

From Need Assessment to Accreditation: Lessons Learned from Creating a New Construction Engineering Program

Dr. Mostafa Batouli, The Citadel

Dr. Mostafa Batouli is a founding faculty and Assistant Professor of Construction Engineering, and director of the STRIVES lab in the department of Civil and Environmental Engineering at The Citadel. Dr. Batouli received his PhD in Civil and Environmental Engineering from Florida International University. Other than engineering education, Dr. Batouli also conducted research in the area of smart and resilient civil infrastructure and urban systems. He is particularly interested in studying human-infrastructureenvironment interactions. His previous research has resulted in more than 30 referred journal and conference publications as well as three research reports.

Dr. Rebekah Burke, P.E., Pennsylvania State University

Dr. Rebekah Burke is an Assistant Professor of Construction Engineering at The Citadel. She received her Doctoral degree from Arizona State University. She was previously the Director of Sustainable Design for Clark Nexsen, Architecture and Engineering,

Dr. Ronald W. Welch, The Citadel

Ron Welch (P.E.) received his B.S. degree in Engineering Mechanics from the United States Military Academy in 1982. He received his M.S. and Ph.D. degrees in Civil Engineering from the University of Illinois, Champaign-Urbana in 1990 and 1999, respectively. He taught at The United States Military Academy during his 25 year military career. After retiring form the military he has taught at the University of Texas at Tyler and The Citadel, where he was the Dean of Engineering for 10 years.

Dr. Nahid Vesali, P.E., Pennsylvania State University

Dr. Nahid Vesali is an Assistant Professor in the Department of Engineering Leadership and Program Management (ELPM) in the School of Engineering (SOE) at The Citadel. She joined the program in Aug 2020. She teaches project management, technical planning

From Need Assessment to Accreditation: Lessons Learned from Creating a New Construction Engineering Program

Mostafa Batouli, Rebekah Burke, Ron Welch, William Davis, and Nahid Vesali

The Citadel School of Engineering

Abstract

Launching a new college degree program is an arduous task that requires strategic planning, meticulous coordination, and careful implementation of the plans. Due to a growing demand for construction professionals, The Citadel department of Civil and Environmental Engineering launched a new BS in Construction Engineering program in 2018. The program was accredited by ABET in 2021, and has successfully produced more than fifty construction engineering graduates over the past three years. This paper presents lessons learned from creating the BS in construction engineering program at The Citadel. In particular, we discuss the opportunities and challenges related to development of curricular content, preparation of course syllabi, adopting textbooks, assessment and accreditation, and industry relations for creating a construction engineering program. Seventeen new courses were created for the new program. The course maps of all ABET accredited construction programs in the US were reviewed, a database of skill sets required of construction engineers was established, and more than 100 related textbooks were evaluated to decide the course learning objectives and create the syllabi. A robust assessment scheme was created and used in documentation of the program's success in meeting ABET's standards of quality. The lessons learned include exploiting opportunities for cross-listing or cross-teaching construction engineering courses with civil and mechanical engineering, and project management programs, and identifying the need for new educational materials including textbooks for construction engineering programs.

Introduction

Shortage of skilled workers has become a significant challenge for construction industry in the United States. A recent U.S. Chamber of Commerce study revealed that 92% of contractors face difficulty finding skilled workers, 71% ask their skilled workers to work overtime, and 42% report turning down projects due to skilled labor shortages [1]. The aging of the skilled workforce is likely to exacerbate the problem in the next few decades [2]. In addition, the complexity of construction projects is rising, making it increasingly necessary to have a bachelor's degree in order to secure well-paying and highly sought-after careers within the construction industry[3]. Due to the increasing demand for Construction-related undergraduate programs, the College of Engineering at The Citadel established a new BS in Construction Engineering program in 2018. The program was granted ABET accreditation in 2021 and has produced over 50 construction engineering graduates in the past three years.

Launching a new college degree program is a challenging and demanding process that entails careful planning, precise coordination, and diligent execution of the plans. This paper presents our learning experiences from launching the BS in construction engineering program at The Citadel to: i) identify the key challenges and obstacles encountered in developing a new program and how they were overcome, ii) provide recommendations for best practices in launching a new college degree program, iii) to disseminate the lessons learned from the launch process and to encourage other institutions to consider similar programs, and iv) to identify areas for improvement in existing construction engineering programs and suggest strategies to implement the improvements.

An Overview of The Program Development Process

Development of the new BS in Construction Engineering program from internal discussions within the School of Engineering until ABET accreditation and final implementation of the program took about 8 years (Figure 1). In this section, we will discuss the six-phase process for developing the new program (Table 1). It should be noted that these phases were not necessarily sequential and may overlap or occur simultaneously, depending on the specific circumstances of the program development.

Concep	tion Adviso	ry Board	Foundation	l Hirin	g of]	Pilot		ABET	
of Ide	ea Estal	olished	Approval	New Fa	aculty	Imple	mentation	Ac	creditation	
2013	2014	2015	2016	2017		2018	2019	2020	2021	>
	Study	Inter	mal	CHE	Curri	culum	Instructio	onal		
	Program	Appro	ovals A	pproval	Deve	loped	Materia	als		
	Figure 1: Timeline of launching BS in Construction Engineering at The Citadel									

Need Identification

Discussions about launching a new Construction Engineering program began in 2013. It was noticed that many students were interested in hands-on construction work instead of desk-bound design work, which was evident from their participation in projects like the Steel Bridge and Concrete Canoe. Additionally, a review of the national and local construction markets indicated that the use of design-build projects was steadily increasing compared to the traditional design-bid-build delivery method [4]. One reason for this shift is that design-build encourages greater collaboration and communication between design and construction. This has generated a high demand in the market for individuals who possess a strong understanding of both design and construction processes. As a result, a construction engineering program could bridge the gap between design-focused civil engineering degrees and business and management-focused construction management programs [3].

In 2014, an initial study was carried out to evaluate the requirements of the program, including learning outcomes and resource needs. To aid in market research and program development, an advisory board comprising industry professionals, faculty members, alumni, and community leaders was formed in 2015. The advisory board also facilitated partnerships and collaborations with other organizations and identified potential sources of funding for the program's development. The outcome of the need identification phase was the realization that there was a gap in the current course offerings and a demand for the new Construction Engineering program.

Conceptualization

The objectives of this phase were to define the goals of the educational program, develop course maps, and secure funding and approvals for the new program. From the moment the program idea was conceived, the School of Engineering prioritized the goal of obtaining accreditation from the Accreditation Board for Engineering and Technology (ABET) for the new program. ABET accreditation is widely recognized as a symbol of excellence in engineering and technology programs, both nationally and internationally. This recognition can be beneficial for graduates of accredited programs, especially in terms of professional mobility. For instance, engineers who relocate to a different state or country may

Need	Conceptualization	Planning	Design	Implementation	Evaluation &
Identification					Accreditation
• Market	 Identify Goals of 	Resource	Curriculum	• Student	 Annual
Research	the Educational	Allocation	Development	Recruitment and	Program/Course
 Focus Group 	Program	 Hiring 	• Course	Support	Assessment
Discussions	Create Course	• Draft	Outlines	 Curriculum 	 Standard
 Feasibility 	Maps	Curriculum	 Instructional 	Delivery	Review Process
Assessment	Secure Approvals		Materials	 Stakeholder 	Continuous
	& Funding			Engagement	Improvement

Table 1: The six phases of developing the new BS in Construction Engineering at The Citadel

find it easier to obtain licensure or secure employment if they hold a degree from an accredited program. Therefore, seeking ABET accreditation for the new program was considered an important step in establishing its quality and competitiveness in the field of engineering education. Accordingly, the program educational objectives and student outcomes were developed to support the department's mission, industry needs, and ABET requirements. The initial student outcomes excerpted from ABET were [5]:

T-11. 1. D	YAN JANA TANANINA	\mathbf{O}	ADET	2017 2010 [51)
Tanie / Program N	πιαρήτι ραγήμο	ΙΠΠΟΜΡΣΙΕΧΟΡΙ	rntea trom ARF.I	///////////////////////////////////////
10010 2. 110510111 5	nuacin Dearning	Oncomes (Bacer	pica ji oni miduli,	

Student Learning Outcomes

- (a) an ability to apply knowledge of mathematics, science, and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice"

The plan was to submit the proposal for the new program to Authors' Institute State Committee on Higher Education (CHE) in 2015 and launch the program in 2016. However, due to other ongoing degree programs on campus, the launch was delayed until May 2017. On 29 November 2016, the college-wide undergraduate curriculum committee approved the program. The proposal was passed by faculty senate on 12 December 2016, and by the board of visitors and the president of the college on 9 January 2017. Ultimately, the program was approved by CHE on 7 December 2017 to be implemented in 2018. Approval was received from the Author's Institution Foundation in December 2016 to raise \$100,000 for the program in the coming year.

Planning

After considering the close relationship between civil and construction engineering, it was decided that the program would be offered by the Department of Civil and Environmental Engineering (CEE), rather than creating a new department. This decision offered three additional advantages: First, it allowed CEE faculty to support the new program, especially by teaching many of the design courses. Second, the new program could benefit from the robust assessment methods of CEE programs. Third, the two programs could share resources such as lab spaces, financial support, and support staff. Furthermore, it was resolved to maintain the initial two years of the new construction engineering curriculum akin to the current Civil Engineering program to ensure a high level of consistency between the two programs and offer students optimal adaptability when transitioning between the two majors.

To support the new program, two faculty lines were created. In order to strategically enhance the program's curriculum, one faculty member with specialized expertise in structural and sustainable building materials, methods, and engineering was hired. This faculty member was responsible for teaching courses related to construction materials and methods, as well as structural analysis. Additionally, another faculty member was hired with expertise in construction and infrastructure management, who taught courses related to business and management aspects of construction. This decision was made in order to provide a well-rounded education for students, and to ensure that they have access to faculty members who have specialized knowledge and experience in different areas of construction engineering.

To provide additional support for the new program, faculty members from various departments within the college were engaged for involvement. The Civil and Environmental Engineering faculty with expertise in soil and geotechnics, as well as structures courses, were expected to contribute to the program. Additionally, faculty members from the Engineering Leadership and Program Management department were to provide support for courses in project management. Moreover, the Mechanical Engineering department faculty members were also planned to be engaged in the program by teaching a course on Mechanical, Electrical, and Plumbing Systems. The collaboration between different departments and faculties was intended to provide students with a well-rounded and comprehensive education in construction engineering, covering a diverse range of topics and areas of expertise.

During the planning phase, a course map for the program was established, along with preliminary syllabi for new courses. Figure 2 demonstrates that a total of seventeen fresh courses (52 credit hours) were created, with ten of the Civil Engineering courses (26 credit hours) cross-listed for the new Construction Engineering program. Additionally, one course (3 credit hours), ACCT 205, was adopted from the business department's course offerings. The remaining 54 credit hours of the 135-credit hour program consisted of Math and Science courses, as well as General Education courses.

August 202	2	Major Academic Plan (MAP) – Construction Engineering Academic Credit Ho				ic Credit Hours 135	+ROTC			
<u>Freshman</u> Fall	LDRS 101 (1)	FSEM 101 (3)	FSWI 101 (3)	Fresh. Math MATH 131 (4)	Fresh. Science BIOL 150/151 (4)	CIVL 103 (1)			ROTC (Basic)	16
Spring		PHYS 221/271 (4)	RPED 260 (3)	MATH 132 (4)	CIVL 210 (3)	CIVL 101 (2)			ROTC (Basic)	<u>16</u> 32
<u>Sophomore</u> Fall		LDRS 202 (3)	Strand 1 (3)	Math/ Science Elective* (3)	CHEM 151/ 161 (4)	CIVL 205/235 (4)			ROTC (Basic)	17
Spring	LDRS 211 (0)	Prof. Com. COMM 260 (3)	CIVL 202 (3) Quantitative Lit	ACCT 205 (3)	CHEM 152/ 162 (4)	CIVL 208/239 (4)		RPED	ROTC (Basic)	17 34
<u>Junior</u> Fall	LDRS 311 (0)	CONE 302 (4)	CIVL 304 (3) Quantitative Lit	CIVL 314 (2)	CONE 330 (3)	CONE 320 (3)	CONE 311 (3)	RPED	ROTC (Advanced)	18
Spring		LDRS 371 (3)	CONE 312 (3)	CONE 340 (4)	CONE 350 (3)	CONE 360 (3)	Strand 2 (3)		ROTC (Advanced)	<u>19</u> 37
<u>Senior</u> Fall	LDRS 411 (0)	Sr. Capstone CONE 481 (3)	CONE 415 (3)	CIVL 331 (3)	CONE 410 (3)	CONE 440 (3)	CONE 412 (1)	CIVL 412 (1)	ROTC (Advanced)	17
Spring		Sr. Capstone CONE 482 (3)	CONE 450 (3)	CONE 460 (3)	CONE 470 (3)	Strand 3 (3)			ROTC (Advanced)	$\frac{15}{32}$
									TOTAL	135
Math or science 261, MATH 231	Aath or science course electives include: PHYS 243, PHYS 244, ASTR 201, ASTR 202 MATH 206, MATH 240, STAT Required hours for graduation are 135 plus credit hours from successful completion of all required ROTC courses.									

Strand Requirements: Students must complete three strand courses, which may be completed in any order: English (ENGS 30X), History (HISS 30X), and Social Science (SCSS 30X).

Design

During the design phase of the program, the program was meticulously developed and defined, including its structure, content, and delivery methods. This involved the creation and refinement of course outlines, syllabi, and other instructional materials, as well as the development of a comprehensive curriculum. As part of this process, 17 new courses were created, including the culminating senior design courses, CONE 481 and CONE 482, which provide students with the opportunity to apply their theoretical knowledge and technical skills to real-world engineering problems. Another course, CONE 412, was specifically designed to assist students in preparing for the NCEES Fundamentals of Engineering (FE) Computer Based Exam. Details regarding the course learning objectives and delivery methods for the remaining 14 courses are presented in Table 3.

Adopting a textbook for the newly developed courses was a critical decision that required careful consideration of several factors. Some of the key factors that were considered when selecting a textbook for the courses included:

Relevance: The textbook should be relevant to the course content and learning outcomes, covering the necessary topics with appropriate depth and breadth of coverage.

Course Title	Course Learning Objectives				
n. and	1. Compare and contrast the different types of construction contracts that exist and the roles and responsibilities of the contractual party				
NE 302 Eng./Con. , Ethics, Safety, a tracts	2. Describe the role OSHA has in Construction Safety				
	3. Evaluate construction site scenarios for critical safety hazards, identified by OSHA				
	4. Explain how ethical problems are encountered in the engineering and construction industry				
	5. Compare and contrast the different forms of formal dispute and claims resolution				
CON	6. Explain how labor and environmental laws affect construction projects and supervision				
	1. Compare construction cost estimating methods and their uses.				
	2. Explain the role of estimator and the requirements of estimating in construction projects.				
50	3. Discuss contracts, bonds, insurance, and project manual as they relate to resource/cost estimating.				
ating	4. Explain Construction Estimating Code of Ethics				
stim	5. Read and Interpret Construction Drawings and Specifications				
VE 311 ource Es	6. Identify types and components of overhead and contingencies				
	7. Determine labor and equipment costs considering productivity adjustment.				
CON	8. Explain the role of specialty contractors in project cost.				
nating	1. Perform quantity takeoff for different construction work types/divisions given a set of plans.				
Estin	2. Use Microsoft Excel to assist in estimate preparation.				
NE 312 anced	3. Create a bid package, write a proposal letter, and submit a bid using standardized bid documents.				
CON	4. Effectively communicate in writing.				
	1. Utilize ASTM specifications, building codes, and technical guidelines				
pun	2. Articulate unique characteristics of foundation system construction				
als a	3. Articulate unique characteristics of concrete, stone, & masonry construction				
ateri	4. Articulate the unique characteristic of steel construction				
⁵ M ⁶ Lat	5. Articulate the unique characteristics of wood (timber) construction				
320 ering s (&	6. Explain different cladding and façade systems				
NE 3 ginee hods	7. Discuss different interior finish systems				
COl Eng Met	8. Prepare (write) a technical laboratory report and site visit report				
5	1. Apply quality management tools, techniques and standards for construction engineering.				
ient an	2. Explain the implications of project delivery methods, contract documents, and contract language on the quality of construction projects.				
lgent Ins	3. Discuss common quality issues in life cycle of construction projects.				
330 / Mana Relatio	4. Describe bond, guaranty, and warranty as they relate to quality of construction services and project deliverables.				
CONE Quality Labor]	5. Recognize the methods to balance competing interests of time, money, and quality for engineering and construction.				

 Table 3: Course Learning Objectives for the BS in Construction Engineering Program

	6. Identify risk of quality failure in construction projects and be able to implement risk mitigation plans.
	1. Examine load path of lateral and gravity loads on a building
CONE 340 Structural Analysis and Design	2. Examine the behavior and performance of individual structural members and their role in the overall structure
	3. Develop an organized approach to determine the required sizes for structural columns, beams, tension members, and foundations in accordance with appropriate code provisions
ction	1. Describe the basic principles of soil mechanics and their impacts on construction processes and assess different methods for improving soil characteristics.
Constru .ng	2. Appraise appropriateness of earthmoving and excavation methods as well as construction equipment used for hoisting materials, erecting structures, and earth moving.
350 ercial (gineeri nent	3. Estimate the productivity of different construction equipment and evaluate equipment management techniques (economics, planning, cost estimation, and maintenance).
CONE Comm and En Equipr	4. Compare different equipment use plans with respect to cost and schedule objectives of construction projects
	1. Develop an organized approach to solving soil mechanics problems
s (&	2. Describe the physical properties of soil.
360 d tion:	3. Interpret and explain a geotechnical report
NE () s an ndat	4. Explain principles of shallow foundation construction.
CO) Soil Fou Lab	5. Explain principles of deep foundation construction.
	1. Prioritize tasks based on their importance and urgency using Time Management Matrix.
	2. Compare the advantages and disadvantages of different scheduling techniques.
ß	3. Create a bar chart schedule for a construction activity.
Inpa	4. Discover critical path for completion of a construction project.
t10 Sche	5. Manage time and space buffer in horizontal projects using linear scheduling.
HE ∠ ect 1	6. Compress schedule via fast tracking or crashing.
Proj	7. Identify other scheduling methods including Activity on Arrow and PERT.
ion	1. Compare different construction sectors.
strat	2. Distinguish the role of different participants in the life cycle of a construction project.
nent	3. Compare different organizational structures and contract types.
ager Adı	4. Forecast and balance resources.
.15 Man ring	5. Classify various project control metrics.
VE 4 ect 1 inee:	6. Assess time and cost performance of construction projects using Earned Value metrics.
CON Proj Engi	7. Identify basic financial and accounting documents.
40 thods] p. Str.]	1. Articulate the unique characteristics and appropriate applications of a number of temporary structures
CONE 4 Con. Me and Tem Design	2. Prepare (write) a technical site visit report
50 (su 1 1 1	1. Define facility management
UE 4 litie: atio	2. Describe building Sustainability for existing buildings and new construction
CON Faci Open and	3. Create BIM model with architectural elements

	4. Create BIM model with structural elements
	5. Use and manipulate BIM and other emerging technologies for creating construction documents
chanical and Electrical	1. Fundamentals: Explain how indoor environmental quality is affected by the electrical and mechanical systems.
	2. Mechanical: Select devices for providing thermal control within a building.
	3. Mechanical: Select the heat flow within and throughout a building and estimate load calculations.
	4. Plumbing: Identify and explain plumbing material used for water supply, sanitary drainage and vent, and storm water drainage systems.
Me	5. Electrical: List and define the major components of the electrical systems of building.
VE 460 ems	6. Electrical: Calculate electrical quantities for Ohm's and Power formulas; calculate what is needed to layout an electrical design for a building.
CON Syst	7. Code: Apply code to overall MEP design and specifications.
-	1. Construction processes. Construct solutions in residential construction by applying principles of engineering, tailored to the specific needs of the site and stakeholders.
ctio pid nent	2. Project reporting. Develop project status reports based on observed field conditions.
UE 470 Produ esses and Raj luct Developn	3. Communication skills. Apply effective oral and written communication skills to convey information to the broader project team.
	4. Stakeholder management. Identify stakeholders and apply appropriate communication skills with relevant project stakeholders.
COP Proc	5. Risk. Determine project risks within a specific context.

Pedagogy: The textbook should be well-written, clear, and concise, with suitable examples and explanations that facilitate student learning. It should also include exercises and other learning activities that engage students and promote active learning.

Current relevance: The textbook should be up-to-date and reflect current thinking and practices in the field, including the latest research and developments in the subject area.

Cost: The cost of the textbook should be reasonable and affordable for students. The textbook should be available in both print and digital formats, and options for rental, used, or electronic versions should be available to help reduce costs.

Accessibility: The textbook should be accessible to all students, including those with disabilities. The textbook should be available in alternative formats such as braille, audio, or electronic text.

By carefully considering these factors and reviewing the textbooks for accuracy, bias, and appropriateness, the faculty of the new program selected textbooks that met the needs of their courses and helped students achieve their learning goals. Appendix A shows some of the textbooks that were reviewed, along with their advantages and limitations. It should be noted that for several of the courses, no single textbook met all the requirements of the course, and the faculty decided to supplement the instructional material with other resources.

Implementation

During the implementation phase, the program was introduced and launched. The required infrastructure, such as classrooms and labs, was allocated to the program, and the program was marketed

to potential students. To ensure a smooth launch, the program was initially piloted in 2018 with eight sophomore students who switched majors from Civil Engineering to Construction Engineering. This approach helped expedite the graduation of the first group of students by a year and aligned the program's first ABET visit with the reaccreditation of the Civil Engineering program for greater efficiency.

To support students' success in the program, a process for student development was established. All students, including freshmen, have a designated advisor within the program who they meet with before pre-registration and at the beginning of each semester. If poor performance is reported or mid-term grades are low, additional advising sessions may be scheduled. Students can also seek feedback and support through informal discussions with faculty. Advisors maintain records of students' progress, and access up-to-date information through a web-based college data service. During advising sessions, advisors verify students are taking the proper courses in the right sequence and have fulfilled prerequisites. While the web-based registration system checks for prerequisites, it does not verify successful completion of those courses, so faculty must confirm that before students can enroll in follow-up courses. A hold is placed on student registration at the beginning of each term to confirm compliance. If any issues arise, students are notified via email before the add/drop date. The program is working with the Registrar's Office to automate the process of verifying successful completion of prerequisites.

Assessment and Accreditation

Figure 3 illustrates the Program's overall assessment philosophy and integration between process components. This figure illustrates how guiding principles such as the adopted Mission Statement and established Core Values connect with program educational objectives and student outcomes. In addition, the flowchart identifies how various forms of data from our constituents provide feedback to our program, especially aspirational program educational objectives. Figure 4 presents the specific process flow chart dubbed the Program's Global Program Assessment Process. Primary components include Program Educational Objectives, Core Values, Mission Statement, and in part Student Outcomes. As illustrated, there are multiple paths that result in changes to these global assessment items. The first is a standard review process. The faculty and Program Director review these items on an annual basis. The Advisory Board reviews every three years and the School of Engineering (SOE) Dean reviews every two years. The Program Director and Dean review for consistency with college policies, the Program faculty reviews for consistency with educational trends and practices, and the Advisory Board reviews for consistency with professional standards and expectations. If any concerns are identified by any of these stakeholder groups, they are flagged for follow-up by Program Director and Construction Engineering (CONE) faculty for further action. Another path within the process that results in changes to the Global Assessment items is through direct measurement. Embedded Indicators and surveys are two tools used to receive both direct and indirect feedback. The process has a built-in loop to make improvements to the tool itself but if the process is deemed effective, then any concerns are identified and flagged for follow-up by the by Program Director and CONE faculty for further action. CONE faculty are presented with the concerns that come out of the process and task with developing a proposal, which will address issues identified as concerns or items needing improvement. The Advisory Board as well as SOE Dean reviews the proposal and any feedback is incorporated into the proposal. The final version is reviewed and approved by faculty and the process is documented and filed in the Programs' Annual Assessment documentation. Resulting actions are implemented to resolve the issue/item and/or changes are made to the Global Assessment component of concern.

Figure 3: CONE Program Assessment Pyramid

Lessons Learned and Conclusion

The launch of the BS in construction engineering program at The Citadel was a challenging but rewarding process that provided valuable insights into the creation of new college degree programs. Through this experience, several key challenges were identified, as well as obstacles that emerged during the conceptualization, design, planning, implementation, and assessment phases of the program launch.

- 1. Defining Program Goals and Objectives: A critical first step in launching a new degree program is to define its goals and objectives. It is essential to identify the program's target audience, its relevance in the current job market, and the knowledge, skills, and abilities required to meet industry needs. In our case, we identified the need to train a new generation of construction engineers capable of managing the complexity of modern construction projects while addressing the shortage of skilled workers in the industry.
- 2. Collaborative Planning and Coordination: Developing a new college degree program requires close collaboration between different departments and stakeholders within the institution. We found it essential to involve faculty members from different disciplines, industry representatives, and students in the program development process. It was crucial to develop a shared vision for the program and ensure that everyone was aligned with the program's goals and objectives.
- 3. Curriculum Design and Development: The curriculum is the backbone of any degree program, and developing a relevant and up-to-date curriculum is crucial for program success. We found that involving industry representatives in curriculum design helped ensure that the program's content was aligned with industry needs. It was also essential to incorporate experiential learning opportunities, such as internships, co-ops, and hands-on projects, to provide students with practical experience.
- 4. Instructional Material: After reviewing an extensive range of textbooks and resources, we have

Figure 4: CONE Global Program Assessment Process

concluded that there is a significant demand for new instructional material and resources in Construction Engineering programs. Our evaluation revealed a particular need for updated textbooks and enhanced content related to quality management and the design of temporary structures. Furthermore, the material covering construction equipment is increasingly becoming outdated in light of the latest advancements in construction automation and robotics. Consequently, we strongly recommend the development of a comprehensive textbook that focuses on construction automation and robotics to meet this urgent need.

- 5. Accreditation: Obtaining accreditation for a new degree program is a rigorous process that requires significant effort and resources. We found that starting the accreditation process early in the program's development helped us identify areas for improvement and ensure that the program met ABET accreditation standards.
- 6. Marketing and Recruitment: Launching a new program requires effective marketing and recruitment strategies to attract potential students. We found that engaging with high school students, attending career fairs, and partnering with industry organizations were effective strategies to raise awareness about the program and attract prospective students.

In conclusion, the launch of the BS in construction engineering program at The Citadel provided valuable insights into the creation of new college degree programs. Our experiences highlighted the importance of collaborative planning and coordination, curriculum design and development, accreditation, and marketing and recruitment. We believe that our lessons learned can help other institutions navigate the

challenges of launching new programs and improve existing construction engineering programs.

References

- 1. U.S. Chamber of Commerce. (2021). Q3 CCI report [PDF]. Retrieved from https://www.uschamber.com/assets/archived/images/q3_cci_report_final.pdf
- 2. National Institute of Standards and Technology (NIST). (2020). Addressing the Aging Skilled Trades Workforce. [NIST website]. Retrieved February 11, 2023, from https://www.nist.gov/el/construction-innovation/addressing-aging-skilled-trades-workforce.
- Batouli, M., Shamsi, N., Vesali, N., & Burke, R. (2022, August). A Data-Driven Comparison of ABET Accredited Construction Engineering and Construction Management Programs. In 2022 ASEE Annual Conference & Exposition.
- Design-Build Institute of America (DBIA). (2021). DBIA 2021 Industry Survey: Design-Build Trends, Challenges and Best Practices. Retrieved from <u>https://dbia.org/wpcontent/uploads/2021/08/DBIA_2021_Survey_Results_FINAL.pdf</u>
- Accreditation Board for Engineering and Technology (ABET). Criteria for Accrediting Engineering Programs, 2017-2018. Retrieved from <u>https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering-programs-2017-2018/#GC2</u>
- Associated General Contractors of America (AGC). (2023). Design-Build Delivery Method Gaining Popularity in Construction Industry. [AGC website]. Retrieved February 11, 2023, from <u>https://www.agc.org/news/design-build-delivery-method-gaining-popularity-construction-industry</u>.
- Engineering News-Record (ENR). (2023). Design-Build Delivery Method on the Rise. [ENR website]. Retrieved February 11, 2023, from <u>https://www.enr.com/design-build-delivery-method-on-the-rise</u>.

Textbook Evaluated	Advantages	Limitations	Adopted Topics (if any)		
CONE 302: Engin	eering/Construction La	w, Ethics, Safety, and C	Contracts		
Werremeyer, Kit. Understanding & Negotiating Construction Contracts, A Contractor's & Subcontractor's Guide to Protecting Company Assets. RS Means. 2006.	Great contractor's perspective for contractual issues (unique)	Portions are dated for current law. No instructor guides. Majority of material not used in class	Portions of: Assurance of Performance, Insurance, Indemnity		
Kelley, Gail S. Construction Law, An introduction for Engineers, Architects, and Contractors. RS Means. 2013.		No instructor guide or examples, lack of depth on required topics.	The Procurement Process		
Yates, J.K. Engineering and Construction Law and Contracts. Prentice Hall. 2011.	Instructor resources with chapter question solutions.	Large portions of the book not used in class, >\$150	Portions of: Forming Engineering and Construction Contracts, contracts for engineering and construction services, contract terms and conditions, change orders and claims		
Hill, Darryl C (editor). Construction Safety Management and Engineering. American Society of Safety Engineers. 2014.	Learning Objectives and review exercises provided for each chapter	>\$200, no instructor guide, too deep and thorough for a 4-5 week safety module	Design for Construction Safety and Health		
Sweet, Justin. Legal Aspects of Architecture, Engineering and the Construction Process		>\$200, no instructor guide, too deep and thorough for a 4-5 week construction law module			
Other Resources: Targeted guest lectures from industry, a Sr VP on construction contracts, a construction director of safety, and a construction law attorney (All CO); osha.gov; Markkula Center of Applied Ethics at Santa Clara University, Ethics resources, www.scu.edu/ethics/ethics-resources					
CONE 311: Resource Estimating					
Dagostino, Frank R. and Peterson, Steven J., Estimating in Building Construction, 9th Edition, Pearson Prentice Hall, 2015.	Comprehensive coverage of building construction cost estimation, contains rich instructor resources including example problems and a sample bidding project	Instructor resources does not include sample test questions.	Ch 1-7, 9, 20, 22		

Appendix A: Textbooks Reviewed for the new courses

Huth, M. W. (2014). Understanding construction drawings. Cengage Learning. ISBN 978-1-285-42323-3.	A comprehensive coverage of construction drawings, including plans, elevations, sections, and details, among others, rich instructor resources including complete sets of drawings, exercises, review questions, and sample test questions	Focused only on plan reading and does not contain information on quantity take-off or cost estimation, Outdated with regards to rapidly evolved technologies such as digital drafting tools and Building Information Modeling (BIM)	The entire book, particularly units 1- 33		
Ding, A. (2021). Construction Estimating: A Step-by-Step Guide to A Successful Estimate. Independently published. ISBN 979-8506983812.	Easy to understand, include topics related to programming, costing, and scheduling projects	Lacks instructor resources, Does not cover plan reading or quantity takeoff, or estimating software	N.A.		
DelPico W. (2015), Builder's Essentials: Plan Reading & Material Takeoff, John Wiley and Sons, ISBN 978-0-87629-348-5	Practical information on plan reading and material takeoff	Does not come with instructor resources and complete sets of plans, Does not come with example problems and exercises, Low quality images, Outdated	N.A.		
Other Resources: Construction Esti	mating Code of Ethics (ASP	E, 2018)			
	CONE 312: Advanced	l Estimating			
Dagostino, Frank R. and Peterson, Steven J., Estimating in Building Construction, 9th Edition, Pearson Prentice Hall, 2015.	Comprehensive coverage of building construction cost estimation, contains rich instructor resources including example problems and a sample bidding project	Instructor resources does not include sample test questions.	Ch 10-19+ Real Estate Office Bidding Project		
Peterson Steven J., Construction Estimating Using Excel, 3rd Edition, Pearson, 2018.	Comprehensive coverage, focus on practical excel skills for estimating, Extensive instructor resources, example problems, and test banks	Is more focused on Excel skills and includes less clear explanation for novice estimators and undergraduate students.	Example problems from across the textbook		
Pratt, D. (2018) J. Ross Publishing.	clear, straightforward language to describe the basic arithmetic of residential construction work, along with logical explanations of how to prepare takeoffs	Lacks instructor resources such as test banks, slides, and additional problems	N.A.		
CONE 320 Engineering Materials and Methods (& Lab)					

Allen, Edward, and Joseph Iano. Fundamentals of Building Construction: Materials and Methods. 2013. Several labs (Soils, concrete, steel,	Good Instructor resources, 6th edition provided great assignments and solutions, as well as ppt presentations timber, IR camera), with lab	7th edition no longer has the same instructor resources, cost is highly variable for students procedures established by th	Textbook adopted fully with supplemental site visits and labs
CO and topics)	varied level of completion pl	rojects of a steer, concrete, n	lasonry, umder (ALL
CONE 3	30 Quality Managemen	t and Labor Relations	
Howarth, Tim, and David Greenwood. Construction quality management: Principles and practice. Routledge, 2017	Well-structured and easy-to-follow	Lacks practical guidance on how to apply quality management principles in real world, lacks problems and exercises, Lacks instructor resources	Select topics used from across the textbook
Evans, J. R., & Lindsay, W. M. (2013). Managing for quality and performance excellence. Cengage Learning.	Comprehensive coverage of quality management principles, practices, and tools, Real-world examples and case studies	Not focused on construction industry, relatively high price, the book's language may be too generic for students with a background in construction	Select topics used from across the textbook
Rumane, Abdul Razzak. Quality management in construction projects. 2nd Edition, CRC Press, 2016	Emphasis on the importance of quality management in the construction industry, In- depth coverage of technical aspects of construction quality management, such as inspection, testing, and compliance	Lack of practical examples and exercises for students, Lack of instructor resources, the book's technical focus does not provide enough guidance on leadership, strategic planning, and customer satisfaction	Select topics used from across the textbook
Frank, George C. Construction quality: do it right or pay the price. Prentice Hall, 2011	Practical guidance on implementing quality management practices in construction projects, with clear examples and case studies, Focused on contractual, legal, and economic consequences of poor-quality management	Limited coverage of technical aspects of construction quality management, Lack of practical examples and exercises for students, Lack of instructor resources,	Select topics used from across the textbook
CC	ONE 340 Structural Ana	lysis and Design	
Ambrose, James, and Patrick Tripeny. Building Structures. 2011.	Instructor Guide (not evaluated)	Not engineering science based (requirement)	None

Underwood, James R., and Michele Chiuini. <i>Structural</i> <i>Design: A Practical Guide for</i> <i>Architects</i> . 2007. <i>Bowker</i> , https://doi.org/10.1604/97804717 89048.	Instructor Guide (not evaluated)	Not engineering science based (requirement)	None
Aghayere, Abi, and George F. Limbrunner. Reinforced Concrete Design (8th ed). 2014.	Instructor guide with worked assignment problems	> \$200, based on a later ACI code	Assignments inspired by provided problems (but were updated for code)
Segui, William T. <i>Steel Design.</i> 2018.	not evaluated	>\$250, too advanced	
McCormac, Jack C. Structural Analysis: A Classical and Matrix Approach. Wiley, 1997. Bowker, https://doi.org/10.1604/97804713 64115.		too advanced	
ASCE Minimum Design Loads for Buildings and Structures (excerpts)			adopted excerpts as resources
ASCE Minimum Design Loads for Buildings and Structures (excerpts)			adopted excerpts as resources
AISC Steel Construction Manual	student pricing		adopted
ACI 318 Building Code requirements for Structural Concrete (excerpts)			adopted excerpts as resources
Other Resources: 2-3 targeted site v (ALL CO and topics)	visits to a steel fabricator, co	ncrete construction project, a	and/or parking deck
CONE 350 Co	mmercial Construction	and Engineering Equip	ment
Peurifoy, R., Schexnayder, C., Shapira, A., Schmitt, R.	Comprehensive coverage of construction equipment, planning, and methods, focus on practical application in construction projects,	Limited coverage of	
Construction Planning, Equipment, and Methods, 9th Edition, McGraw-Hill.	Clear and concise language, Useful learning resources	emerging trends and technologies, some topics are outdated	Adopted as main textbook for the course
Nichols, H.L., Jr. & Day, D.A., P.E., Moving the Earth, 6th Edition, McGraw-Hill, (ISBN: 978-0071502672)	Emphasis on safety and efficiency in earthmoving operations, with clear guidelines and recommendations, Clear and concise language	Limited coverage of earthmoving equipment and techniques, Limited coverage of emerging trends and technologies	N.A.

Gransberg, D., Popescu, C., Ryan, R., Construction	Focused on management		
Equipment Management for	of construction	Limited technical	
Engineers, Estimators, and	equipment, Practical	information, Outdated,	
Owners, CRC Press	examples	Price	N.A.
Schaufelberger, J., Construction	Industry experience	Lack of loarning	
Equipment Management, 1st Edition Prentice Hall	clear and concise	resources Limited focus	NA
	cicul und concise,	Limited depth of	11.11.
Construction Equipment and		information, hard to	
Methods: Planning, Innovation,	Up-to-date information,	understand technical	
Safety, 1st Edition, Wiley	Real-world examples	language	N.A.
CC	ONE 360 Soils and Four	dations (& Lab)	[
	Instructor guide with		
Liu, Cheng, and Jack Evett. Soils	worked assignment		Adopted fully with
and Foundations. 2013.	examples		supplemental labs
	examples		
Dickenson, S. E., et al. Soils in			
Construction. 2003. Bowker,		Too advanced, not	
https://doi.org/10.1604/97801304		enough examples	
89173.			
	Instructor guide with		
Das Braia M Principles of	worked assignment		would have also been
Geotechnical Engineering, 2018.	problems, newer editions	>\$200 for all resources	a good text
6 6	have even better online		0.000
	resources		
Gunaratne Maniriker editor The		Assumes a soils	
Foundation Engineering		mechanics class has been	
Handbook, 2013.		taken prior, too advanced	
Other Resources: Several labs (Gra	in Size Distribution includin	g hydrometer, Atterberg lim	its, compaction,
permeability), with lab procedures	written by the instructor follo	owing ASTM	
		1 1 1'	
Newitt Les C. Construction	CONE 410 Project S	cheduling	
scheduling: principles and	coverage Real world		
practices Second Edition	examples Clear and	I imited learning and	Adopted as main
Pearson Higher Ed 2011	concise language	instructor resources	textbook
	Comprehensive	instructor resources	tentessen
Hinze, Jimmie W. Construction	coverage, rich in	Technical language	Example problems
planning and scheduling. Fourth	examples and learning	difficult to understand	used to supplement
Edition, Pearson Higher Ed, 2011	resources	for undergrad students	the other textbook
CONE 415 Pr	oject Management and	Engineering Administra	tion
	Comprehensive	Limited learning	
Gould, Frederick E., and Nancy	coverage, clear and	resources for students	
Eleanor Joyce. Construction	concise language	and instructors, some	Chapters 1-8, 11-12
project management. Fourth		outdated information	L - 7 -
Euluon, Frentice Hall, 2009.			
			-

Fisk, Edward R., and Wayne D. Reynolds. Construction project administration. Tenth Edition, Pearson Higher Ed, 2011.	Updated information, Real-world examples	Limited focus, Complexity, limited learning and instructor resources	Chapters 10 and 16	
Walesh, Stuart G. Engineering your future: The professional practice of engineering. Third Edition, J. Wiley & Sons, 2012.	Provides a good overview of engineering projects and role of different stakeholders. The accounting section explains what is required for a PM to understand project financial reports.	The focus is more on Eng. Consulting firms rather than construction sector.	Chapter 10- Accounting	
Kerzner, Harold. "Project Management Case Studies. Third Edition, John Willey & Sons." (2005)	Includes real world case studies with the description of the project and each case has a few questions to engage students in the class discussions,	Takes lots of time to cover each case, and the price is high to make it required.	Some of the case studies used for class discussions	
CONE 440 Construction Methods and Temporary Structural Design				
Ratay, Robert. Temporary Structures in Construction, Third Edition. 2012.	Good variety of topics covered	Too advanced, not enough examples, no instructor guide	Ch 3 construction and environmental loads	
Souder, Christopher. Temporary Structure Design. 2014.	Variety of examples (just too simplified)	Not engineering science based (requirement), too few types of temp structures covered, no instructor guide		
Other Resources: (6-10) targeted construction site visits with the specialty sub-contractor after learning about the temporary structure in class: Various manufacturers handbooks, online manufacturer material				
CONE 450) Eacilities Operations	and Maintenance (BIM)		
The Facility Management Handbook, Fourth Edition, Kathy O. Roper and Richard P. Payant, 2014, ISBN-13: 978-0-8144- 3215-0	Includes the fundamental information about Facility Operation and Management and its process	Very expensive for the limited use it has for students. Provides very detailed information about FM which was beyond scope of the course.	Sections 1, 2, 4, 7 and 8.	

BIM Handbook, 3rd Edition, Chuck Eastman, Paul Teicholz, Rafael Sacks, Kathleen Liston, 2018, ISBN- 13: 978-1119287537	Provides a robust foundation about BIM, useful for students, not only in this course but also for their future careers	Very lengthy chapters, covers other topics which are out of scope of this course	Chapters 1, 3, 6 and 10.	
Increasing Autodesk Revit Productivity for BIM Projects: A practical guide to using Revit workflows to improve productivity and efficiency in BIM project. Fabio Roberti, Decio Ferreira ISBN-13 : 978- 1800566804 (Not adopted)	Directly related to Autodesk Revit which is the software used in this course	Very technical and deep knowledge required to understand some chapters and would not fit into the scope of this course	Not adopted	
Other Resources: Knowledge Netw	ork Forum for Autodesk use	rs and Autodesk tutorial link	S	
CON	E 460 Mechanical and	Electrical Systems		
Mechanical and Electrical Systems in Architectural, Engineering, and Construction. Fifth Edition, 2010, Joseph B. Wujek and Frank R. Dagostino, Prentice Hall, ISBN-13: 978-0- 13-500004-5	The flow of Mechanical and Electrical Systems in Buildings; The number of example problems and end of chapter problems are extensive.	Some of the pictures are outdated, but still relevant to what they are showing.	The textbook aligned with the developed course objectives.	
Mechanical and Electrical Systems in Buildings, Sixth Edition, 2019, Richard R. Janis and William K.Y. Tao, Pearson, ISBN-13: 978-0-13-470118-9	The additional materials available from the authors/Pearson to support pictures/tables/problem solutions for lesson development were key in the decision. The updated version in 2019 further strengthened the case to use it.			
CONE 470 Practicum in Construction Engineering				
No Text book is used for this service course. The students were provided with the safety guidelines and other required texts.				