluation session that includes the compilation of strengths of the course and 
areas for improvement. The students then individually vote on the extent to which they agree 
or disagree with each strength or area of improvement. Additionally, the students will be 
given an end-of-the-semester survey that will ask course-specific questions about the pace, 
curriculum, and pedagogy of the course. All course feedback, including results from the 
institutionalized Faculty Course Questionnaire (which asks students to self-report the extent 
to which the course helped them achieve each of the seven ABET student outcomes), will be 
discussed during an IDE faculty meeting to evaluate the course redesign and identify future 
adjustments. Thus, the feedback from students, course instructors, and other IDE faculty will 
guide future course improvements. 

Conclusion 

This paper describes our backward-design approach to the redesign of a measurement and 
statistics course.  The most challenging aspect of the project was determining the curricular 
priorities because the course content spans the expansive fields of measurement and statistics, 
the course must help students develop the ABET student outcomes and prepare them for the 
FE exam, the measurement and statistics content must be interwoven so as to provide 
opportunities for deliberate, distributed practice of concepts and skills throughout the 
semester, and its learning objectives must maintain sufficient alignment with other similar 
college courses to maintain course equivalencies.  While we describe the redesign of a 
specific course, the research-based approach employed would be applicable when 
redesigning other engineering courses with learning objectives that face similar multi-faceted 
constraints and expectations.  
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