2023 ASEE Annual Conference & Exposition

Efficacy of Humanities-Driven Science, Technology, Engineering, and Mathematics Curriculum on Integrating Empathy into Technology Design

Presented at Interdisciplinary Integration at the Program Level

There have recently been calls to consider the development of student empathy within engineering coursework. We argue that this goal may be reached by infusing more traditional engineering coursework with humanities. Our Humanities-Driven Science, Technology, Engineering, and Mathematics (HDSTEM) curriculum uses a humanities format as a context to discuss science and engineering advancement. The foundation of an HDSTEM curriculum is that it would reassert the importance of humans and human impact in science and engineering, while recognizing the social, political, and cultural catalysts and outcomes of technological innovation. Therefore, we hypothesize that through an HDSTEM curriculum, students will not only develop technically accurate solutions to problems posed in an engineering curriculum but will also question their ideas' impact on society. For this project, we draw on the case of an HDSTEM course, “World War II and Technology,” taught at Texas Tech University (TTU) and Rochester Institute of Technology (RIT). Specifically, we will present the analysis of linking specific problem-solving exercises and assignments that embed empathy with the delivery of the courses following an HDSTEM instruction modality. The problem-solving exercises and assignments incorporate the traditional Six Sigma define, measure, analyze, implement, and control (DMAIC) process. In these assignments, students were asked to reverse engineer technical, scientific, and logistical problems seen during World War II. In a more straightforward means to elicit empathy, students were assigned an additional empathize step with the DMAIC (EDMAIC) during two of these assignments. The empathize step was generic, asking students to take the perspective of the creators, users, and others affected by the problem and consider the societal needs and constraints of the time. Students completed four of these assignments (2 DMAICs bookending 2 (EDMAICs) throughout the course. Combining HDSTEM instruction modality and empathy problem-solving assignments, preliminary discourse analysis of assignments, which looks deeply at the language students used to create empathetic dispositions/identities within their work, revealed that students integrated empathy into technology design at various levels at both TTU and RIT. These disposition levels in empathy were observed and subjectively quantified using common rubrics. These outcomes result even from delivery at pre- and post-pandemic timeframes and at two institutions (i.e., the course was offered at TTU in the fall of 2019 and at RIT in the fall of 2022). In this consideration, the HDSTEM curriculum and empathy-embedded assignments have shown a cultivation of empathetic disposition among students. Further, based on these differing implementations, we will also present and comment on the experience of implementing the TTU course treatment at a new institution, RIT, to serve as a protocol in the future. These courses will be offered again in the fall of 2023 year to offer a comprehensive comparison between first-time (or one-off) in contrast to a sustained delivery of an HDSTEM curriculum.

Authors
  1. Dr. John Carrell Texas Tech University [biography]
  2. Erika Nuñez Texas Tech University
  3. Xueni Fan Texas Tech University
Download paper (789 KB)

Are you a researcher? Would you like to cite this paper? Visit the ASEE document repository at peer.asee.org for more tools and easy citations.