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Measuring the “thinking” in systems thinking: Correlations 
between cognitive and neurocognitive measures of engineering 

students 
 

 
Introduction and background 
 
Systems thinking is a critical skill for engineering students to solve complex and ill-structured 
design problems [1]. Concept mapping is a tool for systems thinking [2]. It involves connecting 
disparate pieces of information and using these connections to generate new ideas and 
relationships to frame and solve problems [3]. Concept mapping is a thinking tool that works by 
beginning with a main idea and then branching out to show how the main idea is related to other 
ideas. Students draw connections between concepts at various hierarchical levels and from 
different categories. For example, a mechanical engineering student could draw components that 
make up a manufacturing process, such as the raw materials, the machines, how workers interact 
in the process, quality control measures, and the relationships between these concepts and ideas. 
 
Concept mapping is often used to evaluate student learning. For example, to assess students’ 
understanding of sustainable design [4], [5]. Methods have been developed to score the content 
and structure of students’ concept maps to provide instructors with insights into the depth and 
breadth of students' understanding of a topic [6]. In addition to being used for assessment, 
concept mapping is often used as a learning tool [7], [8]. Concept maps force students to engage 
with the relationships between ideas and organize information in a way that makes sense to them. 
The premise is that creating concept maps facilitates knowledge transfer to new situations [9]. 
For example, an engineer who has experience designing buildings with steel and asked to use 
concrete could facilitate their learning by creating a concept map that starts with their knowledge 
of “loads and forces,” “design principles,” and “material properties” and as they learn more 
about concrete add new nodes for concepts such as “concrete mix design,” “strength and 
durability,” and “reinforcing materials” and link these new nodes to related nodes in the steel 
structure branch to show how the concepts are related and how they can be applied new ways. 
 
Despite the usefulness of concept mapping in assessment and learning, a gap exists in 
understanding how it translates to changes in students’ engineering designs. How concept 
mapping, as a tool for systems thinking, shapes subsequent design thinking is under-explored. 
Neuroscience provides an approach to measure the underlying neural processes involved in 
concept mapping and its effect on students’ designs. For instance, concept mapping may enhance 
students’ ability to efficiently organize and integrate information, making designing less 
cognitively demanding. Concept mapping was previously observed to increase oxygenated blood 
flow in brain regions involved in semantic processing, working memory, and attentional control 
[10]. The priming of these regions through concept mapping may lead to changes in the 
recruitment of brain regions during subsequent design tasks.  
 
The specific question this study attempted to answer was what is the relationship between brain 
activation during concept mapping and subsequent design problem framing? Design problem 
framing is the aspect of designing that was explored because of its early and substantial influence 
on engineering design [11].    



Methods 
 
Engineering students (n=28) were recruited through engineering courses and department bulletin 
boards and listservs. The average age of students was 22.13 (SD = 2.93 years). The students 
were given a $30 gift card for their participation in the study. The experiment procedure was 
approved by the university’s Institutional Review Board. None of the students who participated 
were familiar with concept mapping. So, the first step was to provide them with a four-minute 
video about the elements and relationships in a concept map and how to construct a concept 
map.  They were then asked to develop a concept map about their educational experience. While 
developing this initial concept map, they were encouraged to ask questions. They were told this 
was just for practice and meant to help them understand what would be asked of them later.   
 
Students were then outfitted with functional near-infrared spectroscopy (fNIRS). fNIRS was 
chosen as the neuroimaging instrument because it offers relatively good resolution in both time 
and space compared to functional magnetic resonance imaging (fMRI) and 
electroencephalography (EEG). fNIRS measures the change of oxygenated (oxy-Hb) and 
deoxygenated hemoglobin (deoxy-Hb). An increase in oxy-Hb is a proxy for neural activity in 
the brain [12]. An increase in oxy-Hb implies the allocation of resources and nutrients by the 
cerebrovascular system [13]. The cortical region of interest was the prefrontal cortex (PFC) 
because of its involvement with working memory and higher-order cognitive processing, such as 
sustained attention, reasoning, and evaluations [14]. Figure 1 illustrates the fNIRS device and the 
placement of sensors and detectors that make up channels along the prefrontal cortex. 
  

(a)    
Figure 1: (a) fNIRS cap on the participant, (b) prefrontal cortex channel placement  

  
Design task  
 
While wearing the fNIRS cap, students were asked to complete a word-tracing task to record 
baseline activation in their brains. This type of baseline recording is typical among 
neurocognitive studies  [15], [16]. After the word tracing, participants were asked to rest for 
thirty seconds by staring at a crosshair. Students were then prompted to construct a concept map 
using paper and pencil. The prompt read, “Create a concept map illustrating all the mobility 
systems on campus. The average time spent on this task is 10 minutes, but you have as much 
time as you need to do it.” Students were given as much time as needed to create their concept 
maps. The average time length for concept mapping lasted 8.48 minutes (SD = 4.38 minutes).  
 



Neuroimaging data 
 
The fNIRS raw data for the students were processed using a bandpass filter (frequency ranging 
between 0.01 and 0.1 Hz, third order Butterworth filter) which was done to eliminate low-
frequency physiological and high-frequency instrumental noises. Additionally, an independent 
component analysis (ICA) with a coefficient of spatial uniformity of 0.5 was applied to remove 
motion artifacts. This elimination step was critical in processing the raw fNIRS data to avoid 
false discovery in the fNIRS analysis [17]. The parameters in data processing are based on prior 
research [18]. Shimadzu fNIRS software was used to filter and pre-process the fNIRS data. After 
preprocessing, fNIRS data were analyzed using a locally developed Python script. A baseline 
correction and z-transformation were applied to make fNIRS data comparable between subjects.   
 
The positive area under the Oxy-Hb curve (AUC) was calculated when concept mapping and 
developing design problem statements. AUC was used as a proxy for the cognitive load in 
students’ PFC since AUC takes both activation level and time into account. Prior research has 
also demonstrated that AUC provides a high level of accuracy when classifying the level of 
cognitive effort [19], [20]. An example of the AUC is provided in Figure 2. 

  
Figure 2: Example of the positive area under the Oxy-Hb curve 

 
Design problem statements 
 
In addition to calculating the AUC in the PFC among students when developing their concept 
map and design problem statements, the number of words in their design problem statements was 
used to measure their design products. While imperfect, the number of words in a student’s 
design problem statement indicates some level of detail and complexity of their design. A longer 
description may suggest that the student put more thought and effort into their design problem 
statement. A longer statement provides more details and explanations about their design choices. 
Common “stop words” were removed from the text data, using the Natural Language Tool Kit 
package for Python [21]. The length of the problem statements only included descriptive words 
about their design problem.  
 



Data analysis  
 
The AUC across the PFC when concept mapping was compared using ordinary least squares 
regression to the number of words students included in their design problem statements. Next, 
the average AUC across the prefrontal cortex (PFC) when concept mapping was analyzed for 
each student and compared using ordinary least squares regression to the AUC across students’ 
PFC when they were developing their design problem statements. Finally, the AUC across the 
prefrontal cortex (PFC) when concept mapping was compared using ordinary least squares 
regression to both the AUC across students’ PFC when they were developing their design 
problem statements and the number of words in students’ design problem statements.  
 
Results 
 
The amount of neuro-cognitive activation in the prefrontal cortex while concept mapping was 
positively correlated to the number of words students included in their design problem 
statements (R-squared was 0.425, adjusted R-squared was 0.405). As the neuro-cognitive effort, 
measured by the Oxy-Hb AUC, increased, so did the number of words students included in their 
problem statements. This is illustrated in Figure 3.  
 

 
Figure 3: Ordinary least square regression between the Oxy-Hb AUC while concept mapping 
and the number of words students subsequently included in their design problem statements. 

 
A stronger correlation was observed between the Oxy-Hb AUC in students’ PFC when concept 
mapping and the Oxy-Hb in students’ PFC when developing their design problem statements (R-
squared was 0.683, adjusted R-squared was 0.672). The more neuro-cognitive effort students 
recruited for the concept mapping, the more cognitive effort they recruited for their design 
problem statement. This is illustrated in Figure 4.    
 



 
Figure 4: Ordinary least square regression between the Area Under the Curve for Oxy-Hb when 
concept mapping and the Area Under the Curve for Oxy-Hb while developing design problem 

statements. 
 
The strongest correlation was using both the number of words and the cognitive effort when 
developing design problem statements compared to the cognitive effort when concept mapping. 
The R-squared was 0.775, and the adjusted R-squared was 0.758. In other words, the neuro-
cognitive effort when concept mapping was strongly related to both the number of words 
students generated and the neuro-cognitive effort students recruited when developing their 
design problem statements. The regression model is illustrated in Figure 5.  

 
Figure 5: Ordinary least square regression between the Area Under the Curve for Oxy-Hb during 
concept mapping and the combined through dimension reduction Area Under the Curve for Oxy-

Hb while developing design problem statements and the number of words students produced. 
 
 



Discussion and conclusion 
 
The results of this study suggest that there is a positive relationship between the neuro-cognitive 
effort involved in concept mapping and the subsequent number of words generated by students 
when developing their design problem statements. This finding highlights the potential benefits 
of using concept mapping as a tool to support engineering students when designing. This 
relationship suggests that concept mapping may help students to organize their thoughts and 
enable them to generate more detailed and comprehensive design problem statements. By 
visually organizing and connecting disparate pieces of information, students may be better 
equipped to develop a complete understanding of the problem and thus generate more ideas. 
 
The relationship between neuro-cognitive effort during concept mapping and subsequent neuro-
cognitive effort when developing design problem statements may suggest these tasks are 
cognitively related. The ability to connect and integrate information is a critical component of 
both concept mapping and design problem framing [22]. The use of concept mapping may help 
prime neuro-cognitive activation that is relevant to design problem framing. However, further 
research is needed to support this claim. While correlations were observed between concept 
mapping and design problems, it may be more relevant to the attention students gave to both 
tasks. For instance, all the students were unfamiliar with concept mapping. So, students who 
tried harder during the concept mapping may have been more likely to try harder during the 
design problem statement regardless of the effect of concept mapping on their cognition. Future 
research could begin to explore how the neuro-cognitive relationship changes over time. As 
familiarity with concept mapping increases, and it becomes cognitively easier, how does this 
change neurocognition when developing their design problem statement? Further research is also 
needed to explore the relationship between concept mapping and other aspects of engineering 
design, such as developing detailed design solutions. In addition, more comparisons, and a 
deeper investigation into what is included in their design statements, not just the length of the 
statement, are also needed.  
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